
Chapter 5 
A Closer Look at 
Instruction Set 
Architectures 
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Chapter 5 Objectives 

•  Understand the factors involved in instruction 
set architecture design. 

•  Gain familiarity with memory addressing 
modes. 

•  Understand the concepts of instruction-level 
pipelining and its affect upon execution 
performance. 
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5.1 Introduction 

•  This chapter builds upon the ideas in Chapter 4. 

•  We present a detailed look at different 
instruction formats, operand types, and memory 
access methods. 

•  We will see the interrelation between machine 
organization and instruction formats. 

•  This leads to a deeper understanding of 
computer architecture in general. 

Employers frequently prefer to hire people with assembly language background,       
not because they need an assembly language programmer, but because they need 
someone who can understand computer architecture to write more efficient and more 
effective programs. 
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5.2 Instruction Formats 

Instruction sets are differentiated by the following: 
•  Number of bits per instruction. 
•  Stack-based or register-based. 
•  Number of explicit operands per instruction. 
•  Operand location. 
•  Types of operations. 
•  Type and size of operands. 
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5.2 Instruction Formats 

Instruction set architectures are measured 
according to: 

•  Main memory space occupied by a program. 
•  Instruction complexity. 

•  Instruction length (in bits). 

•  Total number of instructions in the instruction set. 
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5.2 Instruction Formats 

In designing an instruction set, consideration is 
given to: 

•  Instruction length. 
– Whether short, long, or variable. 

•  Number of operands. 
•  Number of addressable registers. 
•  Memory organization. 

– Whether byte- or word addressable. 
•  Addressing modes. 

– How to calculate the effective address of an 
operand: direct, indirect or indexed. 
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•  Byte ordering, or endianness, is another major 
architectural consideration. 

•  If we have a two-byte integer, the integer may be 
stored so that the least significant byte is followed 
by the most significant byte or vice versa. 
–  Big endian machines store the most significant byte first 

(at the lower address).  

–  In little endian machines, the least significant byte is 
followed by the most significant byte. 

5.2 Instruction Formats 
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•  As an example, suppose we have the 
hexadecimal number 12345678. 

•  The big endian and little endian arrangements of 
the bytes are shown below. 

5.2 Instruction Formats 
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•  A larger example: A computer uses 32-bit integers. The values 
0xABCD1234, 0x00FE4321, and 0x10 would be stored 
sequentially in memory, starting at address 0x200 as below. 

5.2 Instruction Formats 
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5.2 Instruction Formats 

•  Big endian: 
–  Is more natural. 
–  The sign of the number can be determined by looking at 

the byte at address offset 0. 
–  Strings and integers are stored in the same order. 

•  Little endian: 
–  Conversion from a 16-bit integer address to a 32-bit 

integer address does not require any arithmetic.  
–  Makes it easier to place values on non-word boundaries. 
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5.2 Instruction Formats 

•  The next consideration for architecture design 
concerns how the CPU will store data. 

•  We have three choices: 
1. A stack architecture 
2. An accumulator architecture 
3. A general purpose register architecture. 

•  In choosing one over the other, the tradeoffs are 
simplicity (and cost) of hardware design with 
execution speed and ease of use. 
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5.2 Instruction Formats 

•  In a stack architecture, operands are implicitly 
taken from the stack. 
–  A stack cannot be accessed randomly. 

•  In an accumulator architecture, one operand of a 
binary operation is implicitly in the accumulator. 
–  One operand is in memory, creating lots of bus traffic. 

•  In a general purpose register (GPR) architecture, 
registers can be used instead of memory. 
–  Faster than accumulator architecture. 
–  Efficient implementation for compilers. 
–  Results in longer instructions. 
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5.2 Instruction Formats 

•  Most systems today are GPR systems. 
•  There are three types: 

–  Memory-memory where two or three operands may be in 
memory. 

–  Register-memory where at least one operand must be in a 
register. 

–  Load-store where only the load and store instructions can 
access memory. 

•  The number of operands and the number of 
available registers has a direct affect on instruction 
length. 
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5.2 Instruction Formats 

•  Stack machines use one - and zero-operand 
instructions. 

•  PUSH and POP instructions require a single 
memory address operand. 

•  PUSH and POP operations involve only the stack’s 
top element. 

•  Other instructions use operands from the stack 
implicitly. 

•  Binary instructions (e.g., ADD, MULT) use the top 
two items on the stack. 
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5.2 Instruction Formats 

•  Stack architectures require us to think about 
arithmetic expressions a little differently. 

•  We are accustomed to writing expressions using infix 
notation, such as: Z = X + Y. 

•  Stack arithmetic requires that we use postfix notation: 
Z = XY+. 
–  This is also called reverse Polish notation, (somewhat) in 

honor of its Polish inventor, Jan Lukasiewicz (1878 - 1956). 
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5.2 Instruction Formats 

•  The principal advantage of postfix notation is 
that parentheses are not used. 

•  For example, the infix expression,  

  Z = (X × Y) + (W × U) 
 becomes:  

  Z = X Y × W U × + 
 in postfix notation. 
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5.2 Instruction Formats 

•  Example: Convert the infix expression (2+3) - 6/3 
to postfix: 

The sum 2 + 3 in parentheses takes 
precedence; we replace the term with  
2 3 +. 

2 3+ - 6/3  
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5.2 Instruction Formats 

•  Example: Convert the infix expression (2+3) - 6/3 
to postfix: 

The division operator takes next 
precedence; we replace 6/3 with  
6 3 /. 

2 3 + - 6 3 /  
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5.2 Instruction Formats 

•  Example: Convert the infix expression (2+3) - 6/3 
to postfix: 

The quotient 6/3 is subtracted from the 
sum of 2 + 3, so we move the - operator 
to the end. 

2 3 + 6 3 / -  
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5.2 Instruction Formats 

•  Example: Use a stack to evaluate the postfix 
expression 2 3 + 6 3 / - : 

Scanning the expression 
from left to right, push 
operands onto the stack, 
until an operator is found 

6   

2   

3   

3   

+   -   /   3   2   
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5.2 Instruction Formats 

•  Example: Use a stack to evaluate the postfix 
expression 2 3 + 6 3 / - : 

6   3   +   -   /   3   2   Pop the two operands and 
carry out the operation 
indicated by the operator. 
Push the result back on the 
stack. 

5   
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5.2 Instruction Formats 

•  Example: Use a stack to evaluate the postfix 
expression 2 3 + 6 3 / - : 

Push operands until another 
operator is found. 

6   

5   

3   +   -   /   3   2   

3   
6   
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5.2 Instruction Formats 

•  Example: Use a stack to evaluate the postfix 
expression 2 3 + 6 3 / - : 

Carry out the operation and 
push the result. 

6   

5   

3   +   -   /   3   2   

2   
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5.2 Instruction Formats 

•  Example: Use a stack to evaluate the postfix 
expression 2 3 + 6 3 / - : 

Finding another operator, 
carry out the operation and 
push the result. 
The answer is at the top of 
the stack. 

6   

3   

3   +   -   /   3   2   
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5.2 Instruction Formats 

Let’s see how to evaluate an infix expression 
using different instruction formats. 
 
With a three-address ISA, (e.g., mainframes),  
the infix expression,  

  Z = X × Y + W × U 
might look like this: 
    MULT R1,X,Y 
    MULT R2,W,U 
    ADD  Z,R1,R2 
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5.2 Instruction Formats 

•  In a two-address ISA, (e.g., Intel, Motorola), the 
infix expression,  
  Z = X × Y + W × U 
 might look like this: 
    LOAD R1,X 
    MULT R1,Y 
    LOAD R2,W 
    MULT R2,U 
    ADD  R1,R2 
    STORE Z,R1 
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5.2 Instruction Formats 

•  In a one-address ISA, like MARIE, the infix 
expression,  
  Z = X × Y + W × U 
 looks like this: 
    LOAD X 
    MULT Y 
    STORE TEMP 
    LOAD W 
    MULT U 
    ADD TEMP 
    STORE Z 

Note: One-address 
ISAs usually 
require one 
operand to be a 
register. 
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5.2 Instruction Formats 

•  In a stack ISA, the postfix expression,  
  Z = X Y × W U × + 
 might look like this: 
    PUSH X 
    PUSH Y 
    MULT 
    PUSH W 
    PUSH U 
    MULT 
    ADD 
    POP Z 

Note: The result of 
a binary operation 
is implicitly stored 
on the top of the 
stack! 
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5.2 Instruction Formats 

•  We have seen how instruction length is affected 
by the number of operands supported by the ISA. 

•  In any instruction set, not all instructions require 
the same number of operands. 

•  Operations that require no operands, such as 
HALT, necessarily waste some space when fixed-
length instructions are used. 

•  One way to recover some of this space is to use 
expanding opcodes. 
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5.2 Instruction Formats 

•  A system has 16 registers and 4K of memory. 
•  We need 4 bits to access one of the registers. We 

also need 12 bits for a memory address. 
•  If the system is to have 16-bit instructions, we have 

two choices for our instructions: 
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5.2 Instruction Formats 

•  If we allow the length of the opcode to vary, we could 
create a very rich instruction set: 
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5.2 Instruction Formats 

•  Example: Given 8-bit instructions, is it possible to 
allow the following to be encoded? 

–  3 instructions with two 3-bit operands. 
–  2 instructions with one 4-bit operand. 
–  4 instructions with one 3-bit operand. 

3 * 23 * 23  = 192 bit patterns for the 3-bit operands 
2 * 24 =         32 bit patterns for the 4-bit operands 
4 * 23 =           32 bit patterns for the 3-bit operands 

We need: 

Total: 256 bit patterns. 
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5.2 Instruction Formats 

•  With a total of 256 bit patterns required, we can 
exactly encode our instruction set in 8 bits! (256 = 28) 

One such encoding is shown on the next slide. 

3 * 23 * 23  = 192 bit patterns for the 3-bit operands 
2 * 24 =         32 bit patterns for the 4-bit operands 
4 * 23 =           32 bit patterns for the 3-bit operands 

We need: 

Total: 256 bit patterns. 
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5.2 Instruction Formats 
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5.3 Instruction types 

   Instructions fall into several broad categories 
that you should be familiar with: 

•  Data movement. 
•  Arithmetic. 
•  Boolean. 
•  Bit manipulation. 
•  I/O. 
•  Control transfer. 
•  Special purpose. 

Can you think of 
some examples 
of each of these? 
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5.4 Addressing 

•  Addressing modes specify where an operand is 
located. 

•  They can specify a constant, a register, or a 
memory location. 

•  The actual location of an operand is its effective 
address. 

•  Certain addressing modes allow us to determine 
the address of an operand dynamically. 
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5.4 Addressing 

•  Immediate addressing is where the data is part of 
the instruction. 

•  Direct addressing is where the address of the 
data is given in the instruction. 

•  Register addressing is where the data is located 
in a register. 

•  Indirect addressing gives the address of the 
address of the data in the instruction. 

•  Register indirect addressing uses a register to 
store the address of the data. 
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5.4 Addressing 

•  Indexed addressing uses a register (implicitly or 
explicitly) as an offset (displacement), which is 
added to the address in the operand to determine 
the effective address of the data. 

•  Based addressing is similar except that a base 
register is used instead of an index register. 

•  The difference between these two is that an index 
register holds an offset relative to the address given 
in the instruction, a base register holds a base 
address where the address field represents a 
displacement from this base. 
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5.4 Addressing 

•  In stack addressing the operand is assumed to be 
on top of the stack. 

•  There are many variations to these addressing 
modes including: 

–  Indirect indexed. 
–  Base/offset. 
–  Auto increment – decrement. 
–  Self-relative. 

•  We won’t cover these in detail. 

Let’s look at an example of the principal addressing modes. 
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5.4 Addressing 

•  For the instruction shown, what value is loaded into 
the accumulator for each addressing mode? 
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5.4 Addressing 

•  These are the values loaded into the accumulator 
for each addressing mode. 
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5.4 Addressing 

•  Summary of basic addressing modes. 
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5.5 Instruction-Level Pipelining 

•  Some CPUs divide the fetch-decode-execute cycle 
into smaller steps. 

•  These smaller steps can often be executed in parallel 
to increase throughput. 

•  Such parallel execution is called instruction-level 
pipelining. 

•  Instruction pipelining is one method used to exploit 
Instruction-level parallelism (ILP). 

The next slide shows an example of instruction-level pipelining. 
44 

5.5 Instruction-Level Pipelining 

•  Suppose a fetch-decode-execute cycle were broken 
into the following smaller steps: 

•  Suppose we have a six-stage pipeline. S1 fetches the 
instruction, S2 decodes it, S3 determines the address 
of the operands, S4 fetches them, S5 executes the 
instruction, and S6 stores the result. 

1. Fetch instruction.  4. Fetch operands. 
2. Decode opcode.  5. Execute instruction. 
3. Calculate effective  6. Store result. 
    address of operands. 
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5.5 Instruction-Level Pipelining 

•  For every clock cycle, one small step is carried out, 
and the stages are overlapped. 

S1. Fetch instruction.  S4. Fetch operands. 
S2. Decode opcode.  S5. Execute. 
S3. Calculate effective  S6. Store result. 
      address of operands. 
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5.5 Instruction-Level Pipelining 

•  The theoretical speedup offered by a pipeline can be 
determined as follows: 

Let tp be the time per stage. Each instruction represents a 
task, T, in the pipeline. 
The first task (instruction) requires k × tp time to complete in   
a k-stage pipeline. The remaining (n - 1) tasks emerge from 
the pipeline one per cycle. So the total time to complete the 
remaining tasks is (n - 1)tp. 
Thus, to complete n tasks using a k-stage pipeline requires: 
  (k × tp) + (n - 1)tp = (k + n - 1)tp. 
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5.5 Instruction-Level Pipelining 

•  If we take the time required to complete n tasks 
without a pipeline and divide it by the time it takes to 
complete n tasks using a pipeline, we find: 

 
    where tn = ktp.  
•  If we take the limit as n approaches infinity, (k + n - 1) 

approaches n, which results in a theoretical speedup 
of: 
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5.5 Instruction-Level Pipelining 

•  Our neat equations take a number of things for 
granted. 

•  First, we have to assume that the architecture 
supports fetching instructions and data in parallel. 

•  Second, we assume that the pipeline can be kept 
filled at all times. This is not always the case.  
Pipeline hazards arise that cause pipeline conflicts 
and stalls. 
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5.5 Instruction-Level Pipelining 

•  An instruction pipeline may stall or be flushed for 
any of the following reasons: 

–  Resource conflicts. For example, if two instructions both 
 need access to memory. 

–  Data dependencies. When the result of one instruction, 
 not yet available, is to be used as an operand to a 
 following instruction.  

–  Conditional branching. 

•  Measures can be taken at the software level as well 
as at the hardware level to reduce the effects of 
these hazards, but they cannot be totally eliminated. 
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5.6 Real-World Examples of ISAs 

•  We return briefly to the Intel and MIPS architectures 
from the last chapter, using some of the ideas 
introduced in this chapter. 

•  Intel uses a little endian, two-address architecture, 
with variable-length instructions. 

•  Intel introduced pipelining to their processor line with 
its Pentium chip. 

•  The first Pentium had two five-stage pipelines. Each 
subsequent Pentium processor had a longer pipeline 
than its predecessor with the Pentium IV having a 
24-stage pipeline. 

•  The Itanium (IA-64) has only a 10-stage pipeline. 
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5.6 Real-World Examples of ISAs 

•  Intel processors are byte-addressable, register-
memory architectures, and support a wide array of 
addressing modes. 

•  The original 8086 provided 17 ways to address 
memory, most of them variants on the methods 
presented in this chapter. 

•  Owing to their need for backward compatibility, the 
Pentium chips also support these 17 addressing 
modes. 

•  The Itanium, having a RISC core, supports only 
one: register indirect addressing with optional post 
increment. 
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5.6 Real-World Examples of ISAs 

•  MIPS was an acronym for Microprocessor Without 
Interlocked Pipeline Stages. 

•  The architecture is little endian and word-
addressable with three-address, fixed-length 
instructions. 

•  Like Intel, the pipeline size of the MIPS processors 
has grown: The R2000 and R3000 have five-stage 
pipelines; the R4000 and R4400 have 8-stage 
pipelines. 

Without Interlocked Pipeline Stages: Only single execution cycle instructions can 
access the general registers, so that the compiler can schedule them to avoid conflicts. 



53 

5.6 Real-World Examples of ISAs 

•  The R10000 has three pipelines: A five-stage 
pipeline for integer instructions, a seven-stage 
pipeline for floating-point instructions, and a six-
stage pipeline for LOAD/STORE instructions.  

•  In all MIPS ISAs, only the LOAD and STORE 
instructions can access memory. 

•  The ISA uses only base addressing mode. 
•  The assembler accommodates programmers who 

need to use immediate, register, direct, indirect 
register, base, or indexed addressing modes. 
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5.6 Real-World Examples of ISAs 

•  The Java programming language is an interpreted 
language that runs in a software machine called the 
Java Virtual Machine (JVM). (A virtual machine is a 
software emulation of a real machine.) 

•  A JVM is written in a native language for a wide 
array of processors, including MIPS and Intel. 

•  Like a real machine, the JVM has an ISA all of its 
own, called bytecode. This ISA was designed to be 
compatible with the architecture of any machine on 
which the JVM is running. 

The next slide shows how the pieces fit together. 
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5.6 Real-World Examples of ISAs 
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5.6 Real-World Examples of ISAs 

•  Java bytecode is a stack-based language. 
•  Most instructions are zero address instructions. 
•  The JVM has four registers that provide access to 

five regions of main memory. 
•  All references to memory are offsets from these 

registers. Java uses no pointers or absolute 
memory references. 

•  Java was designed for platform interoperability, not 
performance! 
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5.6 Real-World Examples of ISAs 

public class Minimum {!
    public static void main(String[] args) {!
        System.out.println(min(42, 56));!
    }!
!
    static int min(int a, int b) {!
        int m;!
        if (a < b)!
            m = a;!
        else!
            m = b;!
        return m;!
    }!
}!

A Java program to find the minimum of two numbers 
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5.6 Real-World Examples of ISAs 

After we compile the program (using javac Minimum.java), 
we can disassemble it to examine the bytecode, by issuing the 
following command: 

 javap -c Minimum !

Compiled from "Minimum.java"!
public class Minimum extends java.lang.Object{!
public Minimum();!
  Code:!
   0:!aload_0!
   1:!invokespecial !#1; //Method java/lang/!
                              Object."<init>":()V!
   4:!return!
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5.6 Real-World Examples of ISAs 

0: bipush 42!
2: istore_1!
3: bipush 56!
5: istore_2!
6: getstatic #2; //Field java/lang/!
                   System.out:Ljava/io/PrintStream;!
9: iload_1!
10: iload_2!
11: invokestatic !#3; //Method min:(II)I!
14: invokevirtual!#4; //Method java/io/!
                        PrintStream.println:(I)V!
17: return!
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5.6 Real-World Examples of ISAs 

static int min(int, int);!
  Code:!
   0:!iload_0!
   1:!iload_1!
   2:!if_icmpge 10!
   5:!iload_0!
   6:!istore_2!
   7:!goto !12!
   10: iload_1!
   11: istore_2!
   12: iload_2!
   13: ireturn!
}!
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5.6 Real-World Examples of ISAs 

•  You may not have heard of ARM but most likely use 
an ARM processor every day. It is the most widely 
used 32-bit instruction architecture: 
–  95%+ of smartphones, 
–  80%+ of digital cameras 
–  40%+ of all digital television sets 

•  Founded in 1990, by Apple and others, ARM 
(Advanced RISC Machine) is now a British firm, 
ARM Holdings. 

•  ARM Holdings does not manufacture these 
processors; it sells licenses to manufacture. 
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5.6 Real-World Examples of ISAs 

•  ARM is a load/store architecture: all data processing 
must be performed on values in registers, not in 
memory.  

•  It uses fixed-length, three-operand instructions and 
simple addressing modes 

•  ARM processors have a minimum of a three-stage 
pipeline (consisting of fetch, decode, and execute);  
–  Newer ARM processors have deeper pipelines (more 

stages).  Some ARM8 implementations have 13-stage 
integer pipelines 
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5.6 Real-World Examples of ISAs 

•  ARM has 37 total registers but their visibility 
depends on the processor mode. 

•  ARM allows multiple register transfers.  
–  It can simultaneously load or store any subset of the16 

general-purpose registers from/to sequential memory 
addresses.  

•  Control flow instructions include unconditional and 
conditional branching and procedure calls 

•  Most ARM instructions execute in a single cycle, 
provided there are no pipeline hazards or memory 
accesses. 
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•  ISAs are distinguished according to their bits per 
instruction, number of operands per instruction, 
operand location and types and sizes of 
operands. 

•  Endianness as another major architectural 
consideration. 

•  CPU can store store data based on 
1. A stack architecture 
2. An accumulator architecture 
3. A general purpose register architecture. 

Chapter 5 Conclusion 
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•  Instructions can be fixed length or variable 
length. 

•  To enrich the instruction set for a fixed length 
instruction set, expanding opcodes can be used. 

•  The addressing mode of an ISA is also another 
important factor. We looked at: 
–  Immediate  – Direct 
–  Register  – Register Indirect 
–  Indirect   – Indexed 
–  Based   – Stack 

Chapter 5 Conclusion 
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•  A k-stage pipeline can theoretically produce 
execution speedup of k as compared to a non-
pipelined machine. 

•  Pipeline hazards such as resource conflicts and 
conditional branching prevents this speedup 
from being achieved in practice. 

•  The Intel, MIPS, JVM and ARM architectures 
provide good examples of the concepts 
presented in this chapter. 

Chapter 5 Conclusion 

67 

End of Chapter 5 


