Algorithms I

= wv —

Euclid, 300 BC

Agenda

Algorithm analysis

e The algorithm concept

e Estimation of running times
* Big-Oh notation

* Binary search

The Collections API

e Common data structures

» Applications of the data structures

e Organization of the Collections API

ek
Data and information [f AX 5

Hmdoywm“’nldm a?”

Data:

A formalized representation of facts or concepts suitable for
communication, interpretation, or processing by people or
automated means.

Data on its own carries no meaning.

Information:
The meaning that a human assigns to data by means of known
conventions.

What is an algorithm?

An algorithm is a step-by-step procedure for solving a problem

Note that it is not a requirement that an algorithm is executed
by a computer.

Input data - Algorithm Output data

“Begin at the beginning,” the King said gravely, “and go on
until you come to the end; then stop.”
Lewis Carroll 1832-1898

Origin of the algorithm concept

The word algorithm comes from the name of the 9th century
Persian Muslim mathematician Abu Abdullah Muhammad ibn Musa
Al-Khwarizmi.

The word algorism originally referred only to the rules of
performing arithmetic using Hindu-Arabic numerals but evolved via
European Latin translation of Al-Khwarizmi’s name into algorithm
by the 18th century. The use of the word evolved to include all
definite procedures for solving problems or performing tasks.

Formal definition of an algorithm
Donald E. Knuth (1968)

An algorithm is a finite, definite, and effective procedure,
with some output.

* Finite:
there must be an end to it within a reasonable time
* Definite:
precisely definable in clearly understood terms and
without ambiguities
e Effective:
it must be possible to actually carry out the steps
* Procedure:
the sequence of specific steps
* Qutput:
unless there is something coming out of the process, the result
will remain unknown!

Desirable properties of an algorithm

(1) It solves the problem correctly

(2) It runs (sufficiently) fast

(3) It requires (sufficiently) little storage
(4) It is simple

The last three properties often conflict with each other.

Space-time tradeoff is a way of solving a problem faster by
using more storage, or by solving a problem in little storage
by spending a long time.

The need for fast algorithms

Why bother about efficiency with today’s fast computers?

Technology increases speed by only a constant factor.
Much larger speed-up may often be achieved by careful algorithm design.

A bad algorithm on a supercomputer may run slower than a good one on an abacus.

More powerful computers allow us to solve larger problems, but ...

Suppose an algorithm runs in time proportional to the square of the problem size
(time = cn?, where c is a constant, and n is the problem size). If we buy a new
computer that has 10 times as much memory as the old one, we are able to solve
problems that are 10 times larger. However, if the new computer is “only” 10 times
faster, it will take 10 times longer to execute the algorithm.

Euclid’s algorithm

One of the first non-trivial algorithms was designed by
Euclid (Greek mathematician, 300 BC).

Problem: Find the largest common divisor of
two positive integers

The largest common divisor of two positive integers is the
largest integer that divides both of them without leaving a
remainder.

Given Solution
24 and 32 8

8 and 12 4

7 and 8 1

3

If gcd(u,v) denotes the greatest common divisor of u and v,
the problem may be formulated as follows:

Given two integers u = 1 and v = 1, find ged(u,v).

Solution of the problem is for example relevant to the
problem of reducing fractions:

24 24
24 ged(24,32) g 3
32 32 32 4

gcd(24,32) 8

10

Two simple algorithms

for (int d = 1; d <= u; d++)
if (u % == 0 && v % d == 0)
gcd = d;

intd=u<vwv?u: v;

while (u $d !=0 || v 8d !=0)
d--;

gced = d;

The inefficiency of these algorithms is apparent for large
values of u and v, for instance 461952 and 116298 (where
gcd 1s equal to 18).

Euclid’s algorithm

Euclid exploited the following observation to achieve a more

efficient algorithm:

If u = v, and d divides both u« and v, then d divides the difference

between u and v.

If u> v, then gcd(u,v) = gcd(u-v,v).

If u=v, the gcd(u,y) =v [= gcd(0,v)]

If u < v, then we exploit that gcd(u,v) = gcd(v,u)

[u and v are exchanged]

12

Euclid’s algorithm (version 1)

Example run:

u = 461952, v = 18
u = 461934, v = 18
u = 461916, v = 18

461952/18 = 25664 iterations

13

Euclid’s algorithm (version 2)

Is it possible to improve the efficiency?

Yes. The algorithm subtracts v from u until u becomes less than v.
But this is exactly the same as diving u by v and setting u equal to
the remainder. That is, if u > v, then gcd(u,v) = gcd(u%v,v).

while (u > 0) {
if (u < v)
{ int t =

u u % vy

}
gcd = v;

u;

\

The number of iterations for the previous example is reduced to 1.

14

Execution of version 2

= 461952,
= 113058,
= 3240,

= 2898,
342,

= 162,

= 18,

< < <& < & < <

116298
116298
113058
3240
2898
342
162

£ i &6 6 & & © G
I

=0, v

18

77 iterations

The algorithm is very efficient, even for large values of u and v.
Its efficiency can be determined by (advanced) algorithm analysis:

maximum number of iterations = 4.8 log,,N - 0.32

average number of iterations

= 1.94 log,,N

where N is max(u, v).

[log,(461952 = 5.66]

15

An alternative algorithm

(prime factorization)

A well-known method for reducing fractions:

4400 22225511 2-11 22
7000 2225457 57 35

Any positive number ¥ may be expressed as a product of prime factors:
1y = 2u2 . 3143 .5145 .7u7 _111411 D= H pup
p is prime
Let u and v be two positive integers. Then gcd(u,v) may be determined as

H pmin(up WV)

p is prime
Example: u=4400 =24-30-52.70- 111,
v =7000 =23-30.53-71.110
ged(u,y) =23-30-52-70-119=23-52=8 - 25 =200

16

e &
)

Drawback of the alternative algorithm

No efficient algorithm for prime factorization is known.

This fact is exploited in cryptographic algorithms (algorithms for
information security).

17

What is algorithm analysis?

To analyze an algorithm is to determine the amount of
resources (such as time and storage) necessary to execute it.

Algorithm analysis 1s a methodology for estimating the
resource consumption of an algorithm. It allows us to
compare the relative costs of two or more algorithms for
solving the same problem.

Algorithm analysis also gives algorithm designers a tool for
estimating whether a proposed solution is likely to meet the
resource constraints for a problem.

18

Running time

The running time of an algorithm typically grows with the
input size.

[best case
M average case
B worst case

120 -

100

80 -

60

40

Running Time

20 -

0 4
1000 2000 3000 4000
Input Size

Average case time is often difficult to determine.
We focus on the worst case running time.

* Easier to analyze
* Crucial to applications such as games and robotics

19

Experimental studies

» Write a program implementing the
algorithm

* Run the program with inputs of
varying size

* Use a method like
System.currentTimeMillis()
to get an accurate measure of the
actual running time

e Plot the results

6000 -

Time (ms)

50
Input Size

100

20

Limitations of experiments

« It is necessary to implement the algorithm, which may
be difficult

* Results may not be indicative of the running time on
inputs not included in the experiment.

* In order to compare two algorithms, the same hardware
and software environments must be used

21

Theoretical analysis

* Uses a high-level description of the algorithm instead of an
implementation

* Characterizes running time as a function of the input size
* Takes into account all possible inputs

* Allows us to evaluate the speed of an algorithm independent
of hardware/software environment

22

Primitive operations

* Basic operations performed by an algorithm
* Each one 1s assumed to take constant time

* Largely independent from the programming language

Examples:
Evaluating an expression
Assigning a value to a variable
Indexing into an array
Calling a method
Returning from a method

Counting primitive operations |

By inspecting the code or the pseudocode, we can determine the
maximum number of primitive operations executed by an
algorithm, as a function of the input size, n.

int arrayMax(int[] a) { # operations
int currentMax = a[0]; 2
for (int i = 1; i < a.length; i++) 1+2(n-1)+n
if (a[i] > currentMax) 2(n-1)
currentMax = a[i]; 2(n-1)
return currentMax; 1
}
Total Tn-2

24

Estimating running time for arrayMax

The algorithm arrayMax executes 7n-2 primitive operations in
the worst case.

Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a(Tn-2) < T(n)< b(7n-2)

Hence, the running time 7(n) is bounded by two linear functions.
This property, in which running time essentially is directly
proportional to the amount of data, is the signature of a linear
algorithm.

25

Growth rate of running time

e Changing the hardware/software environment
m affects 7(n) by a constant factor, but
m does not alter the growth rate of 7(n)

e The linear growth rate of the running time 7(#n) is an intrinsic property
of algorithm arrayMax.

26

14’151

Growth rates

A cubic function is a function whose dominant term is some
constant times N°. As an example 10N*+N>+40N+80 is a cubic
function, since the term 10N? dominates when N is large.

A quadratic function 1is a function whose dominant term i1s some
constant times N2,

A linear function is a function whose dominant term is some
constant times N.

The logarithm is a slowly growing function. For instance, the
logarithm of 1,000,000 (with the typical base 2) is only 20.

27

figure 5.1 10

| | | | | I | | |
Running times for ,
small inputs Linear
m O(N log N)
T 8r Quadratic — .
3 Cubic
o)
K%
E
0]
£
-
o) -
L
-
=
-
o
|

10 20 30 40 50 60 70 80 90 100
Input Size (N)

Running Time (seconds)

| I I I I |

Linear
O(N log N)
Quadratic —
Cubic -

1 I 1 | | |

1000

2000

3000

4000 5000 6000 7000 8000 9000 10000
Input Size (N)

figure 5.2

Running times for
moderate inputs

29

Function

log N

log2N

Nlog N

N3

2N

Name
Constant
Logarithmic
Log-squared
Linear
Nlog N
Quadratic
Cubic

Exponential

figure 5.3

Functions in order of
increasing growth rate

N log N is sometimes called linearithmic, loglinear, or quasilinear.

30

Big-Oh notation

We use Big-Oh notation to capture the most dominant term in
a function and to represent growth rate.

For instance, the running time of a quadratic algorithm is
specified as O(N?) (pronounced “order en-squared”).

Even the most clever programming tricks cannot make an
inefficient algorithm fast. Thus, before attempting to optimize
code, we need to optimize the algorithm.

31

Examples of algorithm running times

Minimum element in an array
Given an array of N elements, find the minimum element.

Closest pair of points in the plane
Given N points in the plane (that is, in the x-y coordinate
system), find the pair that are closest together.

Colinear points in the plane
Given N points in the plane, determine if any three form a
straight line.

Simple algorithms for these problems run in O(N), O(N?), and
O(N?) time, respectively. For the last two problems more
efficient algorithms have been developed.

32

The maximum contiguous
subsequence sum problem

Given (possible negative) integers A,, A,, ..., Ay, find
(and 1dentify the sequence corresponding to) the
maximum value of

2 A

k=i
The maximum contiguous subsequence sum is zero if
all the integers are negative.

Example. If the input is (-2, 11, -4, -1, 13,-5,2),
then the answer is 19, which represents the sum of the
contiguous subsequence (11, -4, -1, 13).

If all elements are positive, then the sequence itself is maximal.

33

O ~NOOOOGSAE WN =

NN NN NN = o o o o e ed d
G ON-~O0CO0CO~NOODGTA,WN-—-OOO©

26

An obvious O(N?) algorithm

/**

* Cubic maximum contiguous subsequence sum algorithm.

* seqStart and seqEnd represent the actual best sequence.
*/
public static int maxSubsequenceSum(int [] a)

{

int maxSum = 0;

for(int i = 0; i < a.length; i++)
for(int j = 1; j < a.length; j++)
{

int thisSum = 0;

for(int k = i; k <= j; k++)
thisSum += a[k];

if(thisSum > maxSum)
{
maxSum = thisSum;
seqStart

i;
segEnd i

}

return maxSum;

figure 54

A cubic maximum
contiguous
subsequence sum
algorithm

34

Analysis of running time

Running time of the algorithm is entirely dominated by the
innermost loop (lines 14 and 15).

The number of times line 15 is executed is exactly equal to
the number of triplets (i, j, k) that satisfy 1 <i<k<j=<N,
which is N(N+1)(N+2)/6.

Consequently, the algorithm runs in O(N?) time.

Note that three consecutive (nonnested) loops exhibit
linear behavior; it is nesting that leads to a combinatoric
explosion. Consequently, to improve the algorithm we need
to remove a loop.

35

An improved O(N?) algorithm

Suppose we have just calculated the sum for the
subsequence A, .., A; ;. Then computing the sum for the
subsequence A, .., A; should not take long because we need
only one more addition (of A;). However, the cubic
algorithm throws away this information.

Using this observation, we obtain the following algorithm.

36

An improved O(N?) algorithm

figure 5.5

A quadratic maximum
contiguous
subsequence sum
algorithm

O NS WON =

/**
* Quadratic maximum contiguous subsequence sum algorithm.
* seqStart and seqEnd represent the actual best sequence.

*/

public static int maxSubsequenceSum(int [] a)

{

int maxSum = 0;

for(int 1

{

int thisSum = 0;

0; i < a.length; i++)

for(int j = 1; j < a.length; j++)

{

thisSum += a[j 1;

if(thisSum > maxSum)

{

maxSum =
seqStart
seqEnd

}

return maxSum;

thisSum;
1;
15

37

Analysis of running time

Running time of the algorithm is entirely dominated by the
statement block in the innermost loop (lines 14-23).

The number of times this block is executed is N + (N-1) +
(N-2)+ ...+ 2+ 1 =NN+1)/2.

Consequently, the algorithm runs in O(N?) time.

To move from a quadratic algorithm to a linear algorithm
we need to remove another loop.

38

A linear algorithm

The previous algorithms are exhaustive, 1.e., they examine all
subsequences. The only way we can attain a subquadratic bound
is to find a clever way to eliminate from consideration a large
number of subsequences without actually computing their sum
and testing to see if that sum is a new maximum.

We may use the following two observations:
(1) The best subsequence cannot start with a negative number.

(2) More generally, the best subsequence cannot start with a
negative sum (Theorem 5.2).

39

Theorem 5.2

Let A, ;be the subsequence encompassing elements from i to j,
and let §; ;be its sum.

Theorem 5.2 Let A, ;be any subsequence with §; ;< 0.
If g > j, then A, 1s not a maximum contiguous subsequence.

i jj+1 q figure 5.6

The subsequences
used in Theorem 5.2

<0 Sii1,q

<S]+1'q

This observation by itself is not sufficient to reduce the
running time below quadratic.

40

A quadratic maximum
contiguous
subsequence sum
algorithm

(improved using
Theorem 5.2)

NGO DA WN -

/**

* Quadratic maximum contiguous subsequence sum algorithm.
* seqStart and seqEnd represent the actual best sequence.

*/
pubTlic static int maxSubsequenceSum(int [] a)

{

int maxSum = 0;
for(int i = 0; i < a.length; i++)
{

int thisSum = 0;

for(int j = i; j < a.length; j++)

{
thisSum += a[j]; . .
< if(thisSum < 0)
if(thisSum > maxSum) break;
{
maxSum = thisSum;
seqStart = 1;
seqknd = j;
}
}

}

return maxSum;

41

Theorem 5.3

Theorem 5.3 For any 7, let A; ; be the first sequence with §; ;< 0.
Then for any i <p <jand p < g, A, either is not a maximum
contiguous subsequence or is equal to an already seen maximum

contiguous subsequence.

i jj+1 q i q
Si.q A Siq X
>=0 <=5 q \ >=0 <=5j ¢ \
p-1p \ p-1p \

Not maximum (by Theorem 5.2)

Already seen

figure 5.7

The subsequences
used in Theorem 5.3.
The sequence from p
to g has a sum that is,
at most, that of the
subsequence from i to
g. On the left-hand
side, the sequence
from i to g is itself not
the maximum (by
Theorem 5.2). On the
right-hand side, the
sequence from i to ¢
has already been
seen.

42

Theorem 5.3 tells us that when a negative sum is detected, not only can we
break the loop, but we can also advance i to j+1.

figure 5.8

A linear maximum
contiguous
subsequence sum
algorithm

O NS WON =

* Linear maximum contiguous subsequence sum algorithm.
* seqStart and segEnd represent the actual best sequence.

public static int maximumSubsequenceSum(int [] a)

int maxSum = 0
int thisSum =

for(int i =0, j =0; j < a.length; j++)

{
thisSum += a[j 1;
1f(thisSum > maxSum)
{
maxSum = thisSum;
seqStart = 1;
seqgknd = j;
}
else if(thisSum < 0)
{
i=3+1
thisSum = 0;
}
}

return maxSum;

43

N

10

100
1,000
10,000

100,000

Figure 5.4

O(N3)
0.000009
0.002580

2.281013

NA

NA\
/

Empirical study

Figure 5.5

O(N?
0.000004
0.000109
0.010203
1.2329

135

Figure 7.20
O(NlogN)
0.000006
0.000045
0.000485

0.005712

0.064618

Figure 5.8

O(N)

0.000003
0.000006
0.000031
0.000317

0.003206

~ 2281 seconds = 38 minutes

=~ 2281000 seconds = 26 days

figure 5.10

Observed running
times (in seconds) for
various maximum
contiguous
subsequence sum
algorithms

44

Big-Oh and its relatives

Definition: (Big-Oh) T(N) is O(F(N)) if there are positive constants
c and N, such that T(N) < cF(N)), when N = N,,.

Definition: (Big-Omega) T(N) is (F(N)) if there are positive constants
c and N, such that T(N) = cF(N)), when N = N,,.

Definition: (Big-Theta) T(N) is O(F(N)) if and only if T(N) is O(F(N))
and T(N) is Q(F(N)) .

Definition: (Little-Oh) T(N) is o(F(N)) if and only if T(N) is O(F(N))
and T(N) is not O(F(N)) .

Definition: (Little-Omega) T(N) is @(F(N)) if and only if T(N) is
Q(F(N)) and T(N) is not O(F(N)) .

IA

IV

45

Illustration of the statement

“T(N) is O(F(N))”

T(N)

46

figure 5.9

Meanings of the
various growth
functions

Mathematical Expression
T(N) = O(F(N))
T(N) = Q(F(N))
T(N) = ©(F(N))
T(N) = o(F(N))

Relative Rates of Growth

Growthof T(N) is < growthof F(N).
Growthof T(N) is = growthof F(N).
Growthof T(N) is = growthof F(N).

Growthof T(N) is < growthof F(N).

47

General Big-Oh rules

o If T(N) is a polynomial of degree d, then T(N) is O(N9), i.c.,
1. Drop lower-order terms
2. Drop constant factors

» Use the smallest possible class of functions:
Say “2N is O(N)” instead of “2N is O(N?)

e Use the simplest expression of the class
Say “3N + 5 is O(N)” instead of “3N + 5 is O(3N)”
Say “75 + 25 1s O(1)” instead of “75 + 25 1s O(100)”

48

The logarithm

Definition: For any B, N> 0, log;N = K if Bk = N.

In this definition, B is the base. In computer science,
when the base 1s omitted, it defaults to 2.

As far as Big-Oh is concerned, the base is unimportant
since all logarithm functions are proportional.

Example: log,N = ¢ log,,N, where ¢ = 1/log,,2 = 3.3

49

log,N

Growth of log, NV

50

Some uses of log,N

Bits in a binary number
How many bits are required to represent N consecutive integers?
Answer: [log N |.

Here | X | is the ceiling function and represents the smallest integer
that is at least as large as X. Example:[3.2 |=4.

The corresponding floor function | X | represents the largest integer
that 1s at least as small as X. Example:| 32 |=3.

to be cont'd

51

Follow Me

Doubling and
Halving

Repeated doubling
Starting from X=1, how many times should X be doubled before it is
at least as large as N?

Answer: | logN | .

Repeated halving
Starting from X=N, if N is repeatedly halved, how many iterations
must be applied to make N smaller than or equal to 1.

Answer: | logN | if divisions rounds up; |_10g N J if division
rounds down (as in Java).

52

Search

Search is the problem of determining whether or not any of a
sequence of objects appear among a set of previously stored objects.

Search 1s the most time consuming part of most programs.
Replacing an inefficient search algorithm with a more efficient
one will often lead to substantial increase in performance.

53

Static searching problem

Static searching problem

Given an object X and an array A, return the position of
X in A or an indication that it 1s not present. If X occurs
more than once, return any occurrence. The array A is
never altered.

Example: Looking up a person in the telephone book.

The efficiency of a static searching algorithm depends
on whether the array being searched 1s sorted.

54

Linear sequential search

Step through the array until a match is found.

public static final int NOT FOUND = -1;

public static int sequentialSearch(Object[] a, Object x)
for (int i = 0; i < a.length; i++)
if (a[i].equals(x))
return 1i;
return NOT_ FOUND;

Worst-case running time is O(N).
Average-case running time is O(N).

{

55

Binary search

Requires that the input array is sorted.

Algorithm:

Split the array into two parts of (almost) equal size.

Determine which part may contain the search item.

Continue the search in this part in the same fashion.

Example: Searching for L.

ABDEFGHIJKLMNOTP
| J KL MNOP
| |J K L

L

Worst-case running time is O(log N).
Average-case running time is O(log N).

56

Binary search (three way-comparisons)

1 Yok figure 5.11

2 * Performs the standard binary search Basic binary search
3 * using two comparisons per level. that uses three-way
4 * @return index where item is found, or NOT_FOUND. comparisons

5 */

6 pubTlic static <AnyType extends Comparable<? super AnyType>>

7 int binarySearch(AnyType [] a, AnyType x)

8 {

9 int low = 0;

10 int high = a.length - 1;

11 int mid;

12

13 while(Tow <= high)

14 { || | | | |
15 mid = (Tow + high) / 2; low mid high
16

17 if(a[mid].compareTo(x) < 0)

18 Tow = mid + 1;

19 else if(a[mid].compareTo(x) > 0)

20 high = mid - 1;

21 else

22 return mid;

23 }

24

25 return NOT_FOUND; // NOT_FOUND = -1

26 }

57

Binary search (two way-comparisons)

figure 5.12 1 J**
Binary search using 2 j Performs the stapdard binary search
two-way comparisons 3 * using one comparison per level.
4 * @return index where item is found of NOT_FOUND.
5 of |
6 public static <AnyType extends Comparable<? super AnyType>>
7 int binarySearch(AnyType [] a, AnyType x)
8
9 if(a.length == 0)
10 return NOT_FOUND;
11
12 int Tow = 0;
13 int high = a.length - 1;
14 int mid;
12 hile(1 high) | | | | | |
- "g] el fow < mg Llow mid high
18 mid = (Tow + high) / 2;
19
20 if(a[mid].compareTo(x) < 0)
21 Tow = mid + 1;
22 else
23 high = mid;
24 }
25
26 if(a[Tow].compareTo(x) == 0)
27 return Tow;
28
29 return NOT_FOUND;
30 }

58

Are you one of the 10% of programmers
that can write a binary search?

While the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

In 1986 Jon Bentley found that 90% of the professional programmers
that followed his courses could not write an error-free version in two
hours.

59

Interpolation search

One improvement that is possible to binary search is to guess where
the search key falls within the current interval of interest. In binary
search we replace mid with next, and mid = (low+ high) /2 with
next = low+ (x-a[low]) / (alhigh] -a[low]) *(high - low)

A

a[high]

A

al[low]

v

low next high

If the elements are uniformly distributed, the average number of comparisons
has shown to be O(log log N).
For N = 4,000,000,000, log log N is about 5.

60

N
10,000
20,000
40,000
80,000

160,000
320,000
640,000

CPUTimeT
(milliseconds)

100
200
440
930
1,960
4,170
8,770

T/N
0.01000000
0.01000000
0.01100000
0.01162500
0.01225000
0.01303125
0.01370313

T/N?
0.00000100
0.00000050
0.00000027
0.00000015
0.00000008
0.00000004
0.00000002

T/(NlogN)

0.00075257
0.00069990
0.00071953
0.00071373
0.00070860
0.00071257
0.00071046

Checking an algorithm analysis

figure 5.13

Empirical running time
for N binary searches
in an N-item

array

61

Limitations of Big-Oh analysis

Big-Oh analysis is not appropriate for small amounts of input.
For small amounts of input use the simplest algorithm.

Large constants can come into play when an algorithm 1s
excessively complex.

The analysis assumes infinite memory, but in applications
involving large data sets, lack of sufficient memory can be a
severe problem.

For many complicated algorithms the worst-case bound 1s
achievable only by some bad input, but in practice it is usually
an overestimate.

62

Quote

“People who analyze algorithms have double happiness. First of all
they experience the sheer beauty of elegant mathematical patterns that
surround elegant computational procedures. Then they receive a
practical payoff when their theories make it possible to get other jobs
done more quickly and more economically.”

Donald E. Knuth

63

The Collections API

64

Data structures

Data structure: a particular way of storing and organizing
data in a computer so that it can be used efficiently.

Each data structure allows arbitrary insertion but differs in
how it allows access to items. Some data structures allow
arbitrary access and deletions, whereas others impose
restrictions, such as allowing access to only the most
recently or least recently inserted items. Some data
structures allow duplicates; others do not.

The Collections API provides a number of useful of data structures.
It also provides some generic algorithms, such as sorting.

65

Collections

A collection is an object that contains other objects, which are called the
elements of the collection.

Java Collections is a set of interfaces and classes that support storing and
retrieving elements in collections.

Collections are implemented by a variety of data structures and
algorithms (with different time-space complexities).

The Collection API frees you from reinventing the wheel. This is the
essence of reuse.

We do not need to know how something is implemented, so long as we
know what 1s implemented. This is the essence of data abstraction.

66

A generic protocol for collections

1 package weiss.nonstandard; figure 6.1
) .
A tocol f
3 // SimpleContainer protocol ma?r?ynggfap;ﬁuﬁﬁregr
4 public interface SimpleContainer<AnyType>
5 {
6 void insert(AnyType x);
7 void remove(AnyType X);
8 AnyType find(AnyType x);
9
10 boolean isEmpty();
11 void makeEmpty();
12 }

Many data structures tend to follow this protocol.
However, we do not use this protocol directly in any code.

67

The iterator pattern ‘&l

Enumerating all elements in a collection is one of the most
common operations on any collection.

The iterator design pattern makes this possible without
exposing the underlying data structure.

An iterator is an object that allows traversal of all elements in a
collection, regardless of its specific implementation. Thus, if the
implementation changes, code that uses the iterator does not
need to be changed. This 1s an example of abstract coupling.

68

1
2
3
4
5
6
7
8

11
12

main for design 1

public static void main(String [] args)

{

MyContainer v = new MyContainer();

v.add("3");
v.add("2");

System.out.printIn("Container contents: ");
MyContainerIterator itr = v.iterator();
while(itr.hasNext())

System.out.printIn(itr.next());

figure 6.2

A main method, to
illustrate iterator
design 1

69

package weiss.ds; figure 6.3

. . TheMyContainer class,
public class MyContainer design 1
{

Object [] items;

int size;

public MyContainerIterator iterator()

{ return new MyContainerIterator(this); }

// Other methods

}

MyContainer for design 1
(array-based collection)

70

figure 64

Implementation of the
MyContainerIterator,
design 1

MyContainerIterator

P

1
2
3
4
5 p
6 {
7

8

9
10
11
12
13
14
15

16
17

18 }

for design 1

// An iterator class that steps through a MyContainer.

ackage weiss.ds;
ublic class MyContainerIterator

private int current = 0;
private MyContainer container;

MyContainerIterator(MyContainer c)
{ container = c; }

public boolean hasNext()
{ return current < container.size; }

public Object next()
{ return container.items[current++]; }

71

Drawback of design 1

Change from an array-based collection to something else requires
that we change all declarations of the iterator.

For instance, in the main method we need to change the line:

MyContainerIterator itr =

This drawback may be removed by defining an interface,
Iterator, that is an abstraction of the capabilities of iterators.

Clients (in this case, main) will deal only with the abstract
iterator and need no knowledge about the concrete iterator.

72

MyContainer for design 2

package weiss.ds;

public class MyContainer

{

Object [] items;
int size;

public Iterator iterator()
{ return new MyContainerIterator(this); }

// Other methods not shown.

figure 6.5

TheMyContainer class,
design 2

73

The Iterator interface
for design 2

package weiss.ds;

public interface Iterator

{

}

boolean hasNext();
Object next();

figure 6.6

The Iterator
interface, design 2

74

figure 6.7

Implementation of the
MyContainerIterator,
design 2

MyC

P

’
2
3
4
5 ¢
6 {
7
8
9
10
11
12
13
14
15
16
17
18 }

ontainerIterator
for design 2

// An iterator class that steps through a MyContainer.

ackage weiss.ds;
lass MyContainerIterator implements Iterator

private int current = 0;
private MyContainer container;

MyContainerIterator(MyContainer c)
{ container = c; }

public boolean hasNext()
{ return current < container.size; }

pubTic Object next()
{ return container.items[current++]; }

75

figure 6.8 1
A main method, to 2
illustrate iterator 3
design 2 4
5

6

7

8

9

10

11

12

main for design 2

public static void main(String [] args)

{

MyContainer v = new MyContainer();

v.add("3");
v.add("2");

System.out.printin("Container contents:

——> Iterator itr = v.iterator();
while(itr.hasNext())
System.out.printin(itr.next());

— Programming to an interface

");

76

A sample specification of
Iterator

1 package weiss.util;
2
3 /**
4 * Tterator interface.
5 */
6 public interface Iterator<AnyType>
7 {
8 YAk
9 * Tests if there are items not yet iterated over.
10 */
11 boolean hasNext();
12
13 Ak
14 * Obtains the next (as yet unseen) item in the collection.
15 */
16 AnyType next();
17
18 YAk
19 * Remove the last item returned by next.
20 * Can only be called once after next.
21 */
22 void remove();
23 }
figure 6.10

A sample specification of Iterator

77

figure 6.11

Print the contents of
any Collection.

Printing the contents of any

[
Collection
1 // Print the contents of Collection ¢ (using iterator directly)
2 public static <AnyType> void printCollection(Collection<AnyType> c)
3 {
4 Iterator<AnyType> itr = c.iterator();
5 while(itr.hasNext())
6 System.out.print(itr.next() + " ");
7 System.out.printin();
8 }
9

10 // Print the contents of Collection ¢ (using enhanced for loop)

11 public static <AnyType> void printCollection(Collection<AnyType> c)
12 {

13 for(AnyType val : c)

14 System.out.print(val + " ");
15 System.out.printin();
16 }

The enhanced for loop is simply a compiler substitution.

78

Abstract collections

A set 1s an unordered collection of elements.
No duplicates are allowed.

A list 1s an ordered collection of elements.
Duplicates are allowed.
Lists are also known an sequences.

A map is an unordered collection of key-value pairs.
The keys must be unique.
Maps are also known as dictionaries.

79

Interfaces for collections

java.util.*

Map

?

Collection
Set
A
SortIedSet

SortedMap

80

Concrete collections

Collection Map
& i
Set List SortedMap HashMap
SortedSet ArrayList LinkedList TreeMap
TreeSet HashSet

81

package weiss.util;

k%

1

2

3

4 */Co]]ection interface; the root of all 1.5 collections.
5 *
6

7

8

public interface Collection<AnyType> extends Iterable<AnyType>, java.io.Serializable

£33

9 */Returns the number of items in this collection.
10 *
11 int size();
12
13 /%
14 * Tests if this collection is empty.
15 *
16 boolean isEmpty();
17
18 JE*
19 : Tests if some item is in this collection.
20
21 boolean contains(Object x);
22
23 /%
24 * Adds an item to this collection.
25 */
26 boolean add(AnyType x);
27
28 Vaki
29 * Removes an item from this collection.
30 */
31 boolean remove(Object x);
32
33 /%
34 * Change the size of this collection to zero.
35 */
36 void clear();
37
38 Vaki
39 * Obtains an Iterator object used to traverse the collection.
40 */
4 Iterator<AnyType> iterator();
42
43 /¥
44 * Obtains a primitive array view of the collection.
45 *
46 Object [] toArray();
47
48 Vaki
49 * Obtains a primitive array view of the collection.
50 ®
51) <OtherType> OtherType [] toArray(OtherType [] arr);
52
figure 6.9

A sample specification of the Collection interface

82

interface Collection<gE>

boolean add(E o)

boolean addAll(Collection<? extends E> c)
void clear()

boolean contains(Object o)

boolean containsAll(Collection<?> c)
boolean isEmpty()

Iterator<E> iterator()

boolean remove(Object o)

boolean removeAll(Collection<?> c)
boolean retainAll(Collection<?> c)
int size()

Object[] toArray()

<T> T[] toArray (T[] a)

83

interface Set<E> extends Collection<gE>

No new methods are introduced. However, the contracts for

boolean add(E o)
boolean addAll(Collection<? extends E> c)

are changed owing to the “no duplicates” restriction of sets
(checked by calls to equals).

84

Example of using Set

Set<String> set = new HashSet<String>();
set.add("cat");
set.add("dog");
int n = set.size();
System.out.println("The set contains " + n + " elements");
if (set.contains("dog"))
System.out.println("dog is in the set");

Type inference. The diamond operator:
In Java 7, you can write
Set<String> set = new HashSet<>();

85

interface List<E> extends Collection<g>

New methods:

void add(int index, E element)

E get(int index)

int indexOf (Object o)

int lastIndexOf (Object o)
ListIterator<kE> listIterator()
ListIterator<E> listIterator(int index)
E remove(int index)

E set(int index, E element)

List subList(int fromIndex, int toIndex)

The contracts of add (o) and addAll (c) are changed because
of the ordering imposed on lists.

86

figure 6.16

A sample List
interface

package weiss.util;

4
2

3 /**

4 * List interface. Contains much less than java.util

5 */

6 public interface List<AnyType> extends Collection<AnyType>
7
8

{
AnyType get(int idx);
9 AnyType set(int 1idx, AnyType newVal);

10

11 [**

12 * Obtains a ListIterator object used to traverse
13 * the collection bidirectionally.

14 * @return an iterator positioned

15 * prior to the requested element.

16 * @param pos the index to start the iterator.

17 * Use size() to do complete reverse traversal.
18 * Use 0 to do complete forward traversal.
19 * @throws IndexOutOfBoundsException if pos is not
20 * between 0 and size(), inclusive.

21 */

22 ListIterator<AnyType> TistIterator(int pos);

87

1 package weiss.util;

2
3/

x%

* ListIterator interface for List interface.

¥/

*

e
w

4
5
6 public interface ListIterator<AnyType> extends Iterator<AnyType>
7
8

/**
Tests if there are more items in the collection
when 1iterating in reverse.

* @return true if there are more items in the collection

e
E

*/

when traversing in reverse.

boolean hasPrevious();

/**

* Obtains the previous item in the collection.
* @return the previous (as yet unseen) item in the collection

*

*/

when traversing in reverse.

AnyType previous();

/**
* Remove the last item returned by next or previous.
* Can only be called once after next or previous.
*/

void remove();

figure 6.17

A sample
ListIterator
interface

88

1 import java.util.Arraylist;
2 import java.util.ListIterator;

3

4 class TestArraylList

5 {

6 public static void main(String [] args)

7 {

8 ArrayList<Integer> 1st = new ArraylList<Integer>();
9 Ist.add(2); Ist.add(4);

10 ListIterator<Integer> itrl = Ist.listIterator(0);
11 ListIterator<Integer> itr2 = 1st.listIterator(1st.size());
12

13 System.out.print("Forward: ");

14 while(itrl.hasNext())

15 System.out.print(itrl.next() + " ");

16 System.out.printin();

17

18 System.out.print("Backward: ");

19 while(itrl.hasPrevious())

20 System.out.print(itrl.previous() + " ");

21 System.out.printin();

22

23 System.out.print("Backward: ");

24 while(itr2.hasPrevious())
25 System.out.print(itr2.previous() + " ");
26 System.out.printin();
27
28 System.out.print("Forward: ");
29 for(Integer x : TIst)
30 System.out.print(x + " ");
31 System.out.printin();

figure 6.18

A sample program that illustrates bidirectional iteration

89

Example of using List

List<String> list = new ArrayList<String>();
list.add("cat");

list.add("dog");
list.add("cat");
for (String s : list)
System.out.println(s);
System.out.println("The first element is " + list.get(0));

90

interface Map<K,V> . :

V put(K key, V value)
V get(Object key)
V remove (Object key)

void clear()

boolean containsKey(Object key)

boolean containsValue(Object value)

boolean isEmpty()

void putAll (Map<? extends K,? extends V>> map)
int size()

Set<K> keySet ()
Collection<V> values()
Set<Map.Entry<K,V>> entrySet()

91

Example of using Map

Map<String,String> map = new HashMap<String,String>();
map.put("cat", "kat");

map.put("dog"”, "hund");

String val = map.get("dog"); // val is "hund"
map.remove('cat");

map.put("dog", "keter");

val = map.get("dog"); // val is "koter"

92

1 dimport java.util.Map;

2 import java.util.TreeMap;

3 import java.util.Set;

4 import java.util.Collection;

5

6 public class MapDemo

7

8 public static <KeyType,ValueType>

9 void printMap(String msg, Map<KeyType,ValueType> m)

10 {

11 System.out.println(msg + ":");

12 Set<Map.Entry<KeyType,ValueType>> entries = m.entrySet();

13

14 for(Map.Entry<KeyType,ValueType> thisPair : entries)

15 {

16 System.out.print(thisPair.getKey() + ": ");

17 System.out.printIn(thisPair.getValue());

18

19 }

20

21 public static void main(String [] args)

22

23 Map<String,String> phonel = new TreeMap<String,String>();

24 " m. .

P phonel.put("John Doe”, "212-555-1212"); phonel .get("Jane Doe"): unlisted

26 phonel.put("Jane Doe", "312-555-1212");

27 phonel.put("Holly Doe", "213-555-1212"); The map is:

28 phonel.put("Susan Doe", "617-555-1212"); h 1:

29 phonel.put("Jane Doe", "unlisted"); phonel:

30 Holly Doe: 213-555-1212

31 System.out.printIn("phonel.get(\"Jane Doe\"): " + Jane Doe: unlisted

32 phonel.get("Jane Doe")); ’

33 System.out.println("\nThe map is: "); John Doe: 212-555-1212

34 printMap("phonel", phonel); Susan Doe: 617-555-1212

35

36 System.out.printIn("\nThe keys are: ");

37 Set<String> keys = phonel.keySet(); The keys are:

;g printCollection(keys); Holly Doe Jane Doe John Doe Susan Doe

40 System.out.printIn("\nThe values are: ");

41 Collection<String> values = phonel.values(); The values are:

o printCollection(values J; 213-555-1212 unlisted 212-555-1212 617-555-1212

44 keys. remove("John Doe"); After John Doe and 1 unlisted are removed

45 values.remove("unlisted");

46 .

47 System.out.printIn("After John Doe and 1 unlisted are removed"); The map is

48 Sy;tem.out.pr‘inﬂn("\nThe map is: "); phonel:

49 printMap("phonel®, phonel); Holly Doe: 213-555-1212

I Susan Doe: 617-555-1212
figure 6.33

An illustration using the Map interface

93

A typical use of Map

public static void listDuplicates(List<String> coll) {
Map<String,Integer> count = new TreeMap<String,Integer>();

for (String word : coll) {
Integer occurs = count.get(word);
if (occurs == null)
count.put (word, 1);
else
count.put(word, occurs + 1);

}

for (Map.Entry<String,Integer> e : count.entrySet())
if (e.getValue() >= 2)
System.out.println(e.getKey() + " (" +
e.getValue() + ")");

94

Ordering and sorting

There are two ways to define ordering of objects:

(1) Each class can define a natural order among its instances by
implementing the Comparable interface.

(2) Arbitrary orders among different objects can be defined by

comparators, or classes that implement the Comparator
interface.

95

’
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

The Comparator interface

package weiss.util;

/d-.l-
nw

* Comparator function object interface.

*/

public interface Comparator<AnyType>

{

}

/'k*

¥ W %

*
*
*
*

*/

int

Return the result of comparing Ths and rhs.
@aram Ths first object.
@param rhs second object.
@return < 0 if 1hs is less than rhs,
0 if Ths is equal to rhs,
> 0 if Ths is greater than rhs.
@throws ClassCastException if objects cannot be compared.

compare(AnyType lhs, AnyType rhs) throws ClassCastException;

figure 6.12

The Comparator interface, originally defined in java.util and rewritten for the weiss.uti1 package

96

package weiss.util;

’
2

3 /'.'.-*

4 * Instanceless class contains static methods that operate on collections.
5 */

6 pubTlic class Collections

7
8

{
private Collections()

9 {
10 }
1
12 /*
13 * Returns a comparator that imposes the reverse of the
14 * default ordering on a collection of objects that
15 * implement the Comparable interface.
16 * @return the comparator.
17 */
18 pubTic static <AnyType> Comparator<AnyType> reverseOrder()
19 {
20 return new ReverseComparator<AnyType>();
21 }
22
23 private static class ReverseComparator<AnyType> implements Comparator<AnyType>
24 {
25 pubTic int compare(AnyType lhs, AnyType rhs)
26
27 return - ((Comparable)lhs).compareTo(rhs);
28 }
29 }
30
31 static class DefaultComparator<AnyType extends Comparable<? super AnyType>>
32 implements Comparator<AnyType>
33
34 public int compare(AnyType Ths, AnyType rhs)
35 {
36 return Ths.compareTo(rhs);
37 }

figure 6.13

The Collections class (part 1): private constructor and reverseOrder

97

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81

/**
* Returns the maximum object in the collection,
* using default ordering

* @param coll the collection.

* @return the maximum object.

* @throws NoSuchElementException if coll is empty.

* @throws ClassCastException if objects in collection
* cannot be compared.

*/

pubTic static <AnyType extends Object & Comparable<? super AnyType>>
AnyType max(Collection<? extends AnyType> coll)
{

return max(coll, new DefaultComparator<AnyType>());

}
/**

Returns the maximum object in the collection.

@param coll the collection.

@param cmp the comparator.

@return the maximum object.

@throws NoSuchElementException if coll is empty.

@throws ClassCastException if objects in collection
cannot be compared.

EIE I

L

*/
pubTic static <AnyType>
AnyType max(Collection<? extends AnyType> coll, Comparator<? super AnyType> cmp)

if(coll.size() == 0)
throw new NoSuchElementException();

Iterator<? extends AnyType> itr = coll.iterator();
AnyType maxValue = itr.next();

while(itr.hasNext());

{
AnyType current = itr.next();
if(cmp.compare(current, maxValue) > 0)
maxValue = current;
}

return maxValue;

}

figure 6.14

The Collections class (part 2): max

98

interface SortedSet<E> extends Set<E>

New methods:

E first()

E last()
SortedSet<E>
SortedSet<E>
SortedSet<E>
Comparator<?

headSet (E toElement) <
tailSet(E fromElement) >=
subSet (E fromElement, E toElement) >=
super E> comparator()

A concrete implementation, for instance TreeSet, provides at
least two constructors: one without parameters, and one with a
Comparator parameter.

99

interface SortedMap<K,V> extends Set

New methods:

K first()

K last()

SortedMap<K,V> headSet(E toElement)
SortedMap<K,V> tailSet(E fromElement)

SortedMap<K,V> subMap(E fromElement, E toElement)
Comparator<? super K> comparator()

A concrete implementation, for instance TreeMap, provides at
least two constructors: one without parameters, and one with a
Comparator parameter.

100

public
public

public
public

public
public
public
public

public
public

public

The class Collections

static
static

static
static

static
static
static
static

static
static

static

public class Collections {

void sort(List 1);
void sort(List 1, Comparator comp);

int binarySearch(List 1, Object key);
int binarySearch(List 1, Object key,
Comparator comp) ;

Object
Object
Object
Object

min(Collection
min(Collection
max(Collection
max(Collection

void reverse(List 1);
void shuffle(List 1);

C);
c, Comparator c);
C)i
c, Comparator c);

Comparator reverseOrder();

101

The class Arrays

public class Arrays {
public static<T> List<T> asList(T... a);

public static void sort(type[] a);

public static<T> void sort(T[] a, Comparator comp)

public static void sort(type[] a, int from, int to);

public static<T> void sort(T[] a, int from, int to,
Comparator<? super T> comp);

public static int binarySearch(type[] a, type key);
public static int binarySearch(Object[] a, Object key,

Comparator<? super T> comp);

public static void fill(type[] a, type value);
public static void fill(type[] a, int from, int to, type value);

public static boolean equals(type[] a, type[] a2);
public static boolean deepEquals(Object[], Object[] a2);

102

Choosing an implementation for Set

If the elements should maintain a certain order, then TreeSet
should be used; otherwise, HashSet.

The HashSet implementation requires that the equals and
hashCode methods are defined properly in the class of the
clements.

Think of hashCode as providing a hint of where the items are
stored in an array. If two objects are equal according to the
equals method, they must return the same hash code. On the
other hand, it is not required that two objects that are not equal
return different hash codes.

103

figure 6.33

An lllusration of &
broken implemen
of equais

tation |

c
{

O NE & N -

18 ¢

Tass Base(lass

public BaseClass(int 1)
{x=1;1

?ub'lic boolean equals{ Object rhs)
// This is the wrong test (ok if final class)

1f(!(rhs instanceof BaseClass))
return false;

return x == ((Base{lass) rhs).x;

}

private int x;

lass DerivedClass extends BaseClass
public DerivedClass(int i, int j)
{
supet_’(i);

y=13
}

?ub'lic boolean equals{ Object rhs)
// This is the wrong test.
1f('(rhs instanceof DerivedClass))
return false;
return super.equals(rhs) &&

X y == ((DerivedClass) rhs).y;

private int y;

public static void main(String [] args)

BaseClass a = new BaseClass(§);
DerivedClass b = new DerivedClass(5,
DerivedClass c = new DerivedClass(5,

System.out.printin{ "b.equals(c): ™ +
System.out.printin{ "a.equals(b): ™ +
System.out.printin{ "b.equals(a): ™ +

8
8
b.equals(c));
a.equals(b));
b.equals(2))

Output:

b.equals(c)
a.equals(b)
b.equals(a)

true
true
false

104

i class BaseClass

2 {

3 public BaseClass(int 1)

B {x=1;1

5

6 public boolean equals(Object rhs)

7

8 if(rhs == null || getClass() != rhs.getClass())
3 return false;

10

11 return x == ((BaseClass) rhs).x;
12 }

13

14 private int x;

15 }

16

17 class DerivedClass extends Base(Class

18 {

19 public DerivedClass(int i, int j)

20

21 super(i);

22 y =1;

23

24

25 public boolean equals(Object rhs)

26 {

27 // Class test not needed; getClass() is done
28 // in superclass equals

29 return super.equals(rhs) &&

30 == ((DerivedClass) rhs).y;
31 }

32

33 private int y;

figure 6.34

Correct
implementation of
equals

105

1 /**

2 * Test program for HashSet.

3 %/

4 class IteratorTest

5

6 public static void main(String [] args)

7 {

8 List<SimpleStudent> studl = new ArraylList<SimpleStudent>();
9 studl.add(new SimpleStudent("Bob", 0));

10 studl.add(new SimpleStudent("Joe", 1));

11 studl.add(new SimpleStudent("Bob", 2)); // duplicate

12

13 // Will only have 2 items, if hashCode is

14 // implemented. Otherwise will have 3 because

15 // duplicate will not be detected.

16 Set<SimpleStudent> stud2 = new HashSet<SimpleStudent>(studl);
17

18 printCollection(studl); // Bob Joe Bob)
19 printCollection(stud2); // Two items in unspecified order
20 }

21 }

22

23 /**

24 * I1lustrates use of hashCode/equals for a user-defined class.
25 * Students are ordered on basis of name only.

26 */

27 class SimpleStudent

28 {

29 String name;

30 int id;

31

32 public SimpleStudent(String n, int i)
33 { name = n; id = i; }

34

35 public String toString()

36 { return name + " " + id; }

37

38 public boolean equals(Object rhs)

39 {

40 if(rhs == null || getClass() != rhs.getClass())
41 return false;

42

43 SimpleStudent other = (SimpleStudent) rhs;
44 return name.equals(other.name);
45 }

46

47 pubTlic int hashCode()

48 { return name.hashCode(); }

49 }

lllustrates the equals and hashCode methods for use in HashSet

106

y
2
3
4
5
6
7
8

public static void main(String [] args)

{

An illustration of the

Set<String> s = new HashSet<String>(); HashSet, where items
s.add("joe"); are output in some
s.add("bob"); order

s.add("hal");

printCollection(s); // Figure 6.11

All items are printed, but the order that the items are
printed is unknown.

107

Choosing an implementation for List

If indices are used often to access the elements and the size of

the list does not vary much, then ArrayList should be used;

otherwise LinkedList.

ArraylList LinkedList
add/remove at end O(1) o(1)
add/remove at front O(N) O(1)
get/set o(1) O(N)
contains O(N) O(N)
e

first

figure 6.21
Single-operation

costs for ArraylList
and LinkedList

108

Choosing an implementation for Map

If the keys should maintain a certain order, then TreeMap
should be used; otherwise, HashMap.

The HashMap implementation requires that the equals and
hashCode methods defined properly in the class of the keys.

109

-
el

New collections in Java 5
Collection
A
Set List Queue
A A A
SortledSet ArrayList LinkedList
TreeSet HashSet PriorityQueue

110

enqueue dequeue
—» Queue —»
getFront

figure 6.27

The queue model:
Input is bgenqueue,
output is by getFront,
and deletion is by
dequeue.

111

p
/

1
2
3
4
5
6
7 {
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 }

ackage weiss.util;

%k

* Queue interface.

*/

/**

3

Returns but does not remove the item at the

* of the queue.

@return the front item of null if the queue
* @throws NoSuchElementException if the queue
*/

AnyType element();

>

\
*
*

b

Returns and removes the item at the "front"
of the queue.

@return the front item.

@throws NoSuchElementException if the queue

EE S

*/
AnyType remove();

pubTic interface Queue<AnyType> extends Collection<AnyType>

"front"

1s empty.
is empty.

is empty.

figure 6.23

Possible Queue
interface

112

deleteMin

insert \ findMin

Priority
Queue

figure 6.34

The priority queue
model: Only the
minimum element is
accessible.

113

figure 6.35

A routine to
demonstrate the
PriorityQueue

1 import java.util.PriorityQueue;

2

3 pubTlic class PriorityQueueDemo

4 {

5 pubTic static <AnyType extends Comparable<? super AnyType>>

6 void dumpPQ(String msg, PriorityQueue<AnyType> pq)

7 {

8 System.out.printin(msg + ":");

9 while(!pg.isEmpty())

10 System.out.printin(pq.remove());

11 }

12

13 // Do some inserts and removes (done in dumpPQ).

14 public static void main(String [] args)

15 {

16 PriorityQueue<Integer> minPQ = new PriorityQueue<Integer>();
17

18 minPQ.add(4);

19 minPQ.add(3); Output:
20 minPQ.add(5); minPQ:
21 3

22 dumpPQ("minPQ", minPQ); g

114

push

Stack

pop, top

figure 6.20

The stack model:
Input to a stack is by
push, output is by top,
and deletion is by pop.

115

Stack

figure 6.21 // Stack protocol

Protocol for the stack .
package weiss.nonstandard;

1
2
3
4
5 public interface Stack<AnyType>
6
7
8

{
void push(AnyType x); // insert
void pop(); // remove
9 AnyType top(); // find
10 AnyType topAndPop(); // find + remove
11
12 boolean isEmpty();
13 void makeEmpty();
14 }

May be implemented using ArrayList or LinkedList

116

Data
Structure

Stack
Queue
List
TreeSet
HashSet

Priority
Queue

Access

Most recent only, pop, O(1)

Least recent only, dequeue, O(1)

Any item

Any item by name or rank, O(log N)
Any item by name, O(1)

findMin, O(1),
deleteMin, O(log N)

Comments

Very very fast

Very very fast

O(N)

Average case easy to do; worst case requires effort

Average case

insert is O(1) on average, O(log N) worst case

figure 6.43

A summary of some data structures

117

