
 1

Assignment in Constructing Software Systems
CSS, Spring 2014

Sliding Blocks Puzzle1

A sliding blocks puzzle consists of a number of rectangular blocks that fit into a tray. The
goal is to slide the blocks, without lifting any out of the tray, until achieving a certain con-
figuration. An example is shown Figure 1. The minimum number of moves to solve the puz-
zle is 81.

Figure 1. L’Ane Rouge (Red Donkey):
Slide blocks until the red 2x2 block is in the middle of the bottom row.

Examples of these puzzles may be found on the web, for example:

http://www.puzzleworld.org/SlidingBlockPuzzles/sqroot.htm

Your task is to write a program named Solver.java that generates a solution to such a
puzzle (if a solution exists). Your program need not produce the solution with the fewest
number of moves, but it must take as little execution time as possible.

1 Adapted from Mike Clancy’s Sliding Blocks assignment. http://nifty.stanford.edu/2007/clancy-slidingblocks/

 2

Program input

Your program should take two command line arguments:

• The first argument is the name of a file that specifies the initial tray configuration.
The first line of this file contains two positive integers, the height (number of rows)
and width (number of columns) of the tray. Each subsequent line of this file contains
four integers describing a block in the tray: the height and width of the block (both
greater than 0), and the row and column of the upper left corner of the block. (The
upper left corner of the tray is row 0, column 0.) Blocks are indistinguishable except
for their size, and may appear in any order in this file. Thus, the block configuration
in Figure 1 might be represented in the file as follows:

5 4
2 1 0 0
2 2 0 1
2 1 0 3
2 1 2 0
2 1 2 3
1 2 2 1
1 1 3 1
1 1 3 2
1 1 4 0
1 1 4 3

• The second argument is the name of a file that specifies the desired goal configura-
tion. This file is similar in format to the initial configuration file. Each line of this file
contains four integers: the length and width of the block (both greater than 0), and the
desired position of the upper left corner of the block. This file will not necessarily
contain entries for all blocks in the tray. Blocks may appear in any order in this file.
The goal configuration for the puzzle in Figure 1 is represented by the single line

 2 2 3 1

If there were more than one 2-by-2 block in the initial configuration, this one-line goal would
specify the desired position (3, 1) of any of the 2-by-2 blocks. The goal configuration file can
specify any number of blocks (up to the total number of blocks in the puzzle.) For example, if
the goal was to move any two 1-by-1 blocks to the middle of the bottom row, then the goal
configuration file might be:

1 1 4 1
1 1 4 2

 3

Program output

A solution to the puzzle will represent a sequence of position changes of blocks that, when
starting with the specified initial configuration, ends up with blocks in the positions specified
in the goal. The only legal moves are those that slide a block horizontally or vertically - not
both - into adjacent empty space. Blocks may only be moved an integer number of spaces,
and either the row or the column will be the same in the start position as in the end position
for each move. Blocks cannot be rotated.

Your program should produce a line of output to System.out for each block move that
leads to a solution. Each such line contains four integers: the starting row and column of the
upper left corner of the moving block, followed by the upper left corner's updated coordi-
nates. Example output appears below; the indicated moves, applied to the starting configura-
tion of Figure 1, could be the first five moves of a solution of the puzzle. (The annotations
should not appear in the solution output.)

 4 3 4 2 // move 1x1 block left

2 3 3 3 // move 2x1 block down
2 1 2 2 // move 1x2 block right
3 1 4 1 // move 1x1 block down
2 0 2 1 // move 2x1 block right

Not all problems have solutions. If the goal cannot be reached from the initial configuration,
your program should output the string

No solution

and exit with the call System.exit(1).

 4

Deadlines and materials to be handed in

This assignment is divided into three parts: (1) input/output, (2) puzzle solving, and (3) test
of solutions. For each part you should hand in your source code and a small report that pre-
sents your design, results, and conclusions. Include instructions on how to run your code.
Hand in electronically to keld@ruc.dk. Details and deadlines are given below.

Part 1 (Deadline: March 13 at 2400)

1.1 Write code that reads an initial tray configuration from file and creates data structures that

represent the tray of blocks. Example puzzles may be downloaded here:

www.akira.ruc.dk/~keld/teaching/CSS_f14/Assignment/puzzles.zip

1.2 Include an “is OK” method to your class that represents a tray. The method should throw
an IllegalStateException with an informative message if it finds a configuration
problem, e.g. two blocks occupying the same space in the tray, or a block sitting outside
the tray.

1.3 Add code that can draw a tray graphically, for example as shown in Figure 1. To simplify

this task you can use class StdDraw, which is available here:

http://www.cs.princeton.edu/introcs/stdlib/StdDraw.java.html

You are of course also welcome to use Java’s AWT and Swing framework.

1.4 (Optional for ECII) Write code for printing a tray textually, for example as shown below.

+---+---+---+---+
| | | |
+ + + +
| | | |
+---+---+---+---+
| | | |
+ +---+---+ +
| | | | |
+---+---+---+---+
| |XXX|XXX| |
+---+---+---+---+

 5

Part 2 (Deadline: April 3 at 2400)

2.1 Write code for solving puzzles. Basically, your program will search the tree of

 possible move sequences to find a solution to a puzzle. The program must detect
 configurations that have previously been seen in order to avoid infinite cycling. Hashing
 is a good technique to apply here.

2.2 Include code that makes it possible for the user to see an animation of a solution.

2.3 (Optional for ECII) Include code that makes it possible for the user to see the solution as

a sequence of tray printings (see question 1.4).

2.4 (Optional for ECII) Write code for producing solutions with the fewest possible moves.

Part 3 (Deadline: May 8 at 2400)

3.1 Write a program named Tester.java that checks that a given list of moves is a solution
of a specified puzzle. The program should have the same command line arguments as
Solver.java. The list of moves should be read from standard input. Thus your two pro-
grams may be run with the UNIX (or DOS) command

java Solver init goal | java Tester init goal

where init and goal name the files containing the initial configuration and the goal con-
figuration, respectively.

3.2 Run your program on the example puzzles provided on the web page of this course (see
question 1.1). Report your results.

3.3 Hopefully, you are now wiser than at the beginning of the assignment. Write a final report
that covers all three parts of the assignment.

