
Chapter 4
MARIE: An Introduction

to a Simple Computer

2

4.8 MARIE

This is the MARIE architecture shown graphically.

MARIE�s Full Instruction Set

4.8 MARIE

3 4

4.13 A Discussion on Decoding

•  A computer’s control unit keeps things synchronized,
making sure that bits flow to the correct components
as the bits are needed.

•  There are two general ways in which a control unit
can be implemented: microprogrammed control and
hardwired control.
–  With microprogrammed control, a small program is placed

into read-only memory.
–  Hardwired controllers implement this program using digital

logic components.

5

4.13 A Discussion on Decoding

•  Your text provides a complete list of the register
transfer language for each of MARIE’s instructions.

•  The microoperations given by each RTL define the
operation of MARIE’s control unit.

•  Each microoperation consists of a distinctive signal
pattern that is interpreted by the control unit and
results in the execution of an instruction.
–  Recall, the RTL for the Add instruction is:

MAR X
MBR M[MAR]
AC AC + MBR ←

←
←

6

This is the MARIE data
path shown graphically.

Data and instructions are
transferred using a
common bus.

Some additional pathways
speed up computation.

 Data can be put on the common bus in the same
clock cycle in which data can be put on these
other pathways (allowing these events to take
place in parallel).

4.13 A Discussion on Decoding

7

4.13 A Discussion on Decoding

•  Let us define two sets of
three signals.

•  One set, P2, P1, P0,
controls reading from
memory or a register, and
the other set consisting of
P5, P4, P3, controls
writing to memory or a
register.

The next slide shows a close up
view of MARIE’s MBR.

8

4.13 A Discussion on Decoding

This register is enabled for reading when P0 and P1 are
high, and it is enabled for writing when P3 and P4 are high

read

write

9

4.13 A Discussion on Decoding

•  Careful inspection of MARIE’s RTL reveals that
the ALU has only three operations: add, subtract,
and clear.
–  We will also define a fourth �do nothing� state.

•  The entire set of MARIE’s control signals consists
of:
–  Register controls: P0 through P5.
–  ALU controls: A0 and A1
–  Timing: T0 through T7 and counter reset Cr

 The counter is reset if fewer than eight clock
 cycles are needed for an instruction

10

4.13 A Discussion on Decoding

•  Consider MARIE’s Add instruction. It’s RTL is:
MAR X
MBR M[MAR]
AC AC + MBR

•  After an Add instruction is fetched, the address, X, is
in the rightmost 12 bits of the IR, which has a
datapath address of 7 (=1112).

•  X is copied to the MAR, which has a datapath
address of 1 (=0012).

•  Thus we need to raise signals P2, P1, and P0 to read
from the IR, and signal P3 to write to the MAR.

←
←
←

11

4.13 A Discussion on Decoding

•  Here is the complete signal sequence for MARIE’s
Add instruction:

 P3 P2 P1 P0 T0: MAR X
 P4 P3 T1: MBR M[MAR]
 A0 P5 P1 P0 T2: AC AC + MBR
 Cr T3: [Reset counter]

•  These signals are ANDed with combinational logic to
bring about the desired machine behavior.

•  The next slide shows the timing diagram for this
instruction.

←
←

←

IR: 111, MAR: 001, Memory: 000,
MBR: 011, AC: 100

12

 P3 P2 P1 P0 T0: MAR X
 P4 P3 T1: MBR M[MAR]

 A0 P5 P1 P0 T2: AC AC + MBR
 Cr T3: [Reset counter]

•  Notice the concurrent signal
states during each machine
cycle: C0 through C3.

←
←
←

4.13 A Discussion on Decoding

Timing diagram

13

4.13 A Discussion on Decoding

•  We note that the signal pattern just described is
the same whether our machine used hardwired or
microprogrammed control.

•  In hardwired control, the bit pattern of machine
instruction in the IR is decoded by combinational
logic.

•  The decoder output works with the control signals
of the current system state to produce a new set
of control signals.

A block diagram of a hardwired control
unit is shown on the following slide.

14

4.13 A Discussion on Decoding

For a 4-bit opcode, the decoder
could have as as many as 16
output signals.

15

4.13 A Discussion on Decoding

MARIE’s
instruction
decoder.
(Partial)

JnS: 0, Load: 1, Store: 2, Add: 3

16

4.13 A Discussion on Decoding

A ring
counter
that counts
from 0 to 5

Initially, all of the flip-flop inputs are low except from the
input to D0 (because of the inverted OR gate on the
other outputs). This bit circulates through the ring.

17

This is the
hardwired
logic for
MARIE’s
Add = 0011
instruction.

P3 P2 P1 P0 T0: MAR X
P4 P3 T1: MBR M[MAR]
A0 P5 P1 P0 T2: AC AC + MBR
Cr T3: [Reset counter]

←
←

←

4.13 A Discussion on Decoding

Find and correct the error
18

4.13 A Discussion on Decoding

•  In microprogrammed control, microcode
instructions produces control signal changes.

•  Machine instructions are the input for a
microprogram that converts the 1s and 0s of an
instruction into control signals.

•  The microprogram is stored in firmware (ROM,
PROM, or EPROM), which is also called the
control store.

•  A microcode instruction is retrieved during each
clock cycle.

ROM: Read-Only Memory PROM: Programmable ROM EPROM: Erasable PROM

19

4.13 A Discussion on Decoding

 This is how a generic
microprogrammed
control unit might look.

4.13 A Discussion on Decoding

20

21

•  If MARIE were microprogrammed, the
microinstruction format might look like this:

•  MicroOp1 and MicroOp2 contain binary codes for
each instruction. Jump is a single bit indicating that
the value in the Dest field is a valid address and
should be placed in the microsequencer (circuitry that
that serves as the program counter).

4.13 A Discussion on Decoding

Because some micro-instructions can be done in parallel (on the same tick of the clock),
we will allow for two micro-operations to be carried out on each tick of the clock. 22

•  The table below contains MARIE’s microoperation
codes along with the corresponding RTL:

4.13 A Discussion on Decoding

23

•  The first nine lines of MARIE’s microprogram are given
below (using RTL for clarity):

4.13 A Discussion on Decoding

23
24

•  The first four lines initiates the fetch-decode-execute cycle.
•  The remaining lines are the beginning of a jump table.

4.13 A Discussion on Decoding

24

4.13 A Discussion on Decoding

JnS

Load

Store

Add

25
26

•  The microinstructions for the Store and Add instructions.

4.13 A Discussion on Decoding

0101010! MAR X! MBR AC! 0! 0000000!
0101011! M[MAR] MBR! NOP! 1! 0000000!
0101100! MAR X! NOP! 0! 0000000!
0101101! MBR M[MAR]! NOP! 0! 0000000!
0101110! AC AC + MBR! NOP! 1! 0000000!

←
←

←
←

←

←

Address! MicroOp 1! MicroOp 2! Jump! Dest!

Store

Add

27

•  It’s important to remember that a microprogrammed
control unit works like a system in miniature.

•  Microinstructions are fetched, decoded, and executed
in the same manner as regular instructions.

•  This extra level of instruction interpretation is what
makes microprogrammed control slower than
hardwired control.

•  The advantages of microprogrammed control are that
it can support very complicated instructions and only
the microprogram needs to be changed if the
instruction set changes (or an error is found).

 Microprogrammed control dominates the personal computer market.

4.13 A Discussion on Decoding

28

4.14 Real World Architectures

•  MARIE shares many features with modern
architectures but it is not an accurate depiction of
them.

•  In the following slides, we briefly examine two
machine architectures.

•  We will look at an Intel architecture, which is a CISC
machine and MIPS, which is a RISC machine.
–  CISC is an acronym for complex instruction set computer.
–  RISC stands for reduced instruction set computer.

We delve into the �RISC versus CISC� argument in Chapter 9.

29

4.14 Real World Architectures

•  The classic Intel architecture, the 8086, first member
of the x86 family, was born in 1979. It is a CISC
architecture.

•  It was adopted by IBM for its famed PC (later
dubbed the XT), which was released in 1981.

•  The 8086 operated on 16-bit data words and
supported 20-bit memory addresses.

•  Later, to lower costs, the 8-bit bus 8088 was
introduced. Like the 8086, it used 20-bit memory
addresses. What was the largest memory that the 8086 could address?

30

4.14 Real World Architectures

•  The 8086 had four 16-bit general-purpose registers
(AX, BX, CX, and DX) that could be accessed by
the half-word.

•  It also had a flags register, an instruction register,
and a stack accessed through the values in two
other registers, the stack pointer (SP) and the base
pointer (BP). SP was used to reference the top of the stack.

 BP was used to reference parameters pushed onto the stack.

•  The 8086 had no built in floating-point processing.
•  In 1980, Intel released the 8087 numeric

coprocessor, but few users elected to install them
because of their cost.

31

4.14 Real World Architectures

•  In 1985, Intel introduced the 32-bit 80386.
An "E" prefix (which stood for "extended") was added
to the register names (EAX, EBX, ECX, and EDX).

•  It also had no built-in floating-point unit.
•  The 80486, introduced in 1989, was an 80386 that had

built-in floating-point processing and cache memory.
•  The 80386 and 80486 offered downward compatibility

with the 8086 and 8088.
•  Software written for the smaller word systems was

directed to use the lower 16 bits of the 32-bit registers.

4.14 Real World Architectures

EAX register, broken into parts

33

4.14 Real World Architectures

•  Intel’s Pentium 4 (2000) introduced a brand new
NetBurst architecture.

•  Speed enhancing features include:
–  Hyperthreading
–  Hyperpipelining
–  Wider instruction pipeline
–  Execution trace cache (holds decoded instructions for

possible reuse) multilevel cache and instruction pipelining.
•  Intel, along with many others, is marrying many of

the ideas of RISC architectures with microprocessors
that are largely CISC.

34

4.14 Real World Architectures

•  The MIPS family of CPUs has been one of the most
successful in its class.

•  In 1986 the first MIPS CPU was announced.
•  It had a 32-bit word size and could address 4GB of

memory.
•  Over the years, MIPS processors have been used in

general purpose computers as well as in games
(Nintendo and Sony).

•  The MIPS architecture now offers 32- and 64-bit
versions.

35

4.14 Real World Architectures

•  MIPS was one of the first RISC microprocessors.
•  The original MIPS architecture had only 55 different

instructions, as compared with the 8086 which had
over 100.

•  MIPS was designed with performance in mind: It is a
load/store architecture, meaning that only the load
and store instructions can access memory.

•  The large number of registers in the MIPS
architecture keeps bus traffic to a minimum.

How does this design affect performance?

36

•  The major components of a computer system
are its control unit, registers, memory, ALU, and
data path.

•  A built-in clock keeps everything synchronized.
•  Control units can be microprogrammed or

hardwired.
•  Hardwired control units give better performance,

while microprogrammed units are more
adaptable to changes.

Chapter 4 Conclusion

37

•  Computers run programs through iterative fetch-
decode-execute cycles.

•  Computers can run programs that are in
machine language.

•  An assembler converts mnemonic code to
machine language.

•  The Intel architecture is an example of a CISC
architecture; MIPS is an example of a RISC
architecture.

Chapter 4 Conclusion

38

End of Chapter 4

