
Chapter 4

MARIE: An Introduction
to a Simple Computer

2

Chapter 4 Objectives

•  Learn the components common to every modern
computer system.

•  Be able to explain how each component
contributes to program execution.

•  Understand a simple architecture invented to
illuminate these basic concepts, and how it relates
to some real architectures.

•  Know how the program assembly process works.

3

4.1 Introduction

•  Chapter 1 presented a general overview of
computer systems.

•  In Chapter 2, we discussed how data is stored and
manipulated by various computer system
components.

•  Chapter 3 described the fundamental components
of digital circuits.

•  Having this background, we can now understand
how computer components work, and how they fit
together to create useful computer systems.

4

4.2 CPU Basics

•  The computer’s CPU fetches, decodes, and
executes program instructions.

•  The two principal parts of the CPU are the datapath
and the control unit.
–  The datapath consists of an arithmetic-logic unit and

storage units (registers) that are interconnected by a data
bus that is also connected to main memory.

–  Various CPU components perform sequenced operations
according to signals provided by its control unit.

5

•  Registers hold data that can be readily accessed by
the CPU.

•  They can be implemented using D flip-flops.
–  A 32-bit register requires 32 D flip-flops.

•  The arithmetic-logic unit (ALU) carries out logical and
arithmetic operations as directed by the control unit.

•  The control unit determines which actions to carry out
according to the values in a program counter register
and a status register.

4.2 CPU Basics

6

4.3 The Bus

•  The CPU shares data with other system components
by way of a data bus.
–  A bus is a set of wires that simultaneously convey a single

bit along each line.
•  Two types of buses are commonly found in computer

systems: point-to-point, and multipoint buses.

This is a point-to-point
bus configuration:

7

•  Buses consist of data lines, address lines, and
control lines.

•  While the data lines convey bits from one device to
another, control lines determine the direction of data
flow, and when each device can access the bus.

•  Address lines determine the location of the source
or destination of the data.

The next slide shows a model bus configuration.

4.3 The Bus 4.3 The Bus

8

•  A multipoint (common pathway) bus is shown below.
•  Because a multipoint bus is a shared resource, access

to it is controlled through protocols, which are built into
the hardware.

4.3 The Bus

9

 Graphics

Protocol: set of usage rules 10

–  Distributed using self-detection:
Devices decide which gets the bus
among themselves.

–  Distributed using collision-
detection: Any device can try to
use the bus. If its data collides
with the data of another device,
it tries again. Used in ethernet.

–  Daisy chain: Permissions
are passed from the highest-
priority device to the
lowest.

–  Centralized parallel: Each
device is directly connected
to an arbitration circuit.

•  In a master-slave configuration, where more than
one device can be the bus master, concurrent
bus master requests must be arbitrated.

•  Four categories of bus arbitration are:

4.3 The Bus

Arbitrated: decided

11

Bus Arbitration - Daisy Chain

•  Any device can send a bus request
•  The controller sends a grant along the daisy chain
•  The highest priority device sets the bus busy, stops the

grant signal, and becomes the bus master
12

Bus Arbitration – Centralized Parallel

•  Independent bus request and grant lines
•  The controller resolves the priorities and sends a grant

to the highest priority device

13

4.4 Clocks

•  Every computer contains at least one clock that
synchronizes the activities of its components.

•  A fixed number of clock cycles are required to carry
out each data movement or computational operation.

•  The clock frequency, measured in megahertz or
gigahertz, determines the speed with which all
operations are carried out.

•  Clock cycle time is the reciprocal of clock frequency.
–  An 800 MHz clock has a cycle time of 1.25 ns.

•  The clock cycle time must be at least as great as
the maximum propagation delay. 14

•  Clock speed should not be confused with CPU
performance.

•  The CPU time required to run a program is given by
the general performance equation:

–  We see that we can improve CPU throughput when we
reduce the number of instructions in a program, reduce the
number of cycles per instruction, or reduce the number of
nanoseconds per clock cycle.

We will return to this important equation in later chapters.

4.4 Clocks

15

4.5 The Input/Output Subsystem

•  A computer communicates with the outside world
through its input/output (I/O) subsystem.

•  I/O devices connect to the CPU through various
interfaces.

•  I/O can be memory-mapped, where the I/O device
behaves like main memory from the CPU’s point of
view.

•  Or I/O can be instruction-based, where the CPU has
a specialized I/O instruction set.

We study I/O in detail in chapter 7.

16

Memory-mapped I/O

•  Device addresses are a part of memory address space
•  Use same Load/Store instructions to access I/O addresses
•  Multiplex memory and I/O addresses on the same bus,

using control lines to distinguish between the two
operations

17

Instruction-based I/O

•  Requires a set of I/O instructions: Read/Write
•  I/O address space is separated from memory address space

–  Memory connects to CPU through memory buses
•  address, data, and control/status buses

–  Devices communicates with CPU over I/O buses 18

4.6 Memory Organization

•  Computer memory consists of a linear array of
addressable storage cells that are similar to registers.

•  Memory can be byte-addressable, or word-addressable,
where a word typically consists of two or more bytes.
Most current machines are byte-addressable.

•  Memory is constructed of RAM chips, often referred to
in terms of length × width.

•  If the memory word size of the machine is 16 bits, then
a 4M × 16 RAM chip gives us 4 million of 16-bit memory
locations.

19

•  How does the computer access a memory location
that corresponds to a particular address?

•  We observe that 4M can be expressed as 2 2 × 2 20 =
2 22 words.

•  The memory locations for this memory are numbered
0 through 2 22 -1.

•  Thus, the memory bus of this system requires at
least 22 address lines.
–  The address lines �count� from 0 to 222 - 1 in binary.

Each line is either �on� or �off� indicating the location of
the desired memory element.

4.6 Memory Organization

20

•  Physical memory usually consists of more than one
RAM chip.

•  Access is more efficient when memory is organized
into banks (modules) of chips with the addresses
interleaved across the chips

•  With low-order interleaving, the low order bits of the
address specify which memory bank contains the
address of interest.

•  Accordingly, in high-order interleaving, the high order
address bits specify the memory bank.

The next slide illustrates these two ideas.

4.6 Memory Organization

21

Low-Order Interleaving

High-Order Interleaving

4.6 Memory Organization

22

•  M banks and each bank contains N words
•  Memory Address Register (MAR) contain m + n bits

–  The most significant m bits of MAR are decoded to select one
of the banks

–  The rest significant n bits are used to select a word in the
selected bank (the offset within that bank)

High-order Interleaving

23

•  Advantages
–  Data and instructions are stored in different banks
–  The next instruction can be fetched from the instruction bank, while

the data for the current instruction is being fetched from the data bank
–  If one bank fails, the other banks provide continuous memory space

•  Disadvantages
–  Limits the instruction fetch to one instruction per memory cycle when

executing the sequential program

High-order Interleaving

24

•  Spread the subsequent addresses to separate banks
–  Using the least significant m bits to select the bank

Low-order Interleaving

25

•  Advantages
–  Access the next word while the current word is being accesses
 (array elements can be accessed in parallel)

•  Disadvantages
–  If one of the banks (modules) fails, the complete memory fails

Low-order Interleaving

Low-order interleaving is the most common arrangement
26

4.6 Memory Organization

•  Example: Suppose we have a memory consisting of
16 2K x 8 bit chips.

•  Memory is 32K = 25 × 210 = 215

•  15 bits are needed for each
address.

•  We need 4 bits to select the

chip, and 11 bits for the offset
into the chip that selects the
byte.

27

4.6 Memory Organization

•  In high-order interleaving the high-order
4 bits select the chip.

•  In low-order interleaving the low-order
4 bits select the chip.

28

4.7 Interrupts

•  The normal execution of a program is altered when an
event of higher-priority occurs. The CPU is alerted to
such an event through an interrupt.

•  Interrupts can be triggered by I/O requests, arithmetic
errors (such as division by zero), or when an invalid
instruction is encountered. These actions require a
change in the normal flow of the program’s execution.

•  Each interrupt is associated with a procedure that
directs the actions of the CPU when an interrupt
occurs.
–  Nonmaskable interrupts are high-priority interrupts that

cannot be ignored.

29

4.8 MARIE

•  We can now bring together many of the ideas that
we have discussed to this point using a very simple
model computer.

•  Our model computer, the Machine Architecture that
is Really Intuitive and Easy, MARIE, was designed
for the singular purpose of illustrating basic computer
system concepts.

•  While this system is too simple to do anything useful
in the real world, a deep understanding of its
functions will enable you to comprehend system
architectures that are much more complex.

30

4.8 MARIE

The MARIE architecture has the following
characteristics:

•  Binary, two’s complement data representation.
•  Stored program, fixed word length data and

instructions.
•  4K words of word (but not byte) addressable main

memory.
•  16-bit data words.
•  16-bit instructions, 4 for the opcode and 12 for the

address.
•  A 16-bit arithmetic logic unit (ALU).
•  Seven registers for control and data movement.

31

4.8 MARIE

MARIE’s seven registers are:
•  Accumulator, AC, a 16-bit register that holds one

operand of a two-operand instruction or a conditional
operator (e.g., “less than”).

•  Memory address register, MAR, a 12-bit register that
holds the memory address of an instruction or the
operand of an instruction.

•  Memory buffer register, MBR, a 16-bit register that
holds the data after its retrieval from, or before its
placement in memory.

32

4.8 MARIE

MARIE’s seven registers are:
•  Program counter, PC, a 12-bit register that holds the

address of the next program instruction to be
executed.

•  Instruction register, IR, which holds an instruction
immediately preceding its execution.

•  Input register, InREG, an 8-bit register that holds data
read from an input device.

•  Output register, OutREG, an 8-bit register, that holds
data that is ready for the output device.

33

4.8 MARIE

This is the MARIE architecture shown graphically.

34

4.8 MARIE

•  The registers are interconnected, and connected with
main memory through a common data bus.

•  Each device on the bus is identified by a unique
number that is set on the control lines whenever that
device is required to carry out an operation.

•  Separate connections are also provided between the
accumulator and the memory buffer register, and the
ALU and the accumulator and memory buffer
register. This permits data transfer between these
devices without use of the main data bus.

35

4.8 MARIE

This is the MARIE data
path shown graphically.

Data and instructions are
transferred using a
common bus.

Some additional pathways
speed up computation.

 Data can be put on the common bus in the same
clock cycle in which data can be put on these
other pathways (allowing these events to take
place in parallel).

36

4.8 MARIE

•  A computer’s instruction set architecture (ISA)
specifies the format of its instructions and the
primitive operations that the machine can perform.

•  The ISA is an interface between a computer’s
hardware and its software.

•  Some ISAs include hundreds of different instructions
for processing data and controlling program
execution.

•  The MARIE ISA consists of only nine instructions.

37

4.8 MARIE

•  This is the format
 of a MARIE instruction:

•  The fundamental MARIE instructions are:

38

4.8 MARIE

•  This is a bit pattern for a Load instruction as it would
appear in the IR:

•  We see that the opcode is 1 and the address from
which to load the data is 3.

39

4.8 MARIE

•  This is a bit pattern for a Skipcond instruction as it
would appear in the IR:

•  We see that the opcode is 8 and bits 11 and 10 are
10, meaning that the next instruction will be skipped if
the value in the AC is greater than zero.

What is the hexadecimal representation of this instruction?
40

4.8 MARIE

•  Each of our instructions actually consists of a
sequence of smaller instructions called
microoperations.

•  The exact sequence of microoperations that are
carried out by an instruction can be specified using
register transfer language (RTL).

•  In the MARIE RTL, we use the notation M[X] to
indicate the actual data value stored in memory
location X, and to indicate the transfer of bytes to a
register or memory location.

←

41

4.8 MARIE

•  The RTL for the Load instruction is:

•  Similarly, the RTL for the Add instruction is:

MAR X
MBR M[MAR]
AC AC + MBR

MAR X
MBR M[MAR]
AC MBR

←
←

←

←
←
←

42

4.8 MARIE

•  Recall that Skipcond skips the next instruction
according to the value of the AC.

•  The RTL for the this instruction is the most complex
in our instruction set:

If IR[11 - 10] = 00 then
 If AC < 0 then PC PC + 1

else If IR[11 - 10] = 01 then
 If AC = 0 then PC PC + 1

else If IR[11 - 10] = 10 then
 If AC > 0 then PC PC + 1

←

←

←

43

4.9 Instruction Processing

•  The fetch-decode-execute cycle is the series of steps
that a computer carries out when it runs a program.

•  We first have to fetch an instruction from memory,
and place it into the IR.

•  Once in the IR, it is decoded to determine what needs
to be done next.

•  If a memory value (operand) is involved in the
operation, it is retrieved and placed into the MBR.

•  With everything in place, the instruction is executed.

The next slide shows a flowchart of this process.

44

4.9 Instruction Processing

45

4.9 Instruction Processing

•  All computers provide a way of interrupting the
fetch-decode-execute cycle.

•  Interrupts occur when:
–  A user break (e.g., Control+C) is issued
–  I/O is requested by the user or a program
–  A critical error occurs

•  Interrupts can be caused by hardware or
software.
–  Software interrupts are also called traps.

46

4.9 Instruction Processing

•  Interrupt processing involves adding another step to
the fetch-decode-execute cycle as shown below.

The next slide shows a flowchart of �Process the interrupt�

47

4.9 Instruction Processing

ISR: Interrupt subroutine

48

4.9 Instruction Processing

•  For general-purpose systems, it is common to
disable all interrupts during the time in which an
interrupt is being processed.
–  Typically, this is achieved by setting a bit in the flags

register.
•  Interrupts that are ignored in this case are called

maskable.
•  Nonmaskable interrupts are those interrupts that

must be processed in order to keep the system in
a stable condition.

49

4.9 Instruction Processing

•  Interrupts are very useful in processing I/O.
•  However, interrupt-driven I/O is complicated, and

is beyond the scope of our present discussion.
–  We will look into this idea in greater detail in Chapter 7.

•  MARIE, being the simplest of simple systems,
uses a modified form of programmed I/O.

•  All output is placed in an output register, OutREG,
and the CPU polls the input register, InREG, until
input is sensed, at which time the value is copied
into the accumulator.

Polling: actively sampling the status of an external device 50

Programmed I/O

•  I/O instructions are written in a computer program
that are executed by the CPU

•  CPU will initiate the data transfer
•  The transfer is usually between a register in the CPU

and the device.
–  The data is put into the register from memory or from the

device.

•  CPU must wait for I/O to complete before sending or
receiving next data.
–  It must constantly check status registers to see if the device

is ready for more data.

51

•  Consider the simple MARIE program given below.
We show a set of mnemonic instructions stored at
addresses 100 - 106 (hex):

4.10 A Simple Program

52

•  Let’s look at what happens inside the computer when
our program runs.

•  This is the Load 104 instruction:

4.10 A Simple Program

53

•  Our second instruction is Add 105:

4.10 A Simple Program

54

4.11 A Discussion on Assemblers

•  Mnemonic instructions, such as Load 104, are easy
for humans to write and understand.

•  They are impossible for computers to understand.
•  Assemblers translate instructions that are

comprehensible to humans into the machine language
that is comprehensible to computers
–  We note the distinction between an assembler and a

compiler: In assembly language, there is a one-to-one
correspondence between a mnemonic instruction and its
machine code. With compilers, this is not usually the case.

55

•  Assemblers create an object program file from
mnemonic source code in two passes.

•  During the first pass, the assembler assembles as
much of the program as it can, while it builds a
symbol table that contains memory references for
all symbols in the program.

•  During the second pass, the instructions are
completed using the values from the symbol table.

4.11 A Discussion on Assemblers

56

•  Consider our example
program (top).
–  Note that we have included two

directives HEX and DEC that
specify the radix of the constants.

•  During the first pass, we
have a symbol table and the
partial instructions shown at
the bottom.

4.11 A Discussion on Assemblers

57

•  After the second pass, the
assembly is complete.

4.11 A Discussion on Assemblers

58

4.12 Extending Our Instruction Set

•  So far, all of the MARIE instructions that we have
discussed use a direct addressing mode.
–  This means that the address of the operand is explicitly

stated in the instruction.

•  It is often useful to employ a indirect addressing,
where the address of the address of the operand is
given in the instruction.
–  If you have ever used pointers in a program, you are

already familiar with indirect addressing.

59

4.12 Extending Our Instruction Set

•  We have included three indirect addressing mode
instructions in the MARIE instruction set.

•  The first two are LOADI X and STOREI X where X
specifies the address of the address of the operand
to be loaded or stored.

•  In RTL :
MAR X
MBR M[MAR]
MAR MBR
MBR M[MAR]
AC MBR

MAR X
MBR M[MAR]
MAR MBR
MBR AC
M[MAR] MBR

STOREI X

←
←

←
←

← ←
←
←
←

←
LOADI X

60

4.12 Extending Our Instruction Set

MAR X
MBR M[MAR]
MAR MBR
MBR M[MAR]
AC AC + MBR

←
←
←
←

←

The ADDI instruction is a combination of LOADI X
and ADD X:

In RTL:

61

•  Another helpful programming tool is the use of
subroutines.

•  The jump-and-store instruction, JnS, causes an
unconditional branch. The details of the JnS
instruction are given by the following RTL:

Does JnS permit
recursive calls?

4.12 Extending Our Instruction Set

MBR PC
MAR X
M[MAR] MBR
MBR X
AC 1
AC AC + MBR
PC AC

←
←

←
←

←
←

←

62

•  The jump indirect instruction, JumpI, causes an
unconditional branch to the address found at the
given location. The details of the JumpI instruction
are given by the following RTL:

4.12 Extending Our Instruction Set

MAR X
MBR M[MAR]
PC MBR

←

←
←

63

•  How to use JnS and JumpI for implementing
subroutines.

4.12 Extending Our Instruction Set

 ...
 JnS Subr / Call Subr
 ...
 Halt

Subr, HEX 0 / Store return address here
 ... / Body of Subr
 JumpI Subr / Return

64

•  Our last helpful instruction is the Clear instruction.

•  All it does is set the contents of the accumulator to
all zeroes.

•  This is the RTL for Clear:

•  We put our new instructions to work in the program
on the following slide.

AC 0

4.12 Extending Our Instruction Set

←

65

100 | Load Addr
101 | Store Next
102 | Load Num
103 | Subt One
104 | Store Ctr
105 |Loop, Load Sum
106 | AddI Next
107 | Store Sum
108 | Load Next
109 | Add One
10A | Store Next
10B | Load Ctr
10C | Subt One
10D | Store Ctr

10E | Skipcond 000
10F | Jump Loop
110 | Halt
111 |Addr, HEX 117
112 |Next, HEX 0
113 |Num, DEC 5
114 |Sum, DEC 0
115 |Ctr, HEX 0
116 |One, DEC 1
117 | DEC 10
118 | DEC 15
119 | DEC 2
11A | DEC 25
11B | DEC 30

4.12 Extending Our Instruction Set

Using a loop to add five numbers (10 + 15 + 2 + 25 + 30)
66

4.12 Extending Our Instruction Set

67

End of Chapter 4

