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Chapter 2 Objectives 

•  Understand the fundamentals of numerical data 
representation and manipulation in digital 
computers. 

•  Master the skill of converting between various 
radix systems. 

•  Understand how errors can occur in computations 
because of overflow and truncation. 
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Chapter 2 Objectives 

•  Understand the fundamental concepts of floating-
point representation. 

•  Gain familiarity with the most popular character 
codes. 

•  Understand the concepts of error detecting and 
correcting codes. 
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2.1 Introduction 

•  A bit (contraction of binary digit) is the most basic 
unit of information in a computer. 
–  It is a state of �on� or �off� in a digital circuit. 
–  Sometimes these states are �high� or �low� voltage 

instead of �on� or �off�. 
•  A byte is a group of eight bits. 

–  A byte is the smallest possible addressable unit of 
computer storage. 

–  The term �addressable� means that a particular byte can 
be retrieved according to its location in memory. 
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2.1 Introduction 

•  A word is a contiguous group of bits. 
–  Words can be any number of bits or bytes. 

–  Word sizes of 16, 32, or 64 bits are most common. 

–  In a word-addressable system, a word is the smallest 
addressable unit of storage. 

•  A group of four bits is called a nibble (or nybble). 
–  Bytes, therefore, consist of two nibbles: a �high-order� 

nibble, and a �low-order� nibble. 

High-order Low-order 
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2.2 Positional Numbering Systems 

•  Bytes store numbers using the position of each bit 
to represent a power of 2. 
–  The binary system is also called the base-2 system. 

–  Our decimal system is the base-10 system. It uses powers 
of 10 for each position in a number. 

–  Any integer quantity can be represented exactly using any 
base (or radix). 
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2.2 Positional Numbering Systems 

•  The decimal number 947 in powers of 10 is: 

 
    

•  The decimal number 5836.47 in powers of 10 is: 
 

5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0  
             + 4 × 10 -1 + 7 × 10 -2  

9 × 10 2 + 4 × 10 1 + 7 × 10 0   
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2.2 Positional Numbering Systems 

•  The binary number 11001 in powers of 2 is: 
 
 

 

•  When the radix of a number is something other 
than 10, the base is denoted by a subscript.  
–  Sometimes, the subscript 10 is added for emphasis: 

                     110012 = 2510 

    1 × 2 4 + 1 × 2 3 + 0 × 2 2  + 0 × 2 1 + 1 × 2 0  

=   16      +    8       +    0       +     0      +    1    =   25 
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2.3 Decimal to Binary Conversions 

•  Because binary numbers are the basis for all data 
representation in digital computer systems, it is 
important that you become proficient with this radix 
system. 

•  Your knowledge of the binary numbering system 
will enable you to understand the operation of all 
computer components as well as the design of 
instruction set architectures. 
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2.3 Decimal to Binary Conversions 

•  In an earlier slide, we said that every integer value 
can be represented exactly using any radix 
system. 

•  You can use either of two methods for radix 
conversion: the subtraction method and the 
division remainder method. 

•  The subtraction method is more intuitive, but 
cumbersome. It does, however reinforce the ideas 
behind radix mathematics. 
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•  Suppose we want to convert 
the decimal number 190 to 
base 3. 
–  We know that 3 5 = 243 so our 

result will be less than six 
digits wide. The largest power 
of 3 that we need is therefore 
3 4 = 81, and 81 × 2 = 162. 

–  Write down the 2 and subtract 
162 from 190, giving 28. 

2.3 Decimal to Binary Conversions 
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•  Converting 190 to base 3... 
–  The next power of 3 is           

3 3  = 27. We�ll need one of 
these, so we subtract 27 and 
write down the numeral 1 in 
our result.  

–  The next power of 3, 3 2 = 9, 
is too large, but we have to 
assign a placeholder of zero 
and carry down the 1. 

2.3 Decimal to Binary Conversions 
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2.3 Decimal to Binary Conversions 

•  Converting 190 to base 3... 
–  3 1  = 3 is again too large, so 

we assign a zero placeholder. 

–  The last power of 3,  3 0 = 1, 
is our last choice, and it gives 
us a difference of zero. 

–  Our result, reading from top 
to bottom is: 

       19010 = 210013 
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2.3 Decimal to Binary Conversions 

•  Another method of converting integers from 
decimal to some other radix uses division. 

•  This method is mechanical and easy. 

•  It employs the idea that successive division by a 
base is equivalent to successive subtraction by 
powers of the base. 

•  Let�s use the division remainder method to again 
convert 190 in decimal to base 3. 
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•  Converting 190 to base 3... 

–  First we take the number 
that we wish to convert and 
divide it by the radix in 
which we want to express 
our result. 

–  In this case, 3 divides 190   
63 times, with a remainder 
of 1. 

–  Record the quotient and the 
remainder. 

2.3 Decimal to Binary Conversions 
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•  Converting 190 to base 3... 

–  63 is evenly divisible by 3. 

–  Our remainder is zero, and 
the quotient is 21. 

2.3 Decimal to Binary Conversions 
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•  Converting 190 to base 3... 

–  Continue in this way until 
the quotient is zero. 

–  In the final calculation, we 
note that 3 divides 2 zero 
times with a remainder of 2. 

–  Our result, reading from 
bottom to top is: 

                 19010 = 210013 

2.3 Decimal to Binary Conversions 
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2.3 Decimal to Binary Conversions 

•  Fractional values can be approximated in all base 
systems. 

•  Unlike integer values, fractions do not necessarily 
have exact representations under all radices. 

•  The quantity ½ is exactly representable in the 
binary and decimal systems, but is not in the 
ternary (base 3) numbering system. 
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2.3 Decimal to Binary Conversions 

•  Fractional decimal values have nonzero digits to 
the right of the decimal point. 

•  Fractional values of other radix systems have 
nonzero digits to the right of the radix point. 

•  Numerals to the right of a radix point represent 
negative powers of the radix: 

0.4710 =  4 × 10 -1 + 7 × 10 -2  

0.112  =  1 × 2 -1 + 1 × 2 -2   

          =     ½    +   ¼  
               =    0.5      +    0.25 =  0.75 
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2.3 Decimal to Binary Conversions 

•  As with whole-number conversions, you can use 
either of two methods: a subtraction method and 
an easy multiplication method. 

•  The subtraction method for fractions is identical to 
the subtraction method for whole numbers. 
Instead of subtracting positive powers of the target 
radix, we subtract negative powers of the radix. 

•  We always start with the largest value first, r -1, 
where r is our radix, and work our way along using 
larger negative exponents. 
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•  The calculation to the 
right is an example of 
using the subtraction 
method to convert the 
decimal 0.8125 to binary. 
–  Our result, reading from 

top to bottom is: 

         0.812510 = 0.11012 
–  Of course, this method 

works with any base, not 
just binary. 

2.3 Decimal to Binary Conversions 
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•  Using the multiplication 
method to convert the 
decimal 0.8125 to binary, 
we multiply by the radix 2. 
–  The first product carries 

into the units place. 

2.3 Decimal to Binary Conversions 

23 

•  Converting 0.8125 to binary . . . 
–  Ignoring the value in the units 

place at each step, continue 
multiplying each fractional 
part by the radix. 

2.3 Decimal to Binary Conversions 

24 

•  Converting 0.8125 to binary . . . 
–  You are finished when the 

product is zero, or until you 
have reached the desired 
number of binary places. 

–  Our result, reading from top to 
bottom is: 

        0.812510 = 0.11012 

–  This method also works with 
any base. Just use the target 
radix as the multiplier. 

 

2.3 Decimal to Binary Conversions 
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2.3 Decimal to Binary Conversions 

•  The binary numbering system is the most 
important radix system for digital computers. 

•  However, it is difficult to read long strings of binary 
numbers -- and even a modestly-sized decimal 
number becomes a very long binary number. 
–  For example:    110101000110112 = 1359510 

•  For compactness and ease of reading, binary 
values are usually expressed using the 
hexadecimal, or base-16, numbering system. 
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2.3 Decimal to Binary Conversions 

•  The hexadecimal numbering system uses the 
numerals 0 through 9 and the letters A through F. 
–  The decimal number 12 is C16. 
–  The decimal number 26 is 1A16. 

•  It is easy to convert between base 16 and base 2, 
because 16 = 24. 

•  Thus, to convert from binary to hexadecimal, all 
we need to do is group the binary digits into 
groups of four. 

A group of four binary digits is called a hextet 
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2.3 Decimal to Binary Conversions 

•  Using groups of hextets, the binary number 
110101000110112 (= 1359510) in hexadecimal is: 

•  Octal (base 8) values are derived from binary by 
using groups of three bits (8 = 23): 

Octal was very useful when computers used six-bit words. 
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2.4 Signed Integer Representation 

•  The conversions we have so far presented have 
involved only positive numbers. 

•  To represent negative values, computer systems 
allocate the high-order bit to indicate the sign of a 
value. 
–  The high-order bit is the leftmost bit in a byte. It is also 

called the most significant bit. 
•  The remaining bits contain the value of the 

number. 
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2.4 Signed Integer Representation 

•  There are three ways in which signed binary 
numbers may be expressed: 
–  Signed magnitude,  
–  One�s complement and  
–  Two�s complement. 

•  In an 8-bit word, signed magnitude representation 
places the absolute value of the number in the 7 
bits to the right of the sign bit. 
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2.4 Signed Integer Representation 

•  For example, in 8-bit signed magnitude 
representation: 

 +3 is:  00000011 
 -3 is:  10000011 

•  Computers perform arithmetic operations on 
signed magnitude numbers in much the same 
way as humans carry out pencil and paper 
arithmetic. 
–  Humans often ignore the signs of the operands 

while performing a calculation, applying the 
appropriate sign after the calculation is complete. 
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2.4 Signed Integer Representation 

•  Binary addition is as easy as it gets. You need 
to know only four rules:   
 0 + 0 =  0     0 + 1 =  1 
 1 + 0 =  1     1 + 1 = 10 

•  The simplicity of this system makes it possible 
for digital circuits to carry out arithmetic 
operations. 
–  We will describe these circuits in Chapter 3. 

Let�s see how the addition rules work with signed 
magnitude numbers . . . 
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2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude 

binary arithmetic, find the 
sum of 75 and 46. 

•  First, convert 75 and 46 to 
binary, and arrange as a sum, 
but separate the (positive) 
sign bits from the magnitude 
bits. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude 

binary arithmetic, find the 
sum of 75 and 46. 

•  Just as in decimal arithmetic, 
we find the sum starting with 
the rightmost bit and work left. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude 

binary arithmetic, find the 
sum of 75 and 46. 

•  In the second bit, we have a 
carry, so we note it above the 
third bit. 

35 

2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude 

binary arithmetic, find the 
sum of 75 and 46. 

•  The third and fourth bits also 
give us carries. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude binary 

arithmetic, find the sum of 75 
and 46. 

•  Once we have worked our way 
through all eight bits, we are 
done. 

 In this example, we were careful to pick two values whose 
sum would fit into seven bits.  If that is not the case, we 
have a problem. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using signed magnitude binary 

arithmetic, find the sum of 107 
and 46. 

•  We see that the carry from the 
seventh bit overflows and is 
discarded, giving us the 
erroneous result: 107 + 46 = 25.  
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2.4 Signed Integer Representation 

•  The signs in signed 
magnitude representation 
work just like the signs in 
pencil and paper arithmetic. 
–  Example: Using signed 

magnitude binary arithmetic, 
find the sum of -46 and -25. 

•  Because the signs are the same, all we do is 
add the numbers and supply the negative sign 
when we are done. 
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2.4 Signed Integer Representation 

•  Mixed sign addition (or 
subtraction) is done the 
same way. 
–  Example: Using signed 

magnitude binary arithmetic, 
find the sum of 46 and -25. 

•  The sign of the result gets the sign of the number 
that is larger. 
–  Note the �borrows� from the second and sixth bits. 
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2.4 Signed Integer Representation 

•  Signed magnitude representation is easy for 
people to understand, but it requires 
complicated computer hardware. 

•  Another disadvantage of signed magnitude is 
that it allows two different representations for 
zero: positive zero and negative zero. 

•  For these reasons (among others) computers 
systems employ complement systems for 
numeric value representation. 
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2.4 Signed Integer Representation 

•  In complement systems, negative values are 
represented by some difference between a 
number and its base. 

•  The diminished radix complement of a non-zero 
number N in base r with d digits is (rd – 1) – N.  

•  In the binary system, this gives us one�s 
complement. It amounts to nothing more than 
flipping the bits of a binary number. (Simple to 
implement in computer hardware) 

42 

2.4 Signed Integer Representation 

•  For example, in 8-bit one�s complement 
representation:   

 +3 is:  00000011 
 -3 is:  11111100 

•  In one�s complement, as with signed 
magnitude, negative values are indicated by a 
1 in the high order bit. 

•  Complement systems are useful because they 
eliminate the need for subtraction. The 
difference of two values is found by adding the 
minuend to the complement of the subtrahend. 
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2.4 Signed Integer Representation 

•  With one�s complement 
addition, the carry bit is 
�carried around� and added 
to the sum. 
–  Example: Using one�s 

complement binary arithmetic, 
find the sum of 48 and -19 

We note that 19 in one�s complement is 00010011, 
so -19 in one�s complement is:     11101100. 

44 

2.4 Signed Integer Representation 

•  Although the �end carry around� adds some 
complexity, one�s complement is simpler to 
implement than signed magnitude. 

•  But it still has the disadvantage of having two 
different representations for zero: positive zero 
and negative zero. 

•  Two�s complement solves this problem. 

•  Two�s complement is the radix complement of the 
binary numbering system; the radix complement 
of a non-zero number N in base r with d digits 
is rd – N. 
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2.4 Signed Integer Representation 

•  To express a value in two�s complement: 
–  If the number is positive, just convert it to binary and 

you�re done. 
–  If the number is negative, find the one�s complement of 

the number and then add 1. 
•  Example:  

–  In 8-bit one�s complement, positive 3 is: 00000011 
–  Negative 3 in one�s complement is:         11111100 
–  Adding 1 gives us -3 in two�s complement form: 11111101. 
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2.4 Signed Integer Representation 

•  With two�s complement arithmetic, all we do is add 
our two binary numbers. Just discard any carries 
emitting from the high order bit. 

We note that 19 in one�s complement is:  00010011, 
so -19 in one�s complement is:      11101100, 
and -19 in two�s complement is:      11101101. 

–  Example: Using one�s 
complement binary 
arithmetic, find the sum of 
48 and -19. 
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2.4 Signed Integer Representation 

•  When we use any finite number of bits to 
represent a number, we always run the risk of 
the result of our calculations becoming too large 
to be stored in the computer. 

•  While we can�t always prevent overflow, we can 
always detect overflow. 

•  In complement arithmetic, an overflow condition 
is easy to detect. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using two�s complement binary 

arithmetic, find the sum of 107 
and 46. 

•  We see that the nonzero carry 
from the seventh bit overflows into 
the sign bit, giving us the 
erroneous result: 107 + 46 = -103.  

     But overflow into the sign bit does not 
always mean that we have an error. 
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2.4 Signed Integer Representation 

•  Example: 
–  Using two�s complement binary 

arithmetic, find the sum of 23 and 
-9. 

–  We see that there is carry into the 
sign bit and carry out. The final 
result is correct: 23 + (-9) = 14. 

     Rule for detecting signed two�s complement overflow:  When 
the �carry in� and the �carry out� of the sign bit differ, 
overflow has occurred. If the carry into the sign bit equals the 
carry out of the sign bit, no overflow has occurred.  
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2.4 Signed Integer Representation 

•  Signed and unsigned numbers are both useful. 
–  For example, memory addresses are always unsigned. 

•  Using the same number of bits, unsigned integers 
can express twice as many values as signed 
numbers. 

•  Trouble arises if an unsigned value �wraps around.� 
–  In four bits: 1111 + 1 = 0000. 

•  Good programmers stay alert for this kind of 
problem. 
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2.4 Signed Integer Representation 

•  Research into finding better arithmetic algorithms 
has continued a pace for over 50 years. 

•  One of the many interesting products of this work 
is Booth�s algorithm. 

•  In most cases, Booth�s algorithm carries out 
multiplication faster than naïve pencil-and-paper 
methods. Furthermore, it works correctly on two�s 
complement numbers. 

•  The general idea is to replace arithmetic 
operations with bit shifting to the extent possible. 
Note, for example, that 111112 = 1000002 – 12. 

2.4 Signed Integer Representation 

In Booth�s algorithm: 
•  If the current multiplier bit is 

1 and the preceding bit was 
0, subtract the multiplicand 
from the product (we are at the 
beginning of a string of ones) 

•  If the current multiplier bit is 
0 and the preceding bit was 
1, we add the multiplicand to 
the product (we are at the end of a string of  
ones) 

•  If we have a 00 or 11 pair, 
we simply shift. 

•  Assume a mythical �0� 
starting bit 

•  Shift after each step 

      0011 
   x 0110 

   + 0000  (shift) 

  - 0011   (subtract) 

 + 0000    (shift) 

+ 0011     (add)   . 

 00010010 
We see that 3 x 6 = 18! 
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2.4 Signed Integer Representation 

•  Here is a larger 
example.  

          00110101 
  x       01111110 
+ 0000000000000000 
+ 111111111001011 
+ 00000000000000 
+ 0000000000000 
+ 000000000000 
+ 00000000000 
+ 0000000000 
+ 000110101_______ 
 10001101000010110 

Ignore all bits over 2n. 
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2.4 Signed Integer Representation 

•  Overflow and carry are tricky ideas. 

•  Signed number overflow means nothing in the 
context of unsigned numbers, which set a carry 
flag instead of an overflow flag. 

•  If a carry out of the leftmost bit occurs with an 
unsigned number, overflow has occurred. 

•  Carry and overflow occur independently of each 
other.  

The table on the next slide summarizes these ideas. 
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2.4 Signed Integer Representation 

56 

2.5 Floating-Point Representation 

•  The signed magnitude, one�s complement, 
and two�s complement representation that we 
have just presented deal with integer values 
only. 

•  Without modification, these formats are not 
useful in scientific or business applications 
that deal with real number values. 

•  Floating-point representation solves this 
problem. 



57 

2.5 Floating-Point Representation 

•  If we are clever programmers, we can perform 
floating-point calculations using any integer format. 

•  This is called floating-point emulation, because 
floating point values aren�t stored as such, we just 
create programs that make it seem as if floating-
point values are being used. 

•  Most of today�s computers are equipped with 
specialized hardware that performs floating-point 
arithmetic with no special programming required. 
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2.5 Floating-Point Representation 

•  Floating-point numbers allow an arbitrary 
number of decimal places to the right of the 
decimal point. 
–  For example: 0.5 × 0.25 = 0.125 

•  They are often expressed in scientific notation.  
–  For example:  

0.125 = 1.25 × 10-1 
5,000,000 = 5.0 × 106 
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2.5 Floating-Point Representation 

•  Computers use a form of scientific notation for 
floating-point representation  

•  Numbers written in scientific notation have three 
components: 
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•  Computer representation of a floating-point 
number consists of three fixed-size fields: 

•  This is the standard arrangement of these fields. 

2.5 Floating-Point Representation 

Note: Although �significand� and �mantissa� do not technically mean the same 
thing, many people use these terms interchangeably.  We use the term �significand� to 
refer to the fractional part of a floating point number. 
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•  The one-bit sign field is the sign of the stored value. 

•  The size of the exponent field, determines the range 
of values that can be represented. 

•  The size of the significand determines the precision 
of the representation. 

2.5 Floating-Point Representation 
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2.5 Floating-Point Representation 

•  We introduce a hypothetical �Simple Model� to 
explain the concepts 

•  In this model: 
- A floating-point number is 14 bits in length 
- The exponent field is 5 bits 
- The significand field is 8 bits 
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•  The significand of a floating-point number is always 
preceded by an implied binary point. 

•  Thus, the significand always contains a fractional 
binary value. 

•  The exponent indicates the power of 2 to which the 
significand is raised. 

2.5 Floating-Point Representation 
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•  Example: 
–  Express 3210 in the simplified 14-bit floating-point 

model. 

•  We know that 32 is 25. So in (binary) scientific 
notation 32 = 1.0 x 25 = 0.1 x 26. 

•  Using this information, we put 110 (= 610) in the 
exponent field and 1 in the significand as shown. 

2.5 Floating-Point Representation 
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•  The illustrations shown at 
the right are all equivalent 
representations for 32 
using our simplified model. 

•  Not only do these 
synonymous 
representations waste 
space, but they can also 
cause confusion. 

2.5 Floating-Point Representation 
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•  Another problem with our system is that we have 
made no allowances for negative exponents.   

    We have no way to express 0.5 (=2 -1)! (Notice that 
there is no sign in the exponent field!) 

2.5 Floating-Point Representation 

    All of these problems can be fixed with no 
changes to our basic model. 
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•  To resolve the problem of synonymous forms, we 
will establish a rule that the first digit of the 
significand must be 1, with no ones to the left of 
the radix point.   

•  This process, called normalization, results in a 
unique pattern for each floating-point number. 
–  In our simple model, all significands must have the form 

0.1xxxxxxxx 
–  For example, 4.5 = 100.1 x 20 = 1.001 x 22 = 0.1001 x 23.  

The last expression is correctly normalized. 

 

2.5 Floating-Point Representation 

    In our simple instructional model, we use no implied bits. 
68 

•  To provide for negative exponents, we will use a 
biased exponent. 

•  A bias is a number that is approximately midway 
in the range of values expressible by the 
exponent. We subtract the bias from the value in 
the exponent to determine its true value. 
–  In our case, we have a 5-bit exponent. We will use 16 

for our bias. This is called excess-16 representation. 
•  In our model, exponent values less than 16 are 

negative, representing fractional numbers. 

2.5 Floating-Point Representation 
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•  Example: 
–  Express 3210 in the revised 14-bit floating-point model. 

•  We know that 32 = 1.0 x 25 = 0.1 x 26. 

•  To use our excess 16 biased exponent, we add 16 to 
6, giving 2210 (=101102).  

•  So we have: 

2.5 Floating-Point Representation 
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•  Example: 
–  Express 0.062510 in the revised 14-bit floating-point 

model. 
•  We know that 0.0625 is 2-4. So in (binary) scientific 

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3. 
•  To use our excess 16 biased exponent, we add 16 to 

-3, giving 1310 (=011012).  

2.5 Floating-Point Representation 
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•  Example: 
–  Express -26.62510 in the revised 14-bit floating-point 

model. 
•  We find 26.62510 = 11010.1012. Normalizing, we have: 

26.62510 = 0.11010101 x 2 5. 
•  To use our excess 16 biased exponent, we add 16 to 

5, giving 2110 (=101012). We also need a 1 in the sign 
bit.  

2.5 Floating-Point Representation 
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2.5 Floating-Point Representation 

•  The IEEE has established a standard for 
floating-point numbers 

•  The IEEE-754 single precision floating point 
standard uses an 8-bit exponent (with a bias of 
127) and a 23-bit significand. 

•  The IEEE-754 double precision standard uses 
an 11-bit exponent (with a bias of 1023) and a 
52-bit significand. 



73 

•  In both the IEEE single-precision and double-
precision floating-point standard, the significant has 
an implied 1 to the LEFT of the radix point. 
–  The format for a significand using the IEEE format is: 

1.xxx… 

–  For example, 4.5 = .1001 x 23 in IEEE format is 4.5 = 1.001 
x 22.  The 1 is implied, which means is does not need to be 
listed in the significand (the significand would include only 
001). 

 

2.5 Floating-Point Representation 

74 

2.5 Floating-Point Representation 

•  Example: Express -3.75 as a floating point number 
using IEEE single precision. 

•  First, let�s normalize according to IEEE rules: 
–  -3.75 = -11.112 = -1.111 x 21 

–  The bias is 127, so we add 127 + 1 = 128 (this is our 
exponent) 

–  The first 1 in the significand is implied, so we have: 

–  Since we have an implied 1 in the significand, this equates 
to 

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.  

(implied) 
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2.5 Floating-Point Representation 

•  Using the IEEE-754 single precision floating point 
standard:  
–  An exponent of 255 indicates a special value. 

•  If the significand is zero, the value is  ± infinity. 
•  If the significand is nonzero, the value is NaN, �not a 

number,� often used to flag an error condition (such as the 
square root of a negative number and division by zero). 

•  Using the double precision standard: 
–  The �special� exponent value for a double precision number 

is 2047, instead of the 255 used by the single precision 
standard. Most FPUs use only the double precision standard. 
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2.5 Floating-Point Representation 

•  Both the 14-bit model that we have presented and 
the IEEE-754 floating point standard allow two 
representations for zero. 
–  Zero is indicated by all zeros in the exponent and the 

significand, but the sign bit can be either 0 or 1. 

•  This is why programmers should avoid testing a 
floating-point value for equality to zero.  
–  Negative zero does not equal positive zero. 
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•  Floating-point addition and subtraction are done 
using methods analogous to how we perform 
calculations using pencil and paper. 

•  The first thing that we do is express both 
operands in the same exponential power, then 
add the numbers, preserving the exponent in the 
sum. 

•  If the exponent requires adjustment, we do so at 
the end of the calculation. 

2.5 Floating-Point Representation 
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•  Example: 
–  Find the sum of 1210 and 1.2510 using the 14-bit floating-

point model. 
•  We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1 = 

0.000101 x 2 4. 

2.5 Floating-Point Representation 

•  Thus, our sum is 
0.110101 x 2 4.  
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•  Floating-point multiplication is also carried out in 
a manner akin to how we perform multiplication 
using pencil and paper. 

•  We multiply the two operands and add their 
exponents. 

•  If the exponent requires adjustment, we do so at 
the end of the calculation. 

2.5 Floating-Point Representation 

80 

•  Example: 
–  Find the product of 1210 and 1.2510 using the 14-bit 

floating-point model. 
•  We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1. 

2.5 Floating-Point Representation 

•  Thus, our product is 
0.0111100 x 2 5 = 

0.1111 x 2 4.  

•  The normalized 
product requires an 
exponent of 2010 = 
101002. 
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•  No matter how many bits we use in a floating-point 
representation, our model must be finite. 

•  The real number system is, of course, infinite, so our 
models can give nothing more than an approximation 
of a real value.  

•  At some point, every model breaks down, introducing 
errors into our calculations. 

•  By using a greater number of bits in our model, we 
can reduce these errors, but we can never totally 
eliminate them. 

2.5 Floating-Point Representation 
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•  Our job becomes one of reducing error, or at least 
being aware of the possible magnitude of error in our 
calculations. 

•  We must also be aware that errors can compound 
through repetitive arithmetic operations. 

•  For example, our 14-bit model cannot exactly 
represent the decimal value 128.5. In binary, it is 9 
bits wide: 
     10000000.12 = 128.510 

2.5 Floating-Point Representation 
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•  When we try to express 128.510 in our 14-bit model, 
we lose the low-order bit, giving a relative error of: 

•  If we had a procedure that repetitively added 0.5 to 
128.5, we would have an error of nearly 2% after only 
four iterations. 

2.5 Floating-Point Representation 

128.5 - 128 
128.5 

≈ 0.39% 
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•  Floating-point errors can be reduced when we use 
operands that are similar in magnitude. 

•  If we were repetitively adding 0.5 to 128.5, it would 
have been better to iteratively add 0.5 to itself and 
then add 128.5 to this sum. 

•  In this example, the error was caused by loss of the 
low-order bit. 

•  Loss of the high-order bit is more problematic. 

2.5 Floating-Point Representation 
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•  Floating-point overflow and underflow can cause 
programs to crash. 

•  Overflow occurs when there is no room to store 
the high-order bits resulting from a calculation. 

•  Underflow occurs when a value is too small to 
store, possibly resulting in division by zero. 

2.5 Floating-Point Representation 

     Experienced programmers know that it�s better for a 
program to crash than to have it produce incorrect, but 
plausible, results. 

86 

•  When discussing floating-point numbers, it is 
important to understand the terms range, precision, 
and accuracy. 

•  The range of a numeric integer format is the 
difference between the largest and smallest values 
that can be expressed. 

•  Accuracy refers to how closely a numeric 
representation approximates a true value. 

•  The precision of a number indicates how much 
information we have about a value 

2.5 Floating-Point Representation 

87 

•  Most of the time, greater precision leads to better 
accuracy, but this is not always true. 
–  For example, 3.1333 is a value of pi that is accurate to 

two digits, but has 5 digits of precision. 

•  There are other problems with floating point 
numbers. 

•  Because of truncated bits, you cannot always 
assume that a particular floating point operation is 
associative or distributive. 

2.5 Floating-Point Representation 
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•  This means that we cannot assume: 
(a + b) + c = a + (b + c)  or 

a*(b + c) = ab + ac 
•  Moreover, to test a floating point value for equality to 

some other number, it is best to declare a �nearness to 
x� epsilon value.  For example, instead of checking to 
see if floating point x is equal to 2 as follows: 

   if (x == 2) …  
it is better to use: 

  if (abs(x - 2) < epsilon) ...  

(assuming we have epsilon defined correctly!) 

 

2.5 Floating-Point Representation 



2.5 Floating-Point Representation 

type (in C) size range 
short! 16 bit [-32768; 32767] 
int! 32 bit [-2147483648; 2147483647] 
long long !64 bit [-9223372036854775808; 9223372036854775807] 
float! 32 bit  ±1036, ±10-34   

 (6 significant decimal digits) 
double! 64 bit  ±10308, ±10-324  

 (15 significant decimal digits) 

89 90 

•  Calculations aren�t useful until their results can 
be displayed in a manner that is meaningful to 
people. 

•  We also need to store the results of calculations, 
and provide a means for data input. 

•  Thus, human-understandable characters must be 
converted to computer-understandable bit 
patterns using some sort of character encoding 
scheme. 

2.6 Character Codes 
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•  As computers have evolved, character codes 
have evolved. 

•  Larger computer memories and storage 
devices permit richer character codes. 

•  The earliest computer coding systems used six 
bits. 

•  Binary-coded decimal (BCD) was one of these 
early codes. It was used by IBM mainframes in 
the 1950s and 1960s. 

2.6 Character Codes 
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•  In 1964, BCD was extended to an 8-bit code, 
Extended Binary-Coded Decimal Interchange 
Code (EBCDIC). 

•  EBCDIC was one of the first widely-used 
computer codes that supported upper and 
lowercase alphabetic characters, in addition to 
special characters, such as punctuation and 
control characters. 

•  EBCDIC and BCD are still in use by IBM 
mainframes today.  

2.6 Character Codes 
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•  Other computer manufacturers chose the 7-bit 
ASCII (American Standard Code for Information 
Interchange) as a replacement for 6-bit codes. 
–  The highest order (eighth) bit was intended to be used 

for parity ("off" or "on" depending on whether the sum 
of the other bits in the byte is even or odd).                 
As computer hardware became more reliable the parity 
bit was used to provide an "extended" character set. 

•  Until recently, ASCII was the dominant character 
code outside the IBM mainframe world. 

2.6 Character Codes 
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•  Many of today�s systems embrace Unicode, a 16-
bit system that can encode the characters of 
every language in the world. 
–  The Java programming language, and some operating 

systems now use Unicode as their default character 
code. 

•  The Unicode code space is divided into six parts. 
The first part is for Western alphabet codes, 
including English, Greek, and Russian. 

2.6 Character Codes 
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•  The Unicode code- 
space allocation is 
shown at the right. 

•  The lowest-numbered 
Unicode characters 
comprise the ASCII 
code. 

•  The highest provide 
for user-defined 
codes. 

2.6 Character Codes 
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•  It is physically impossible for any data recording or 
transmission medium to be 100% perfect 100% of the 
time over its entire expected useful life. 

•  As more bits are packed onto a square centimeter of 
disk storage, as communications transmission 
speeds increase, the likelihood of error increases – 
sometimes exponentially. 

•  Thus, error detection and correction is critical to 
accurate data transmission, storage and retrieval. 

2.8 Error Detection and Correction 
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•  Check digits, appended to the end of a long number 
can provide some protection against data input 
errors. 
–  The last character of UPC barcodes and ISBNs are check 

digits. 

•  Longer data streams require more economical and 
sophisticated error detection mechanisms. 

•  Cyclic redundancy checking (CRC) codes provide 
error detection for large blocks of data. 

2.8 Error Detection and Correction 
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•  Checksums and CRCs are examples of systematic 
error detection. 

•  In systematic error detection a group of error control 
bits is appended to the end of the block of transmitted 
data. 
–  This group of bits is called a syndrome. 

•  CRCs are polynomials over the modulo 2 arithmetic 
field. 

2.8 Error Detection and Correction 

    The mathematical theory behind modulo 2 polynomials 
is beyond our scope. However, we can easily work with 
it without knowing its theoretical underpinnings. 
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•  Modulo 2 arithmetic works like clock arithmetic. 
•  In clock arithmetic, if we add 2 hours to 11:00, we 

get 1:00. 
•  In modulo 2 arithmetic if we add 1 to 1, we get 0. 

The addition rules couldn�t be simpler: 

2.8 Error Detection and Correction 

    You will fully understand why modulo 2 arithmetic is so 
handy after you study digital circuits in Chapter 3. 

0 + 0 = 0  0 + 1 = 1 
1 + 0 = 1  1 + 1 = 0 

XOR 
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•  Find the quotient and 
remainder when 1111101 is 
divided by 1101 in modulo 2 
arithmetic. 
–  As with traditional division, 

we note that the dividend is 
divisible once by the divisor. 

–  We place the divisor under the 
dividend and perform modulo 
2 addition (which is equivalent 
to modulo 2 subtraction). 

2.8 Error Detection and Correction 
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2.8 Error Detection and Correction 

•  Find the quotient and 
remainder when 1111101 is 
divided by 1101 in modulo 2 
arithmetic… 
–  Now we bring down the next 

bit of the dividend. 
–  We bring down bits from the 

dividend so that the first 1 of 
the difference align with the 
first 1 of the divisor. So we 
place a zero in the quotient. 
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•  Find the quotient and 
remainder when 1111101 is 
divided by 1101 in modulo 2 
arithmetic… 
–  1010 is �divisible� by 1101 in 

modulo 2. 
–  We perform the modulo 2 

addition. 
 

2.8 Error Detection and Correction 
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•  Find the quotient and 
remainder when 1111101 is 
divided by 1101 in modulo 2 
arithmetic… 

–  We find the quotient is 1011, 
and the remainder is 0010. 

•  This procedure is very useful 
to us in calculating CRC 
syndromes. 
 
 

2.8 Error Detection and Correction 

    Note: The divisor in this example corresponds 
to a modulo 2 polynomial:  X 3 + X 2 + 1. 
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•  Suppose we want to transmit the 
information string: 1111101. 

•  The receiver and sender decide to 
use the (arbitrary) polynomial 
pattern, 1101. 

•  The information string is shifted 
left by one position less than the 
number of positions in the divisor. 

•  The remainder is found through 
modulo 2 division (at right) and 
added to the information string: 
1111101000 + 111 = 1111101111. 

2.8 Error Detection and Correction 
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•  If no bits are lost or corrupted, 
dividing the received 
information string by the 
agreed upon pattern will give a 
remainder of zero. 

•  We see this is so in the 
calculation at the right. 

•  Real applications use longer 
polynomials to cover larger 
information strings. 
–  Some of the standard 

polynomials are listed in the text. 
 

2.8 Error Detection and Correction 

106 

•  Data transmission errors are easy to fix once an error 
is detected.  
–  Just ask the sender to transmit the data again. 

•  In computer memory and data storage, however, this 
cannot be done. 
–  Too often the only copy of something important is in 

memory or on disk. 

•  Thus, to provide data integrity over the long term, 
error correcting codes are required. 

2.8 Error Detection and Correction 
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•  Hamming codes and Reed-Soloman codes are two 
important error correcting codes.  

•  Reed-Soloman codes are particularly useful in 
correcting burst errors that occur when a series of 
adjacent bits are damaged. 
–  Because CD-ROMs are easily scratched, they employ a type 

of Reed-Soloman error correction. 
•  Because the mathematics of Hamming codes is 

much simpler than Reed-Soloman, we discuss 
Hamming codes in detail. 

2.8 Error Detection and Correction 
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•  Hamming codes are code words formed by adding 
redundant check bits, or parity bits, to a data word. 

•  The Hamming distance between two code words is 
the number of bits in which two code words differ. 

•  The minimum Hamming distance for a code is the 
smallest Hamming distance between all pairs of 
words in the code. 

2.8 Error Detection and Correction 

This pair of bytes has a 
Hamming distance of 3: 
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•  The minimum Hamming distance for a code,       
D(min), determines its error detecting and error 
correcting capability.  

•  For any code word, X, to be interpreted as a 
different valid code word, Y, at least D(min) 
single-bit errors must occur in X. 

•  Thus, to detect k (or fewer) single-bit errors, the 
code must have a Hamming distance of D(min) = 
k + 1. 

2.8 Error Detection and Correction 
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•  Hamming codes can detect D(min) - 1 errors 

and correct        errors 

•  Thus, a Hamming distance of 2k + 1 is 
required to be able to correct k errors in any 
data word. 

•  Hamming distance is provided by adding a 
suitable number of parity bits to a data word. 

2.8 Error Detection and Correction 

  denotes the largest integer that is smaller than or equal to x  x⎢⎣ ⎥⎦
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•  Suppose we have a set of n-bit code words 
consisting of m data bits and r (redundant) parity 
bits. We wish to design a code, which allows for 
single-bit errors to be corrected.  

•  A single-bit error could occur in any of the n bits, 
so each code word can be associated with n 
erroneous words at a Hamming distance of 1. 

•  Therefore, we have n + 1 bit patterns for each 
code word: one valid code word, and n erroneous 
words. 

2.8 Error Detection and Correction 
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•  With n-bit code words, we have 2 n possible code 
words, of which 2 m are legal (where n = m + r). 

•  This gives us the inequality:     
  (n + 1) × 2 m  ≤  2 n  

•  Because n = m + r, we can rewrite the inequality 
as:         

 (m + r + 1) × 2 m  ≤  2 m + r  or   (m + r + 1)  ≤  2 r  
–  This inequality gives us a lower limit on the number of 

check bits that we need in our code words. 

2.8 Error Detection and Correction 
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•  Suppose we have data words of length m = 4.  
Then:        

 (4 + r + 1)  ≤  2 r       
implies that r must be greater than or equal to 3. 

 - We should always use the smallest value of r that     
    makes the inequality true. 

•  This means to build a code with 4-bit data words 
that will correct single-bit errors, we must add 3 
check bits. 

•  Finding the number of check bits is the hard part. 
The rest is easy. 

2.8 Error Detection and Correction 
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•  Suppose we have data words of length m = 8. 
Then: 
       (8 + r + 1)  ≤  2 r  
 implies that r must be greater than or equal to 4. 

•  This means to build a code with 8-bit data words 
that will correct single-bit errors, we must add 4 
check bits, creating code words of length 12. 

•  So how do we assign values to these check 
bits? 

2.8 Error Detection and Correction 
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•  With code words of length 12, we observe that each 
of the digits, 1 though 12, can be expressed in 
powers of 2. Thus: 

    1 = 2 0  5 = 2 2 + 2 0     9 = 2 3 + 2 0 
   2 = 2 1  6 = 2 2 + 2 1  10 = 2 3 + 2 1 
   3 = 2 1 + 2 0  7 = 2 2 + 2 1 + 2 0  11 = 2 3 + 2 1 + 2 0 

    4 = 2 2  8 = 2 3  12 = 2 3 + 2 2 

–  1 (= 20) contributes to all of the odd-numbered digits. 
–  2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11. 
–  . . . And so forth . . . 

•  We can use this idea in the creation of our check bits. 

2.8 Error Detection and Correction 
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•  Using our code words of length 12, number each 
bit position starting with 1 in the low-order bit. 

•  Each bit position corresponding to a power of 2 
will be occupied by a check bit. 

•  These check bits contain the parity of each bit 
position for which it participates in the sum. 

2.8 Error Detection and Correction 
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•  Since 1 (=20) contributes to the values 1, 3, 5, 7, 9, 
and 11, bit 1 will check parity over bits in these 
positions. 

•  Since 2 (= 21) contributes to the values 2, 3, 6, 7, 10, 
and 11, bit 2 will check parity over these bits. 

•  For the word 11010110, assuming even parity, we 
have a value of 1 for check bit 1, and a value of 0 for 
check bit 2. 

2.8 Error Detection and Correction 

  What are the values for the other parity bits? 

1
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•  The completed code word is shown above. 
–  Bit 1 checks the digits 3, 5, 7, 9, and 11, so its value is 1. 
–  Bit 2 checks the digits 2, 3, 6, 7, 10, and 11, so its value is 0. 
–  Bit 4 checks the digits 5, 6, 7, and 12, so its value is 1. 
–  Bit 8 checks the digits 9, 10, 11, and 12, so its value is also 1. 

•  Using the Hamming algorithm, we can not only 
detect single bit errors in this code word, but also 
correct them! 

2.8 Error Detection and Correction 
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•  Suppose an error occurs in bit 5, as shown above. 
Our parity bit values are: 

–  Bit 1 checks digits 3, 5, 7, 9, and 11. Its value is 1, but 
should be zero. 

–  Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is correct.  
–  Bit 4 checks digits 5, 6, 7, and 12. Its value is 1, but should 

be zero. 
–  Bit 8 checks digits 9, 10, 11, and 12. This bit is correct. 

2.8 Error Detection and Correction 
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•  We have erroneous bits in positions 1 and 4. 
•  With two parity bits that don�t check, we know that 

the error is in the data, and not in a parity bit. 
•  Which data bits are in error? We find out by adding 

the bit positions of the erroneous bits. 
•  Simply, 1 + 4 = 5. This tells us that the error is in 

bit 5. If we change bit 5 to a 1, all parity bits check 
and our data is restored. 

2.8 Error Detection and Correction 
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•  Computers store data in the form of bits, bytes, 
and words using the binary numbering system. 

•  Hexadecimal numbers are formed using four-bit 
groups called nibbles (or nybbles). 

•  Signed integers can be stored in one�s 
complement, two�s complement, or signed 
magnitude representation. 

•  Floating-point numbers are usually coded using 
the IEEE 754 floating-point standard. 

Chapter 2 Conclusion 
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•  Floating-point operations are not necessarily 
associative or distributive. 

•  Character data is stored using EBCDIC, ASCII, 
or Unicode. 

•  Error detecting and correcting codes are 
necessary because we can expect no 
transmission or storage medium to be perfect. 

•  CRC, Reed-Soloman, and Hamming codes are 
three important error control codes. 

Chapter 2 Conclusion 
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End of Chapter 2 


