
Chapter 5
A Closer Look at
Instruction Set
Architectures

2

Chapter 5 Objectives

•  Understand the factors involved in instruction
set architecture design.

•  Gain familiarity with memory addressing
modes.

•  Understand the concepts of instruction-level
pipelining and its affect upon execution
performance.

3

5.1 Introduction

•  This chapter builds upon the ideas in Chapter 4.

•  We present a detailed look at different
instruction formats, operand types, and memory
access methods.

•  We will see the interrelation between machine
organization and instruction formats.

•  This leads to a deeper understanding of
computer architecture in general.

Employers frequently prefer to hire people with assembly language background,
not because they need an assembly language programmer, but because they need
someone who can understand computer architecture to write more efficient and more
effective programs.

4

5.2 Instruction Formats

Instruction sets are differentiated by the following:
•  Number of bits per instruction.
•  Stack-based or register-based.
•  Number of explicit operands per instruction.
•  Operand location.
•  Types of operations.
•  Type and size of operands.

5

5.2 Instruction Formats

Instruction set architectures are measured
according to:

•  Main memory space occupied by a program.
•  Instruction complexity.

•  Instruction length (in bits).

•  Total number of instructions in the instruction set.

6

5.2 Instruction Formats

In designing an instruction set, consideration is
given to:

•  Instruction length.
– Whether short, long, or variable.

•  Number of operands.
•  Number of addressable registers.
•  Memory organization.

– Whether byte- or word addressable.
•  Addressing modes.

– How to calculate the effective address of an
operand: direct, indirect or indexed.

7

•  Byte ordering, or endianness, is another major
architectural consideration.

•  If we have a two-byte integer, the integer may be
stored so that the least significant byte is followed
by the most significant byte or vice versa.
–  Big endian machines store the most significant byte first

(at the lower address).

–  In little endian machines, the least significant byte is
followed by the most significant byte.

5.2 Instruction Formats

8

•  As an example, suppose we have the
hexadecimal number 12345678.

•  The big endian and little endian arrangements of
the bytes are shown below.

5.2 Instruction Formats

9

•  A larger example: A computer uses 32-bit integers. The values
0xABCD1234, 0x00FE4321, and 0x10 would be stored
sequentially in memory, starting at address 0x200 as below.

5.2 Instruction Formats

10

5.2 Instruction Formats

•  Big endian:
–  Is more natural.
–  The sign of the number can be determined by looking at

the byte at address offset 0.
–  Strings and integers are stored in the same order.

•  Little endian:
–  Conversion from a 16-bit integer address to a 32-bit

integer address does not require any arithmetic.
–  Makes it easier to place values on non-word boundaries.

11

5.2 Instruction Formats

•  The next consideration for architecture design
concerns how the CPU will store data.

•  We have three choices:
1. A stack architecture
2. An accumulator architecture
3. A general purpose register architecture.

•  In choosing one over the other, the tradeoffs are
simplicity (and cost) of hardware design with
execution speed and ease of use.

12

5.2 Instruction Formats

•  In a stack architecture, operands are implicitly
taken from the stack.
–  A stack cannot be accessed randomly.

•  In an accumulator architecture, one operand of a
binary operation is implicitly in the accumulator.
–  One operand is in memory, creating lots of bus traffic.

•  In a general purpose register (GPR) architecture,
registers can be used instead of memory.
–  Faster than accumulator architecture.
–  Efficient implementation for compilers.
–  Results in longer instructions.

13

5.2 Instruction Formats

•  Most systems today are GPR systems.
•  There are three types:

–  Memory-memory where two or three operands may be in
memory.

–  Register-memory where at least one operand must be in a
register.

–  Load-store where only the load and store instructions can
access memory.

•  The number of operands and the number of
available registers has a direct affect on instruction
length.

14

5.2 Instruction Formats

•  Stack machines use one - and zero-operand
instructions.

•  PUSH and POP instructions require a single
memory address operand.

•  PUSH and POP operations involve only the stack’s
top element.

•  Other instructions use operands from the stack
implicitly.

•  Binary instructions (e.g., ADD, MULT) use the top
two items on the stack.

15

5.2 Instruction Formats

•  Stack architectures require us to think about
arithmetic expressions a little differently.

•  We are accustomed to writing expressions using infix
notation, such as: Z = X + Y.

•  Stack arithmetic requires that we use postfix notation:
Z = XY+.
–  This is also called reverse Polish notation, (somewhat) in

honor of its Polish inventor, Jan Lukasiewicz (1878 - 1956).

16

5.2 Instruction Formats

•  The principal advantage of postfix notation is
that parentheses are not used.

•  For example, the infix expression,

 Z = (X × Y) + (W × U)
 becomes:

 Z = X Y × W U × +
 in postfix notation.

17

5.2 Instruction Formats

•  Example: Convert the infix expression (2+3) - 6/3
to postfix:

The sum 2 + 3 in parentheses takes
precedence; we replace the term with
2 3 +.

2 3+ - 6/3

18

5.2 Instruction Formats

•  Example: Convert the infix expression (2+3) - 6/3
to postfix:

The division operator takes next
precedence; we replace 6/3 with
6 3 /.

2 3 + - 6 3 /

19

5.2 Instruction Formats

•  Example: Convert the infix expression (2+3) - 6/3
to postfix:

The quotient 6/3 is subtracted from the
sum of 2 + 3, so we move the - operator
to the end.

2 3 + 6 3 / -

20

5.2 Instruction Formats

•  Example: Use a stack to evaluate the postfix
expression 2 3 + 6 3 / - :

Scanning the expression
from left to right, push
operands onto the stack,
until an operator is found

6

2

3

3

+ - / 3 2

21

5.2 Instruction Formats

•  Example: Use a stack to evaluate the postfix
expression 2 3 + 6 3 / - :

6 3 + - / 3 2 Pop the two operands and
carry out the operation
indicated by the operator.
Push the result back on the
stack.

5

22

5.2 Instruction Formats

•  Example: Use a stack to evaluate the postfix
expression 2 3 + 6 3 / - :

Push operands until another
operator is found.

6

5

3 + - / 3 2

3
6

23

5.2 Instruction Formats

•  Example: Use a stack to evaluate the postfix
expression 2 3 + 6 3 / - :

Carry out the operation and
push the result.

6

5

3 + - / 3 2

2

24

5.2 Instruction Formats

•  Example: Use a stack to evaluate the postfix
expression 2 3 + 6 3 / - :

Finding another operator,
carry out the operation and
push the result.
The answer is at the top of
the stack.

6

3

3 + - / 3 2

25

5.2 Instruction Formats

Let’s see how to evaluate an infix expression
using different instruction formats.

With a three-address ISA, (e.g., mainframes),
the infix expression,

 Z = X × Y + W × U
might look like this:
 MULT R1,X,Y
 MULT R2,W,U
 ADD Z,R1,R2

26

5.2 Instruction Formats

•  In a two-address ISA, (e.g., Intel, Motorola), the
infix expression,
 Z = X × Y + W × U
 might look like this:
 LOAD R1,X
 MULT R1,Y
 LOAD R2,W
 MULT R2,U
 ADD R1,R2
 STORE Z,R1

27

5.2 Instruction Formats

•  In a one-address ISA, like MARIE, the infix
expression,
 Z = X × Y + W × U
 looks like this:
 LOAD X
 MULT Y
 STORE TEMP
 LOAD W
 MULT U
 ADD TEMP
 STORE Z

Note: One-address
ISAs usually
require one
operand to be a
register.

28

5.2 Instruction Formats

•  In a stack ISA, the postfix expression,
 Z = X Y × W U × +
 might look like this:
 PUSH X
 PUSH Y
 MULT
 PUSH W
 PUSH U
 MULT
 ADD
 POP Z

Note: The result of
a binary operation
is implicitly stored
on the top of the
stack!

29

5.2 Instruction Formats

•  We have seen how instruction length is affected
by the number of operands supported by the ISA.

•  In any instruction set, not all instructions require
the same number of operands.

•  Operations that require no operands, such as
HALT, necessarily waste some space when fixed-
length instructions are used.

•  One way to recover some of this space is to use
expanding opcodes.

30

5.2 Instruction Formats

•  A system has 16 registers and 4K of memory.
•  We need 4 bits to access one of the registers. We

also need 12 bits for a memory address.
•  If the system is to have 16-bit instructions, we have

two choices for our instructions:

31

5.2 Instruction Formats

•  If we allow the length of the opcode to vary, we could
create a very rich instruction set:

32

5.2 Instruction Formats

•  Example: Given 8-bit instructions, is it possible to
allow the following to be encoded?

–  3 instructions with two 3-bit operands.
–  2 instructions with one 4-bit operand.
–  4 instructions with one 3-bit operand.

3 * 23 * 23 = 192 bit patterns for the 3-bit operands
2 * 24 = 32 bit patterns for the 4-bit operands
4 * 23 = 32 bit patterns for the 3-bit operands

We need:

Total: 256 bit patterns.

33

5.2 Instruction Formats

•  With a total of 256 bit patterns required, we can
exactly encode our instruction set in 8 bits! (256 = 28)

One such encoding is shown on the next slide.

3 * 23 * 23 = 192 bit patterns for the 3-bit operands
2 * 24 = 32 bit patterns for the 4-bit operands
4 * 23 = 32 bit patterns for the 3-bit operands

We need:

Total: 256 bit patterns.

34

5.2 Instruction Formats

35

5.3 Instruction types

 Instructions fall into several broad categories
that you should be familiar with:

•  Data movement.
•  Arithmetic.
•  Boolean.
•  Bit manipulation.
•  I/O.
•  Control transfer.
•  Special purpose.

Can you think of
some examples
of each of these?

36

5.4 Addressing

•  Addressing modes specify where an operand is
located.

•  They can specify a constant, a register, or a
memory location.

•  The actual location of an operand is its effective
address.

•  Certain addressing modes allow us to determine
the address of an operand dynamically.

37

5.4 Addressing

•  Immediate addressing is where the data is part of
the instruction.

•  Direct addressing is where the address of the
data is given in the instruction.

•  Register addressing is where the data is located
in a register.

•  Indirect addressing gives the address of the
address of the data in the instruction.

•  Register indirect addressing uses a register to
store the address of the data.

38

5.4 Addressing

•  Indexed addressing uses a register (implicitly or
explicitly) as an offset (displacement), which is
added to the address in the operand to determine
the effective address of the data.

•  Based addressing is similar except that a base
register is used instead of an index register.

•  The difference between these two is that an index
register holds an offset relative to the address given
in the instruction, a base register holds a base
address where the address field represents a
displacement from this base.

39

5.4 Addressing

•  In stack addressing the operand is assumed to be
on top of the stack.

•  There are many variations to these addressing
modes including:

–  Indirect indexed.
–  Base/offset.
–  Auto increment – decrement.
–  Self-relative.

•  We won’t cover these in detail.

Let’s look at an example of the principal addressing modes.
40

5.4 Addressing

•  For the instruction shown, what value is loaded into
the accumulator for each addressing mode?

41

5.4 Addressing

•  These are the values loaded into the accumulator
for each addressing mode.

42

5.4 Addressing

•  Summary of basic addressing modes.

43

5.5 Instruction-Level Pipelining

•  Some CPUs divide the fetch-decode-execute cycle
into smaller steps.

•  These smaller steps can often be executed in parallel
to increase throughput.

•  Such parallel execution is called instruction-level
pipelining.

•  Instruction pipelining is one method used to exploit
Instruction-level parallelism (ILP).

The next slide shows an example of instruction-level pipelining.
44

5.5 Instruction-Level Pipelining

•  Suppose a fetch-decode-execute cycle were broken
into the following smaller steps:

•  Suppose we have a six-stage pipeline. S1 fetches the
instruction, S2 decodes it, S3 determines the address
of the operands, S4 fetches them, S5 executes the
instruction, and S6 stores the result.

1. Fetch instruction. 4. Fetch operands.
2. Decode opcode. 5. Execute instruction.
3. Calculate effective 6. Store result.
 address of operands.

45

5.5 Instruction-Level Pipelining

•  For every clock cycle, one small step is carried out,
and the stages are overlapped.

S1. Fetch instruction. S4. Fetch operands.
S2. Decode opcode. S5. Execute.
S3. Calculate effective S6. Store result.
 address of operands.

46

5.5 Instruction-Level Pipelining

•  The theoretical speedup offered by a pipeline can be
determined as follows:

Let tp be the time per stage. Each instruction represents a
task, T, in the pipeline.
The first task (instruction) requires k × tp time to complete in
a k-stage pipeline. The remaining (n - 1) tasks emerge from
the pipeline one per cycle. So the total time to complete the
remaining tasks is (n - 1)tp.
Thus, to complete n tasks using a k-stage pipeline requires:
 (k × tp) + (n - 1)tp = (k + n - 1)tp.

47

5.5 Instruction-Level Pipelining

•  If we take the time required to complete n tasks
without a pipeline and divide it by the time it takes to
complete n tasks using a pipeline, we find:

 where tn = ktp.
•  If we take the limit as n approaches infinity, (k + n - 1)

approaches n, which results in a theoretical speedup
of:

48

5.5 Instruction-Level Pipelining

•  Our neat equations take a number of things for
granted.

•  First, we have to assume that the architecture
supports fetching instructions and data in parallel.

•  Second, we assume that the pipeline can be kept
filled at all times. This is not always the case.
Pipeline hazards arise that cause pipeline conflicts
and stalls.

49

5.5 Instruction-Level Pipelining

•  An instruction pipeline may stall or be flushed for
any of the following reasons:

–  Resource conflicts. For example, if two instructions both
 need access to memory.

–  Data dependencies. When the result of one instruction,
 not yet available, is to be used as an operand to a
 following instruction.

–  Conditional branching.

•  Measures can be taken at the software level as well
as at the hardware level to reduce the effects of
these hazards, but they cannot be totally eliminated.

50

5.6 Real-World Examples of ISAs

•  We return briefly to the Intel and MIPS architectures
from the last chapter, using some of the ideas
introduced in this chapter.

•  Intel uses a little endian, two-address architecture,
with variable-length instructions.

•  Intel introduced pipelining to their processor line with
its Pentium chip.

•  The first Pentium had two five-stage pipelines. Each
subsequent Pentium processor had a longer pipeline
than its predecessor with the Pentium IV having a
24-stage pipeline.

•  The Itanium (IA-64) has only a 10-stage pipeline.

51

5.6 Real-World Examples of ISAs

•  Intel processors are byte-addressable, register-
memory architectures, and support a wide array of
addressing modes.

•  The original 8086 provided 17 ways to address
memory, most of them variants on the methods
presented in this chapter.

•  Owing to their need for backward compatibility, the
Pentium chips also support these 17 addressing
modes.

•  The Itanium, having a RISC core, supports only
one: register indirect addressing with optional post
increment.

52

5.6 Real-World Examples of ISAs

•  MIPS was an acronym for Microprocessor Without
Interlocked Pipeline Stages.

•  The architecture is little endian and word-
addressable with three-address, fixed-length
instructions.

•  Like Intel, the pipeline size of the MIPS processors
has grown: The R2000 and R3000 have five-stage
pipelines; the R4000 and R4400 have 8-stage
pipelines.

Without Interlocked Pipeline Stages: Only single execution cycle instructions can
access the general registers, so that the compiler can schedule them to avoid conflicts.

53

5.6 Real-World Examples of ISAs

•  The R10000 has three pipelines: A five-stage
pipeline for integer instructions, a seven-stage
pipeline for floating-point instructions, and a six-
stage pipeline for LOAD/STORE instructions.

•  In all MIPS ISAs, only the LOAD and STORE
instructions can access memory.

•  The ISA uses only base addressing mode.
•  The assembler accommodates programmers who

need to use immediate, register, direct, indirect
register, base, or indexed addressing modes.

54

5.6 Real-World Examples of ISAs

•  The Java programming language is an interpreted
language that runs in a software machine called the
Java Virtual Machine (JVM). (A virtual machine is a
software emulation of a real machine.)

•  A JVM is written in a native language for a wide
array of processors, including MIPS and Intel.

•  Like a real machine, the JVM has an ISA all of its
own, called bytecode. This ISA was designed to be
compatible with the architecture of any machine on
which the JVM is running.

The next slide shows how the pieces fit together.

55

5.6 Real-World Examples of ISAs

56

5.6 Real-World Examples of ISAs

•  Java bytecode is a stack-based language.
•  Most instructions are zero address instructions.
•  The JVM has four registers that provide access to

five regions of main memory.
•  All references to memory are offsets from these

registers. Java uses no pointers or absolute
memory references.

•  Java was designed for platform interoperability, not
performance!

57

5.6 Real-World Examples of ISAs

public class Minimum {!
 public static void main(String[] args) {!
 System.out.println(min(42, 56));!
 }!
!
 static int min(int a, int b) {!
 int m;!
 if (a < b)!
 m = a;!
 else!
 m = b;!
 return m;!
 }!
}!

A Java program to find the minimum of two numbers

58

5.6 Real-World Examples of ISAs

After we compile the program (using javac Minimum.java),
we can disassemble it to examine the bytecode, by issuing the
following command:

 javap -c Minimum !

Compiled from "Minimum.java"!
public class Minimum extends java.lang.Object{!
public Minimum();!
 Code:!
 0:!aload_0!
 1:!invokespecial !#1; //Method java/lang/!
 Object."<init>":()V!
 4:!return!

59

5.6 Real-World Examples of ISAs

0: bipush 42!
2: istore_1!
3: bipush 56!
5: istore_2!
6: getstatic #2; //Field java/lang/!
 System.out:Ljava/io/PrintStream;!
9: iload_1!
10: iload_2!
11: invokestatic !#3; //Method min:(II)I!
14: invokevirtual!#4; //Method java/io/!
 PrintStream.println:(I)V!
17: return!

60

5.6 Real-World Examples of ISAs

static int min(int, int);!
 Code:!
 0:!iload_0!
 1:!iload_1!
 2:!if_icmpge 10!
 5:!iload_0!
 6:!istore_2!
 7:!goto !12!
 10: iload_1!
 11: istore_2!
 12: iload_2!
 13: ireturn!
}!

61

5.6 Real-World Examples of ISAs

•  You may not have heard of ARM but most likely use
an ARM processor every day. It is the most widely
used 32-bit instruction architecture:
–  95%+ of smartphones,
–  80%+ of digital cameras
–  40%+ of all digital television sets

•  Founded in 1990, by Apple and others, ARM
(Advanced RISC Machine) is now a British firm,
ARM Holdings.

•  ARM Holdings does not manufacture these
processors; it sells licenses to manufacture.

62

5.6 Real-World Examples of ISAs

•  ARM is a load/store architecture: all data processing
must be performed on values in registers, not in
memory.

•  It uses fixed-length, three-operand instructions and
simple addressing modes

•  ARM processors have a minimum of a three-stage
pipeline (consisting of fetch, decode, and execute);
–  Newer ARM processors have deeper pipelines (more

stages). Some ARM8 implementations have 13-stage
integer pipelines

63

5.6 Real-World Examples of ISAs

•  ARM has 37 total registers but their visibility
depends on the processor mode.

•  ARM allows multiple register transfers.
–  It can simultaneously load or store any subset of the16

general-purpose registers from/to sequential memory
addresses.

•  Control flow instructions include unconditional and
conditional branching and procedure calls

•  Most ARM instructions execute in a single cycle,
provided there are no pipeline hazards or memory
accesses.

64

•  ISAs are distinguished according to their bits per
instruction, number of operands per instruction,
operand location and types and sizes of
operands.

•  Endianness as another major architectural
consideration.

•  CPU can store store data based on
1. A stack architecture
2. An accumulator architecture
3. A general purpose register architecture.

Chapter 5 Conclusion

65

•  Instructions can be fixed length or variable
length.

•  To enrich the instruction set for a fixed length
instruction set, expanding opcodes can be used.

•  The addressing mode of an ISA is also another
important factor. We looked at:
–  Immediate – Direct
–  Register – Register Indirect
–  Indirect – Indexed
–  Based – Stack

Chapter 5 Conclusion

66

•  A k-stage pipeline can theoretically produce
execution speedup of k as compared to a non-
pipelined machine.

•  Pipeline hazards such as resource conflicts and
conditional branching prevents this speedup
from being achieved in practice.

•  The Intel, MIPS, JVM and ARM architectures
provide good examples of the concepts
presented in this chapter.

Chapter 5 Conclusion

67

End of Chapter 5

