
Debugging Assembly Code with gdb

gdb is the GNU source-level debugger that is standard on the CS department
sparcs and on linux systems. It can be used both for programs written in high-
level languages like C and C++ and for assembly code programs; this document
concentrates on the latter.
For detailed information on the use of gdb, consult the documentation. Unfortu-
nately, this is not in form of a man page; instead, it may be read using the info

command. Assuming you’ve already added package gnu to your environment,
type

info -f /pkgs/gnu/info/gdb

(You can type h to get an introduction on how to use info.) gdb will work in
an ordinary terminal window, and this is fine for debugging assembly code. For
use with higher-level source code, it is more convenient to use gdb from within
the emacs editor (a good one to learn!) or using a graphical front-end like xxgdb
or /pkgs/gnu/bin/ddd. The basic commands remain the same.
To use gdb with high-level language programs, you should compile with the
-g option. This will include information in the object file to relate it back to
the source file. When assembling .s files to be debugged, the -g option is not
necessary, but it is harmless.

gcc -g -o foo fooDriver.c fooRoutine.s

To invoke the debugger on foo, type

gdb foo

This loads program foo and brings up the gdb command line interpreter, which
then waits for you to type commands. Program execution doesn’t begin until
you say so.
Here are some useful commands. Many can be abbreviated, as shown. Hitting
return generally repeats the last command, sometimes advancing the current
location.

h[elp] [keyword]
Displays help information.

r[un] [args]
Begin program execution. If the program normally takes command-line
arguments (e.g., foo hi 3), you should specify them here (e.g., run hi

3).

1

b[reak] [address]
Set a breakpoint at the specified address (or at the current address if none
specified). Addresses can be given symbolically (e.g., foo) or numerically
(e.g.*0x10a38). When execution reaches a breakpoint, you are thrown
back into the gdb command line interpreter.

c[ontinue]

Continue execution after stopping at a breakpoint.

i[nfo] b[reak]

Display numbered list of all breakpoints currently set.

d[elete] b[reakpoints] number
Delete specified breakpoint number.

p[rint][/format] expr
Print the value of an expression using the specified format (decimal if
unspecified). Expressions can involve program variables or registers, which
are specified using a $ rather than a % sign. Useful formats include:

• d decimal

• x hex

• t binary

• f floating point

• i instruction

• c character

For example, to display the value of register %i5 in decimal, type p/x $i5.
To see the value of the current program counter, type p/x $pc.

i[nfo] r[egisters] register
An alternative way to print the value of a register (or, if none is specified,
of all registers) in hex and decimal. Specify the register without a leading
%, e.g., i4.

x/[count][format] [address]
Examine the contents of a specified memory address, or the current ad-
dress if none specified. If count is specified, displays specified number of
words. Addresses can be symbolic (e.g., main) or numeric (e.g., 0x10a44).
Formats are as for print. Particularly useful for printing the program
text, e.g., x/100i foo disassembles and prints 100 instructions starting
at foo.

set var = expr
Set specified register or memory location to value of expression. Examples:
set $g4=0x456789AB or set myVar=myVar*2.

2

s[tep]i

Execute a single instruction and then return to the command line inter-
preter.

n[ext]i

Like stepi, except that if the instruction is a subroutine call, the entire
subroutine is executed before control returns to the interpreter.

where

Show current activation stack.

q[uit]

Exit from gdb.

3

