
Chapter 4 

MARIE: An Introduction  
to a Simple Computer 
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Chapter 4 Objectives 

•  Learn the components common to every modern 
computer system. 

•  Be able to explain how each component 
contributes to program execution. 

•  Understand a simple architecture invented to 
illuminate these basic concepts, and how it relates 
to some real architectures. 

•  Know how the program assembly process works. 
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4.1 Introduction 

•  Chapter 1 presented a general overview of 
computer systems. 

•  In Chapter 2, we discussed how data is stored and 
manipulated by various computer system 
components. 

•  Chapter 3 described the fundamental components 
of digital circuits. 

•  Having this background, we can now understand 
how computer components work, and how they fit 
together to create useful computer systems. 
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4.2 CPU Basics 

•  The computer’s CPU fetches, decodes, and 
executes program instructions. 

•  The two principal parts of the CPU are the datapath 
and the control unit. 
–  The datapath consists of an arithmetic-logic unit and 

storage units (registers) that are interconnected by a data 
bus that is also connected to main memory.   

–  Various CPU components perform sequenced operations 
according to signals provided by its control unit. 
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•  Registers hold data that can be readily accessed by 
the CPU. 

•  They can be implemented using D flip-flops. 
–  A 32-bit register requires 32 D flip-flops. 

•  The arithmetic-logic unit (ALU) carries out logical and 
arithmetic operations as directed by the control unit. 

•  The control unit determines which actions to carry out 
according to the values in a program counter register 
and a status register. 

4.2 CPU Basics 
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4.3 The Bus 

•  The CPU shares data with other system components 
by way of a data bus. 
–  A bus is a set of wires that simultaneously convey a single 

bit along each line. 
•  Two types of buses are commonly found in computer 

systems: point-to-point, and multipoint buses. 

This is a point-to-point 
bus configuration: 
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•  Buses consist of data lines, address lines, and 
control lines. 

•  While the data lines convey bits from one device to 
another, control lines determine the direction of data 
flow, and when each device can access the bus. 

•  Address lines determine the location of the source 
or destination of the data. 

The next slide shows a model bus configuration.  

4.3 The Bus 4.3 The Bus 
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•  A multipoint (common pathway) bus is shown below. 
•  Because a multipoint bus is a shared resource, access 

to it is controlled through protocols, which are built into 
the hardware.  

4.3 The Bus 
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Protocol: set of usage rules 10 

–  Distributed using self-detection: 
Devices decide which gets the bus 
among themselves. 

–  Distributed using collision-
detection: Any device can try to 
use the bus.  If its data collides 
with the data of another device,    
it tries again. Used in ethernet. 

–  Daisy chain: Permissions 
are passed from the highest-
priority device to the 
lowest. 

–  Centralized parallel: Each 
device is directly connected 
to an arbitration circuit. 

•  In a master-slave configuration, where more than 
one device can be the bus master, concurrent 
bus master requests must be arbitrated. 

•  Four categories of bus arbitration are: 

4.3 The Bus 

Arbitrated: decided 
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Bus Arbitration - Daisy Chain  

•  Any device can send a bus request 
•  The controller sends a grant along the daisy chain 
•  The highest priority device sets the bus busy, stops the 

grant signal, and becomes the bus master 
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Bus Arbitration – Centralized Parallel 

•  Independent bus request and grant lines 
•  The controller resolves the priorities and sends a grant 

to the highest priority device 
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4.4 Clocks 

•  Every computer contains at least one clock that 
synchronizes the activities of its components. 

•  A fixed number of clock cycles are required to carry 
out each data movement or computational operation. 

•  The clock frequency, measured in megahertz or 
gigahertz, determines the speed with which all 
operations are carried out. 

•  Clock cycle time is the reciprocal of clock frequency. 
–  An 800 MHz clock has a cycle time of 1.25 ns. 

•  The clock cycle time must be at least as great as 
the maximum propagation delay. 14 

•  Clock speed should not be confused with CPU 
performance. 

•  The CPU time required to run a program is given by 
the general performance equation: 

–  We see that we can improve CPU throughput when we 
reduce the number of instructions in a program, reduce the 
number of cycles per instruction, or reduce the number of 
nanoseconds per clock cycle. 

We will return to this important equation in later chapters. 

4.4 Clocks 
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4.5 The Input/Output Subsystem 

•  A computer communicates with the outside world 
through its input/output (I/O) subsystem. 

•  I/O devices connect to the CPU through various 
interfaces. 

•  I/O can be memory-mapped, where the I/O device 
behaves like main memory from the CPU’s point of 
view. 

•  Or I/O can be instruction-based, where the CPU has 
a specialized I/O instruction set. 

We study I/O in detail in chapter 7. 
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Memory-mapped I/O 

•  Device addresses are a part of memory address space 
•  Use same Load/Store instructions to access I/O addresses 
•  Multiplex memory and I/O addresses on the same bus, 

using control lines to distinguish between the two 
operations 
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Instruction-based I/O 

•  Requires a set of I/O instructions: Read/Write 
•  I/O address space is separated from memory address space 

–  Memory connects to CPU through memory buses 
•  address, data, and control/status buses 

–  Devices communicates with CPU over I/O buses 18 

4.6 Memory Organization 

•  Computer memory consists of a linear array of 
addressable storage cells that are similar to registers. 

•  Memory can be byte-addressable, or word-addressable, 
where a word typically consists of two or more bytes. 
Most current machines are byte-addressable. 

•  Memory is constructed of RAM chips, often referred to 
in terms of length × width. 

•  If the memory word size of the machine is 16 bits, then 
a 4M × 16 RAM chip gives us 4 million of 16-bit memory 
locations. 

19 

•  How does the computer access a memory location 
that corresponds to a particular address? 

•  We observe that 4M can be expressed as 2 2 × 2 20 = 
2 22 words. 

•  The memory locations for this memory are numbered 
0 through 2 22 -1. 

•  Thus, the memory bus of this system requires at 
least 22 address lines. 
–  The address lines �count� from 0 to 222 - 1 in binary.     

Each line is either �on� or �off� indicating the location of 
the desired memory element. 

4.6 Memory Organization 
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•  Physical memory usually consists of more than one 
RAM chip. 

•  Access is more efficient when memory is organized 
into banks (modules) of chips with the addresses 
interleaved across the chips 

•  With low-order interleaving, the low order bits of the 
address specify which memory bank contains the 
address of interest. 

•  Accordingly, in high-order interleaving, the high order 
address bits specify the memory bank. 

The next slide illustrates these two ideas. 

4.6 Memory Organization 
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Low-Order Interleaving 

High-Order Interleaving 

4.6 Memory Organization 
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•  M banks and each bank contains N words 
•  Memory Address Register (MAR) contain m + n bits 

–  The most significant m bits of MAR are decoded to select one 
of the banks 

–  The rest significant n bits are used to select a word in the 
selected bank (the offset within that bank) 

High-order Interleaving 
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•  Advantages 
–  Data and instructions are stored in different banks 
–  The next instruction can be fetched from the instruction bank, while 

the data for the current instruction is being fetched from the data bank 
–  If one bank fails, the other banks provide continuous memory space 

•  Disadvantages 
–  Limits the instruction fetch to one instruction per memory cycle when 

executing the sequential program 

High-order Interleaving 
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•  Spread the subsequent addresses to separate banks 
–  Using the least significant m bits to select the bank 

Low-order Interleaving 



25 

•  Advantages 
–  Access the next word while the current word is being accesses 
     (array elements can be accessed in parallel) 

•  Disadvantages 
–  If one of the banks (modules) fails, the complete memory fails 

Low-order Interleaving 

Low-order interleaving is the most common arrangement 
26 

4.6 Memory Organization 

•  Example: Suppose we have a memory consisting of 
16 2K x 8 bit chips. 

•  Memory is 32K = 25 × 210 = 215 
 

•  15 bits are needed for each 
address. 

 
•  We need 4 bits to select the      

chip, and 11 bits for the offset           
into the chip that selects the 
byte. 
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4.6 Memory Organization 

•  In high-order interleaving the high-order 
4 bits select the chip. 

•  In low-order interleaving the low-order  
4 bits select the chip. 
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4.7 Interrupts 

•  The normal execution of a program is altered when an 
event of higher-priority occurs. The CPU is alerted to 
such an event through an interrupt. 

•  Interrupts can be triggered by I/O requests, arithmetic 
errors (such as division by zero), or when an invalid 
instruction is encountered. These actions require a 
change in the normal flow of the program’s execution. 

•  Each interrupt is associated with a procedure that 
directs the actions of the CPU when an interrupt 
occurs.  
–  Nonmaskable interrupts are high-priority interrupts that 

cannot be ignored. 
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4.8 MARIE 

•  We can now bring together many of the ideas that 
we have discussed to this point using a very simple 
model computer. 

•  Our model computer, the Machine Architecture that 
is Really Intuitive and Easy, MARIE, was designed 
for the singular purpose of illustrating basic computer 
system concepts. 

•  While this system is too simple to do anything useful 
in the real world, a deep understanding of its 
functions will enable you to comprehend system 
architectures that are much more complex. 
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4.8 MARIE 

The MARIE architecture has the following 
characteristics: 

•  Binary, two’s complement data representation. 
•  Stored program, fixed word length data and 

instructions. 
•  4K words of word (but not byte) addressable main 

memory. 
•  16-bit data words. 
•  16-bit instructions, 4 for the opcode and 12 for the 

address. 
•  A 16-bit arithmetic logic unit (ALU). 
•  Seven registers for control and data movement. 
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4.8 MARIE 

MARIE’s seven registers are: 
•  Accumulator, AC, a 16-bit register that holds one 

operand of a two-operand instruction or a conditional 
operator (e.g., “less than”). 

•  Memory address register, MAR, a 12-bit register that 
holds the memory address of an instruction or the 
operand of an instruction.   

•  Memory buffer register, MBR, a 16-bit register that 
holds the data after its retrieval from, or before its 
placement in memory. 
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4.8 MARIE 

MARIE’s seven registers are: 
•  Program counter, PC, a 12-bit register that holds the 

address of the next program instruction to be 
executed. 

•  Instruction register, IR, which holds an instruction 
immediately preceding its execution. 

•  Input register, InREG, an 8-bit register that holds data 
read from an input device. 

•  Output register, OutREG, an 8-bit register, that holds 
data that is ready for the output device. 
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4.8 MARIE 

This is the MARIE architecture shown graphically. 
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4.8 MARIE 

•  The registers are interconnected, and connected with 
main memory through a common data bus. 

•  Each device on the bus is identified by a unique 
number that is set on the control lines whenever that 
device is required to carry out an operation. 

•  Separate connections are also provided between the 
accumulator and the memory buffer register, and the 
ALU and the accumulator and memory buffer 
register. This permits data transfer between these 
devices without use of the main data bus. 
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4.8 MARIE 

This is the MARIE data 
path shown graphically. 

Data and instructions are 
transferred using a 
common bus.  

Some additional pathways 
speed up computation. 

 Data can be put on the common bus in the same 
clock cycle in which data can be put on these 
other pathways (allowing these events to take 
place in parallel). 
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4.8 MARIE 

•  A computer’s instruction set architecture (ISA) 
specifies the format of its instructions and the 
primitive operations that the machine can perform. 

•  The ISA is an interface between a computer’s 
hardware and its software. 

•  Some ISAs include hundreds of different instructions 
for processing data and controlling program 
execution. 

•  The MARIE ISA consists of only nine instructions. 
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4.8 MARIE 

•  This is the format  
 of a MARIE instruction: 

•  The fundamental MARIE instructions are: 
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4.8 MARIE 

•  This is a bit pattern for a Load instruction as it would 
appear in the IR: 

•  We see that the opcode is 1 and the address from 
which to load the data is 3. 
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4.8 MARIE 

•  This is a bit pattern for a Skipcond instruction as it 
would appear in the IR: 

•  We see that the opcode is 8 and bits 11 and 10 are 
10, meaning that the next instruction will be skipped if 
the value in the AC is greater than zero. 

What is the hexadecimal representation of this instruction? 
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4.8 MARIE 

•  Each of our instructions actually consists of a 
sequence of smaller instructions called 
microoperations. 

•  The exact sequence of microoperations that are 
carried out by an instruction can be specified using 
register transfer language (RTL). 

•  In the MARIE RTL, we use the notation M[X] to 
indicate the actual data value stored in memory 
location X, and     to indicate the transfer of bytes to a 
register or memory location. 

←
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4.8 MARIE 

•  The RTL for the Load instruction is: 

•  Similarly, the RTL for the Add instruction is: 

MAR   X 
MBR   M[MAR] 
AC    AC + MBR 

MAR   X 
MBR   M[MAR]  
AC   MBR 

←
←

←

←
←
←
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4.8 MARIE 

•  Recall that Skipcond skips the next instruction 
according to the value of the AC. 

•  The RTL for the this instruction is the most complex 
in our instruction set: 

If IR[11 - 10] = 00 then 
 If AC < 0 then PC   PC + 1 

else If IR[11 - 10] = 01 then 
 If AC = 0 then PC   PC + 1 

else If IR[11 - 10] = 10 then 
 If AC > 0 then PC   PC + 1 

←

←

←
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4.9 Instruction Processing 

•  The fetch-decode-execute cycle is the series of steps 
that a computer carries out when it runs a program. 

•  We first have to fetch an instruction from memory, 
and place it into the IR. 

•  Once in the IR, it is decoded to determine what needs 
to be done next. 

•  If a memory value (operand) is involved in the 
operation, it is retrieved and placed into the MBR. 

•  With everything in place, the instruction is executed. 

The next slide shows a flowchart of this process. 
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4.9 Instruction Processing 
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4.9 Instruction Processing 

•  All computers provide a way of interrupting the 
fetch-decode-execute cycle. 

•  Interrupts occur when: 
–  A user break (e.g., Control+C) is issued 
–  I/O is requested by the user or a program 
–  A critical error occurs 

•  Interrupts can be caused by hardware or 
software. 
–  Software interrupts are also called traps. 
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4.9 Instruction Processing 

•  Interrupt processing involves adding another step to 
the fetch-decode-execute cycle as shown below. 

The next slide shows a flowchart of �Process the interrupt� 
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4.9 Instruction Processing 

ISR: Interrupt subroutine 
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4.9 Instruction Processing 

•  For general-purpose systems, it is common to 
disable all interrupts during the time in which an 
interrupt is being processed. 
–  Typically, this is achieved by setting a bit in the flags 

register. 
•  Interrupts that are ignored in this case are called 

maskable. 
•  Nonmaskable interrupts are those interrupts that 

must be processed in order to keep the system in 
a stable condition. 
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4.9 Instruction Processing 

•  Interrupts are very useful in processing I/O. 
•  However, interrupt-driven I/O is complicated, and 

is beyond the scope of our present discussion. 
–  We will look into this idea in greater detail in Chapter 7. 

•  MARIE, being the simplest of simple systems, 
uses a modified form of programmed I/O.  

•  All output is placed in an output register, OutREG, 
and the CPU polls the input register, InREG, until 
input is sensed, at which time the value is copied 
into the accumulator. 

Polling: actively sampling the status of an external device 50 

Programmed I/O 

•  I/O instructions are written in a computer program 
that are executed by the CPU  

•  CPU will initiate the data transfer  
•  The transfer is usually between a register in the CPU 

and the device.  
–  The data is put into the register from memory or from the 

device.  

•  CPU must wait for I/O to complete before sending or 
receiving next data.  
–  It must constantly check status registers to see if the device 

is ready for more data.  
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•  Consider the simple MARIE program given below.  
We show a set of mnemonic instructions stored at 
addresses 100 - 106 (hex): 

4.10 A Simple Program 
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•  Let’s look at what happens inside the computer when 
our program runs. 

•  This is the Load 104 instruction: 

4.10 A Simple Program 
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•  Our second instruction is Add 105: 

4.10 A Simple Program 
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4.11 A Discussion on Assemblers 

•  Mnemonic instructions, such as Load 104, are easy 
for humans to write and understand. 

•  They are impossible for computers to understand. 
•  Assemblers translate instructions that are 

comprehensible to humans into the machine language 
that is comprehensible to computers 
–  We note the distinction between an assembler and a 

compiler: In assembly language, there is a one-to-one 
correspondence between a mnemonic instruction and its 
machine code. With compilers, this is not usually the case. 
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•  Assemblers create an object program file from 
mnemonic source code in two passes. 

•  During the first pass, the assembler assembles as 
much of the program as it can, while it builds a 
symbol table that contains memory references for 
all symbols in the program. 

•  During the second pass, the instructions are 
completed using the values from the symbol table. 

4.11 A Discussion on Assemblers 
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•  Consider our example 
program (top).  
–  Note that we have included two 

directives HEX and DEC that 
specify the radix of the constants. 

•  During the first pass, we 
have a symbol table and the 
partial instructions shown at 
the bottom. 

4.11 A Discussion on Assemblers 
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•  After the second pass, the 
assembly is complete.  

4.11 A Discussion on Assemblers 
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4.12 Extending Our Instruction Set 

•  So far, all of the MARIE instructions that we have 
discussed use a direct addressing mode. 
–  This means that the address of the operand is explicitly 

stated in the instruction.  

•  It is often useful to employ a indirect addressing, 
where the address of the address of the operand is 
given in the instruction. 
–  If you have ever used pointers in a program, you are 

already familiar with indirect addressing. 
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4.12 Extending Our Instruction Set 

•  We have included three indirect addressing mode 
instructions in the MARIE instruction set.  

•  The first two are LOADI X and STOREI X where X  
specifies the address of the address of the operand 
to be loaded or stored.  

•  In RTL :  
MAR  X 
MBR  M[MAR] 
MAR  MBR  
MBR  M[MAR] 
AC  MBR 

MAR  X 
MBR  M[MAR] 
MAR  MBR  
MBR  AC 
M[MAR]  MBR  

STOREI X 

←
←

←
←

← ←
←
←
←

←
LOADI X 
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4.12 Extending Our Instruction Set 

MAR   X 
MBR   M[MAR] 
MAR   MBR  
MBR   M[MAR] 
AC  AC + MBR 

←
←
←
←

←

The ADDI instruction is a combination of LOADI X 
and ADD X: 

In RTL:  
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•  Another helpful programming tool is the use of 
subroutines.  

•  The jump-and-store instruction, JnS, causes an 
unconditional branch. The details of the JnS 
instruction are given by the following RTL:  

Does JnS permit 
recursive calls?  

4.12 Extending Our Instruction Set 

MBR  PC 
MAR  X 
M[MAR]  MBR 
MBR  X  
AC  1  
AC  AC + MBR 
PC  AC 

←
←

←
←

←
←

←
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•  The jump indirect instruction, JumpI, causes an 
unconditional branch to the address found at the 
given location.  The details of the JumpI instruction 
are given by the following RTL:  

4.12 Extending Our Instruction Set 

MAR   X 
MBR   M[MAR] 
PC   MBR  

←

←
←
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•  How to use JnS and JumpI for implementing 
subroutines. 

4.12 Extending Our Instruction Set 

    ... 
      JnS Subr   / Call Subr 
      ... 
      Halt 
 
Subr, HEX 0  / Store return address here 
      ...         / Body of Subr 
      JumpI Subr  / Return 
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•  Our last helpful instruction is the Clear instruction. 

•  All it does is set the contents of the accumulator to 
all zeroes. 

•  This is the RTL for Clear: 

•  We put our new instructions to work in the program 
on the following slide. 

AC   0 

4.12 Extending Our Instruction Set 

←
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100 |  Load Addr  
101 |  Store Next 
102 |  Load Num  
103 |  Subt One         
104 |  Store Ctr    
105 |Loop, Load Sum   
106 |  AddI Next  
107 |  Store Sum        
108 |  Load Next        
109 |  Add One   
10A |  Store Next       
10B |  Load Ctr   
10C |  Subt One 
10D |  Store Ctr 

10E |  Skipcond 000 
10F |  Jump Loop 
110 |  Halt   
111 |Addr, HEX 117   
112 |Next, HEX 0   
113 |Num,  DEC 5   
114 |Sum,  DEC 0   
115 |Ctr,  HEX 0 
116 |One,  DEC 1   
117 |  DEC 10   
118 |  DEC 15   
119 |  DEC 2      
11A |  DEC 25   
11B |  DEC 30 

4.12 Extending Our Instruction Set 

Using a loop to add five numbers (10 + 15 + 2 + 25 + 30) 
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4.12 Extending Our Instruction Set 
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End of Chapter 4 


