
• Read Chapter 3 in the textbook. Skip Section 3.6.6.	

	

• Exercise 2	

 Implement a C program for printing the 32-bit 	

 representation (float) of -3.1415. Check that its 	

 output is correct according the IEEE-754 single 	

 precision floating-point standard.	

 Hint: Logical operations cannot be applied on float 	

 types. A float f may be represented in an int i 	

 by executing i = *(int *) &f.	

	

• Exercise 3 (Challenging). Solve the exercise on the 	

 next two pages.	

Plan 2���
September 12 – September 19 	

Exercise 3	

The C program below reads two 16-bit integers and prints their product.	

	

!#include <stdio.h>!
!

!int mult(short a, short b) { !
! int ia = a, ib = b; !
! return ia * ib;!

 !}!
!

!int main() { !
 ! short a, b; !
 ! printf("Enter two integers: "); !
 ! scanf("%hd %hd", &a, &b); !
 ! printf("Product = %d\n", mult(a, b)); !

!}!

1.  Compile and run the program under Unix/Linux.	

	

2.  Assuming the input integers are non-negative, implement the mult

function using the traditional pencil and paper method for binary
numbers. Hint: This will require some bit manipulation operations. You
are going to use & (the bitwise AND operator), << (the “shift left”
operator), and >> (the “shift right” operator).	

3.  Extend the solution of question 2 so that the mult function can handle
negative integers as input. 	

4.  Implement mult using Booth’s algorithm.	

5.  Compare the runtime efficiency of the four implementations of mult.!

