
BOOK.mkr Page 1 Wednesday, March 14, 2001 1:24 PM

BOOK.mkr Page 2 Wednesday, March 14, 2001 1:24 PM

� � � � � � �

HE primary focus of this book is problem solving techniques that allow the

construction of sophisticated, time-eff icient programs. Nearly all of the mate-

rial discussed is applicable in any programming language. Some would argue that

a broad pseudocode description of these techniques could suffice to demonstrate

concepts. However, we believe that working with live code is vitally important.

There is no shortage of programing languages available. At the time of this

writing, C++ is the language in widest use both academically and commercially.

However, in 1996, Java exploded onto the scene as a viable contender.

Java’s primary appeal is that it is a safe, portable language that supports mod-

ern object-oriented constructs. Many C++ constructs that are confusing to novices

are not found in Java. Compared to C++, many common programming errors are

caught by Java either at compile time or at run time. Java has an exception mech-

anism that requires the programmer to explicitly deal with errors and a relatively

simple model that distinguishes between primitive types (such as i nt) and user-

defined types. Java does not have an explicit pointer type.

Java is portable: for example, an integer has the same range of values in every

Java implementation, regardless of the underlying computer architecture. Java

also provides a graphical user interface (GUI) toolkit that allows input and output

BOOK.mkr Page 3 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � ��

to be performed using forms. Although we do not discuss this toolkit in the text, it

is relatively easy to use. Most important, it is also portable to every Java imple-

mentation. Java’s philosophy is “write once, run everywhere.”

In the first five chapters, we discuss the features of Java that are used

throughout the book. Unused features and technicali ties are not covered. Those

looking for deeper Java information will find it in the many Java books that are

available.

We begin by discussing the part of the language that mirrors a 1970’s pro-

gramming language such as Pascal or C. This includes primitive types, basic

operations, conditional and looping constructs, and the Java equivalent of func-

tions.

In this chapter, we will see:

• Some of the basics of Java, including simple lexical elements

• The Java primitive types, including some of the operations that primitive-

typed variables can perform

• How conditional statements and loop constructs are implemented in Java

• An introduction to the static method — the Java equivalent of the function

and procedure that is used in non-object-oriented languages

�

How are Java appli cation programs entered, compiled, and run? The answer, of

course, depends on the particular platform that hosts the Java compiler.

BOOK.mkr Page 4 Wednesday, March 14, 2001 1:24 PM

! " # $ � � % & $ � 	 � ' $
 $ � (
) * + * , - . / 0 1 2 3 4
. j ava 5 1 2 3 4 6 7 8

9 3 7 3 : 6 ; 3 4
. c l ass

5 1 2 3 4 - . 7 ; 6 1 7 1 7 9
< = > ? , @ A ? B) * + *
1 7 C . D 3 4 ; E 3 F 6 C 6
1 7 ; 3 : 0 : 3 ; 3 : G H E 1 - E 1 4
6 2 4 . D 7 . H 7 6 4 ; E 3

+ I J > K * L M * , N I O ? P B

Java source code resides in files whose names end with the .j ava suff ix.

The local compiler, javac, compiles the program and generates . c l ass files,

which contain bytecode. Java bytecodes represent the portable intermediate lan-

guage that is interpreted by running the Java interpreter, java. The interpreter is

also known as the virtual machine.

For Java programs, input can come from one of many places:

• The terminal, whose input is denoted as standard input

• Additional parameters in the invocation of the executable program —

command-line arguments

• A GUI component

• A file

Command-line arguments are particularly important for specifying program

options. They are discussed in Section 2.4.5. Java provides mechanisms to read

and write files. This is discussed briefly in Section 2.6.3 and in more detail in

Section 4.5.3 as an example of the decorator pattern. Many operating systems

provide an alternative known as file redirection, in which the operating system

arranges to take input from (or send output to) a file in a manner that is transpar-

ent to the running program. On Unix, for instance, the command

j ava P ro gr am < i nput f i l e > o ut put f i l e

automatically arranges things so that any terminal reads are redirected to come

from i nput f i l e and terminal writes are redirected to go to out put f i l e.

BOOK.mkr Page 5 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �Q
� � R � � � S � � T U � � V � � �

Let us begin by examining the simple Java program shown in Figure 1.1. This

program prints a short phrase to the terminal. Note the line numbers shown on the

left of the code are not part of the program. They are supplied for easy reference.

Place the program in the source file Fi r s t Pr ogr am. j ava and then com-

pile and run it. Note that the name of the source file must match the name of the

class (shown on line 4), including case conventions. If you are using the JDK, the

commands are:1

j avac Fi r st Pr ogr am.j ava
j ava F ir s t Pr ogr am

W X Y X W Z [\ \] ^ _ `

Java has three forms of comments. The first form, which is inherited from C,

begins with the token / * and ends with * / . Here is an example:

/ * T hi s i s a
 t wo l i ne c omment * /

Comments do not nest.

a @ M M ? O > b / 6 D 3
- . 8 3 3 6 4 1 3 : 5 . : E c d
/ 6 7 4 ; . : 3 6 8 B F 6 C 6
E 6 4 ; E : 3 3 5 . : / 4 . 5
- . / / 3 7 ; 4 B

The second form, which is inherited from C++, begins with the token / / .

There is no ending token. Rather, the comment extends up to the end of the line.

This is shown on lines 1 and 2 in Figure 1.1.

1. If you are using Sun’s JDK, javac and java are used directly. Otherwise, in a typical interactive development

environment (IDE), such as JBuilder, these commands are executed behind the scenes on your behalf.

BOOK.mkr Page 6 Wednesday, March 14, 2001 1:24 PM

! " e 	 � f � � � ' g � �
 h

The third form begins with / * * instead of / * . This form can be used to pro-

vide information to the javadoc utili ty, which will generate documentation from

comments. This form is discussed in Section 3.3.

Comments exist to make code easier for humans to read. These humans

include other programmers who may have to modify or use your code, as well as

yourself. A well-commented program is a sign of a good programmer.

i
/ / F i r s t p r ogr amj
/ / M W, 9 / 1/ 01kl
publ i c c l ass F i r s t Pr ogr amm
{n
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)o
 {p
 Syst em. out . pr i nt l n(" I s t her e a nybody o ut t her e?") ;q
 }i r
}

s t u v w x y z y { f 	
 | % } 	 � f � | � ' g � �

W X Y X Y
main

~ E 3 7 ; E 3 0 : . 9 : 6 /
1 4 : c 7 � ; E 3 4 0 3 - 1 6 2
5 c 7 - ; 1 . 7

mai n
1 4

1 7 C . D 3 8 B

A Java program consists of a col lection of interacting classes, which contain

methods. The Java equivalent of the function or procedure is the static method,

which is described in Section 1.6. When any program is run, the special static

method mai n is invoked. Line 6 of Figure 1.1 shows that the static method mai n

is invoked, possibly with command-line arguments. The parameter types of mai n

and the voi d return type shown are required.

BOOK.mkr Page 7 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � ��
W X Y X � �] � \ � ^ � � � � _ � � _

pr i nt l n
1 4 c 4 3 8 ; .

0 3 : 5 . : / . c ; 0 c ; B
The program in Figure 1.1 consists of a single statement, shown on li ne 8.

println is the primary output mechanism in Java. Here, a constant string is

placed on the standard output stream Sys t em.out by applying a pr i ntln

method. Input and output is discussed in more detail in Section 2.6. For now we

mention only that the same syntax is used to perform output for any enti ty,

whether that entity is an integer, floating point, string, or some other type.

� � � U � � � � � � � � � � � T

Java defines eight primitive types. It also allows the programmer great flexibility

to define new types of objects, called classes. However, primitive types and user-

defined types have important differences in Java. In this section, we examine the

primitive types and the basic operations that can be performed on them.

BOOK.mkr Page 8 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � ! � | f �
W X � X W � �] � � � \ � _ � �] � � �] `

F 6 C 6 � 4 0 : 1 / 1 ; 1 C 3
; � 0 3 4 6 : 3 1 7 ; 3 9 3 : �
5 2 . 6 ; 1 7 9 d 0 . 1 7 ; �

� . . 2 3 6 7 � 6 7 8
- E 6 : 6 - ; 3 : B

� E 3 � 7 1 - . 8 3 4 ; 6 7 d
8 6 : 8 - . 7 ; 6 1 7 4 . C 3 :
� � � � � � 8 1 4 ; 1 7 - ;
- . 8 3 8 - E 6 : 6 - ; 3 : 4
- . C 3 : 1 7 9 ; E 3 0 : 1 7 - 1 d
0 6 2 H : 1 ; ; 3 7 2 6 7 d
9 c 6 9 3 4 B

Java has eight primitive types, shown in Figure 1.2. The most common is the inte-

ger, which is specified by the keyword int . Unli ke with many other languages,

the range of integers is not machine-dependent. Rather, it is the same in any Java

implementation, regardless of the underlying computer architecture. Java also

allows entities of type byt e, shor t , and l ong. Floating-point numbers are rep-

resented by the types fl oat and doubl e. doubl e has more significant digits,

so use of it is recommended over use of f l oat . The char type is used to repre-

sent single characters. A char occupies 16 bits to represent the Unicode stan-

dard. The Unicode standard contains over 30,000 distinct coded characters

covering the principal written languages. The low end of Unicode is identical to

ASCII . The final primitive type is bool ean, which is either t r ue or f al se.

BOOK.mkr Page 9 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� �

W X � X Y Z [^ ` _ � ^ _ `
� 7 ; 3 9 3 : - . 7 4 ; 6 7 ; 4

- 6 7 � 3 : 3 0 : 3 d
4 3 7 ; 3 8 1 7 3 1 ; E 3 :

A ? , I M * L � @ , > * L � . :
N ? � * A ? , I M * L 7 . ; 6 d
; 1 . 7 B

Integer constants can be represented in either decimal, octal, or hexadecimal

notation. Octal notation is indicated by a leading 0; hexadecimal is indicated by a

leading 0x or 0X. The following are all equivalent ways of representing the inte-

ger 37: 37 , 045 , 0x25 . Octal integers are not used in this text. However, we

must be aware of them so that we use leading 0s only when we intend to. Hexa-

decimals are used in only one place (Section 12.1), and we will revisit them at

that point.

Primitive Type What It Stores Range

byt e � ¡ ¢ £ ¢ ¤ £ ¥ ¦ ¥ § ¨ © ª � £ « © ª ¬
shor t © ¡ ¢ £ ¢ ¤ £ ¥ ¦ ¥ § ¨ ® ª ¯ ¬ � £ « ® ª ¯ ¬ ¬
i nt ® ª ¡ ¢ £ ¢ ¤ £ ¥ ¦ ¥ § ¨ ª ¯ © ° ¬ ¯ ° � ® ¯ ° � £ « ª ¯ © ° ¬ ¯ ° � ® ¯ ° ¬
l ong ° ¡ ¢ £ ¢ ¤ £ ¥ ¦ ¥ § ¨ ª ± ² £ « ª ± ² ¨ ©
f l oat ® ª ¡ ¢ £ ³ ´ « µ £ ¢ ¤ ¦ ¶ « ¢ ¤ £ · ¢ ¦ ¤ ¢ ³ ¢ ¸ µ ¤ £ ¹ ¢ ¦ ¢ £ · ¯ º © » ¼ ½ ± ¯ © » ² ¾ ¿
doubl e ° ¡ ¢ £ ³ ´ « µ £ ¢ ¤ ¦ ¶ « ¢ ¤ £ © À · ¢ ¦ ¤ ¢ ³ ¢ ¸ µ ¤ £ ¹ ¢ ¦ ¢ £ · ¯ º © » ¼ ² Á ½ ¯ © » ² Â ¾ ¿
char Ã ¤ ¢ ¸ « ¹ ¥¸ Ä µ § µ ¸ £ ¥ §
bool ean Å « « ´ ¥ µ ¤ Æ µ § ¢ µ ¡ ´ ¥ f als e µ ¤ ¹ t r ue

s t u v w x y z Ç ! " 	 g " � | � 	
 	 � 	 � � � | f 	 $ � � � �

BOOK.mkr Page 10 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � ! � | f � �
È b > J I O É , @ O b > * O >
- . 7 4 1 4 ; 4 . 5 6 4 3 d
Ê c 3 7 - 3 . 5 - E 6 : 6 - d
; 3 : 4 3 7 - 2 . 4 3 8 � �
8 . c � 2 3 Ê c . ; 3 4 B

Ë b , * Ì ? b ? Í K ? O , ? b
6 : 3 c 4 3 8 ; . : 3 0 : 3 d
4 3 7 ; - 3 : ; 6 1 7 - E 6 : d
6 - ; 3 : - . 7 4 ; 6 7 ; 4 B

A character constant is enclosed with a pair of single quotation marks, as in

' a' . Internally, this character sequence is interpreted as a small number. The out-

put routines later interpret that small number as the corresponding character. A

string constant consists of a sequence of characters enclosed within double quota-

tion marks, as in " Hel l o" . There are some special sequences, known as escape

sequences, that are used (for instance, how does one represent a single quotation

mark?). In this text we use ' \ n' , ' \ \ ' , ' \ ' ' , and ' \ " ' , which mean, respec-

tively, the newline character, backslash character, single quotation mark, and dou-

ble quotation mark.

W X � X � Î] Ï � � � � _ � [^ � ^ Ð Ñ ^ � _ � � � � Ò � _ � [^ [Ó � � � \ � _ � �] � � �] `
È C 6 : 1 6 � 2 3 1 4 7 6 / 3 8
� � c 4 1 7 9 6 7 I A ? O > I Ô

Õ I ? J Ö

Any variable, including those of a primitive type, is declared by providing its

name, its type, and optionally, its initial value. The name must be an identifier. An

identifier may consist of any combination of letters, digits, and the underscore

character; it may not start with a digit, however. Reserved words, such as i nt , are

not allowed. Although it is legal to do so, you should not reuse identifier names

that are already visibly used (for example, do not use mai n as the name of an

entity).

F 6 C 6 1 4 - 6 4 3 d
4 3 7 4 1 ; 1 C 3 B

Java is case-sensitive, meaning that Age and age are different identifiers.

This text uses the following convention for naming variables: All variables start

with a lowercase letter and new words start with an uppercase letter. An example

is the identifier mi ni mumWage.

Here are some examples of declarations:

BOOK.mkr Page 11 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� ×

i nt n um3; / / D ef aul t in i t i al i zat io n
doubl e mi ni mumWage = 4 . 50; / / S t andar d i ni t i al i zati on
i nt x = 0, n um1 = 0; / / T wo e nt i ti es a r e d ecl ar ed
i nt n um2 = n um1;

A variable should be declared near its first use. As wil l be shown, the place-

ment of a declaration determines its scope and meaning.

W X � X Ø �] � \ � ^ � � Ñ ^ � � _ � ^ Ð � � _ � � _

Basic formatted terminal I/O is accomplished by r eadLi ne and pr in t l n. The

standard input stream is System.in , and the standard output stream is

Syst em. out .

The basic mechanism for formatted I/O uses the St r i ng type, which is dis-

cussed in Section 2.3. For output, + combines two St r i ngs. If the second argu-

ment is not a St r i ng, a temporary St r i ng is created for it if it is a primitive

type. These conversions to St r i ng can also be defined for objects (Section

3.4.3). For input, we must associate a Buf f er edReader object with

Syst em. i n. Then a St r i ng is read and can be parsed. A more detailed discus-

sion of I/O, including a treatment of formatted files, is in Section 2.6.

� � Ù Ú � T � Û Ü � � � � � � T

This section describes some of the operators available in Java. These operators are

used to form expressions. A constant or entity by itself is an expression, as are

combinations of constants and variables with operators. An expression followed

BOOK.mkr Page 12 Wednesday, March 14, 2001 1:24 PM

Ý � f 	 Þ ß | � � � ' � f � à

by a semicolon is a simple statement. In Section 1.5, we examine other types of

statements, which introduce additional operators.

W X Ø X W á ` ` � â ^ \] ^ _ � �] � � _ [� `

A simple Java program that il lustrates a few operators is shown in Figure 1.3. The

basic assignment operator is the equals sign. For example, on line 16 the variable

a is assigned the value of the variable c (which at that point is 6). Subsequent

changes to the value of c do not affect a. Assignment operators can be chained, as

in z=y=x=0.

F 6 C 6 0 : . C 1 8 3 4 6
E . 4 ; . 5 * b b I É O M ? O >

@ Ì ? J * > @ J b � 1 7 - 2 c 8 d
1 7 9 =

�
+=

�
- =

�
* =

�
6 7 8

/ =
B

Another assignment operator is the +=, whose use is illustrated on line 18 of

the figure. The += operator adds the value on the right-hand side (of the += oper-

ator) to the variable on the left-hand side. Thus, in the figure, c is incremented

from its value of 6 before line 18, to a value of 14.

Java provides various other assignment operators, such as - =, * =, and / =,

which alter the variable on the left-hand side of the operator via subtraction, mul-

tiplication, and division, respectively.

BOOK.mkr Page 13 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� �
i

publ i c c l ass O per at or Testj
{k
 / / P r ogr am t o i l l us t r at e b asi c o per at or s

l
 / / T he o ut put i s a s f ol l ows:m
 / / 1 2 8 6n
 / / 6 8 6o
 / / 6 8 1 4p
 / / 2 2 8 1 4q
 / / 2 4 1 0 3 3i ri i
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)i j
 {i k
 i nt a = 1 2, b = 8 , c = 6 ;i l

i m
 Syst em. out . pr i nt l n(a + " " + b + " " + c) ;i n
 a = c ;i o
 Syst em. out . pr i nt l n(a + " " + b + " " + c) ;i p
 c + = b ;i q
 Syst em. out . pr i nt l n(a + " " + b + " " + c) ;j r
 a = b + c ;j i
 Syst em. out . pr i nt l n(a + " " + b + " " + c) ;j j
 a++;j k
 ++b;j l
 c = a ++ + + +b;j m
 Syst em. out . pr i nt l n(a + " " + b + " " + c) ;j n
 }j o
}

s t u v w x y z ã � � ' g � �
 � " � � 	 % % ä f � � � � f ' | � � � ' � f

W X Ø X Y å � ^ � � � á � � _ � \] _ � Ï � �] � � _ [� `
F 6 C 6 0 : . C 1 8 3 4 4 3 C d
3 : 6 2 < I O * J = * J I > N Ô
M ? > I , @ Ì ? J * > @ J b �
1 7 - 2 c 8 1 7 9 +

�
-

�
*

�
/

� 6 7 8
%

B

Line 20 in Figure 1.3 ill ustrates one of the binary arithmetic operators that are

typical of all programming languages: the addition operator (+). The + operator

causes the values of b and c to be added together; b and c remain unchanged.

The resulting value is assigned to a. Other arithmetic operators typically used in

Java are - , * , / , and %, which are used, respectively, for subtraction, multiplica-

tion, division, and remainder. Integer division returns only the integral part and

discards any remainder.

BOOK.mkr Page 14 Wednesday, March 14, 2001 1:24 PM

Ý � f 	 Þ ß | � � � ' � f � (

As is typical, addition and subtraction have the same precedence, and this

precedence is lower than the precedence of the group consisting of the multiplica-

tion, division, and mod operators; thus 1+2* 3 evaluates to 7. All of these opera-

tors associate from left to right (so 3- 2- 2 evaluates to –1). All operators have

precedence and associativity. The complete table of operators is in Appendix A.

W X Ø X � æ ^ � � � � �] � � _ [� `
ç 3 C 3 : 6 2 K O * J = @ Ì ? J Ô

* > @ J b 6 : 3 8 3 5 1 7 3 8 �
1 7 - 2 c 8 1 7 9 -

B

In addition to binary arithmetic operators, which require two operands, Java pro-

vides unary operators, which require only one operand. The most famil iar of

these is the unary minus, which evaluates to the negative of its operand. Thus - x

returns the negative of x .

è K > @ I O , J ? M ? O > 6 7 8
* K > @ A ? , J ? M ? O >

6 8 8 é 6 7 8 4 c � ; : 6 - ;
é � : 3 4 0 3 - ; 1 C 3 2 � B � E 3

. 0 3 : 6 ; . : 4 5 . : 8 . 1 7 9
; E 1 4 6 : 3

++
6 7 8

- -
B

� E 3 : 3 6 : 3 ; H . 5 . : / 4
. 5 1 7 - : 3 / 3 7 ; 1 7 9
6 7 8 8 3 - : 3 / 3 7 ; 1 7 9 ê
0 : 3 5 1 ë 6 7 8 0 . 4 ; 5 1 ë B

Java also provides the autoincrement operator to add 1 to a variable —

denoted by ++ — and the autodecrement operator to subtract 1 from a variable —

denoted by - - . The most benign use of this feature is shown on lines 22 and 23 of

Figure 1.3. In both lines, the autoincrement operator ++ adds 1 to the value of the

variable. In Java, however, an operator applied to an expression yields an expres-

sion that has a value. Although it is guaranteed that the variable will be incre-

mented before the execution of the next statement, the question arises: What is the

value of the autoincrement expression if it is used in a larger expression?

In this case, the placement of the ++ is crucial. The semantics of ++x is that

the value of the expression is the new value of x . This is called the prefix incre-

ment. In contrast, x++ means the value of the expression is the original value of

x . This is called the postfix increment. This feature is shown in line 24 of Figure

BOOK.mkr Page 15 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� Q

1.3. a and b are both incremented by 1, and c is obtained by adding the original

value of a to the incremented value of b.

� E 3 > = Ì ? , @ O + ? J Ô
b I @ O @ Ì ? J * > @ J 1 4
c 4 3 8 ; . 9 3 7 3 : 6 ; 3 6
; 3 / 0 . : 6 : � 3 7 ; 1 ; � . 5
6 7 3 H ; � 0 3 B

W X Ø X Ø � � �] Z [^ �] � ` � [^ `

The type conversion operator is used to generate a temporary entity of a new type.

Consider, for instance,

doubl e quot i ent ;
i nt x = 6;
i nt y = 10;
quot i ent = x / y ; / / P r obabl y w r ong!

The first operation is the division, and since x and y are both integers, the result is

integer division, and we obtain 0. Integer 0 is then implicitly converted to a

doub l e so that i t can be assigned to quot ie nt . But we had intended

quotient to be assigned 0.6. The solution is to generate a temporary variable

for either x or y so that the division is performed using the rules for doubl e.

This would be done as follows:

quot i ent = (d ouble) x / y ;

Note that neither x nor y are changed. An unnamed temporary is created, and its

value is used for the division. The type conversion operator has higher precedence

than division does, so x is type-converted and then the division is performed

(rather than the conversion coming after the division of two i nt s being per-

formed).

BOOK.mkr Page 16 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f � h
� � ï ð � � ñ � � � � � � ò � � � � � T

This section examines statements that affect the flow of control: conditional state-

ments and loops. As a consequence, new operators are introduced.

W X ó X W ô] � � _ � [^ � � � ^ Ð õ ö � � � � _ � � �] � � _ [� `

The basic test that we can perform on primitive types is the comparison. This is

done using the equali ty and inequality operators, as well as the relational opera-

tors (less than, greater than, and so on).

� 7 F 6 C 6 � ; E 3
? Í K * L I > = @ Ì ? J * > @ J b

6 : 3
==

6 7 8
!=

B

In Java, the equality operators are == and ! =. For example,

l ef t Expr ==r i ght Expr

evaluates to t r ue if l ef t Expr and r i ght Expr are equal; otherwise, it evalu-

ates to f al se. Similarly,

l ef t Expr ! =r i ght Expr

evaluates to true if lef t Expr and righ t Expr are not equal and to fal se

otherwise.

� E 3 J ? L * > I @ O * L @ Ì ? J Ô
* > @ J b 6 : 3

<
�
<=

�
>

�
6 7 8

>=
B

The relational operators are <, <=, >, and >=. These have natural meanings

for the built-in types. The relational operators have higher precedence than the

equality operators. Both have lower precedence than the arithmetic operators but

higher precedence than the assignment operators, so the use of parentheses is fre-

quently unnecessary. All of these operators associate from left to right, but this

fact is useless: In the expression a<b<6, for example, the first < generates a

BOOK.mkr Page 17 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� �

bool ean and the second is illegal because < is not defined for bool eans. The

next section describes the correct way to perform this test.

W X ó X Y ÷ [â � Ï � � � �] � � _ [� `
F 6 C 6 0 : . C 1 8 3 4 L @ É I Ô

, * L @ Ì ? J * > @ J b ; E 6 ;
6 : 3 c 4 3 8 ; . 4 1 / c 2 6 ; 3
; E 3 � . . 2 3 6 7 6 2 9 3 d
� : 6 - . 7 - 3 0 ; 4 . 5
È ø ù � ú û � 6 7 8 ø ú � B
� E 3 - . : : 3 4 0 . 7 8 1 7 9
. 0 3 : 6 ; . : 4 6 : 3

&&
�

| |
� 6 7 8

!
B

Java provides logical operators that are used to simulate the Boolean algebra con-

cepts of AND, OR, and NOT. These are sometimes known as conjunction, dis-

junction, and negation, respectively, whose corresponding operators are &&, || ,

and ! . The test in the previous section is properly implemented as a<b && b <6.

The precedence of conjunction and disjunction is sufficiently low that parentheses

are not needed. && has higher precedence than | | , while ! is grouped with other

unary operators. Inputs and outputs for the logical operators are boo l ean . Fig-

ure 1.4 shows the result of applying the logical operators for all possible inputs.

ü N @ J > Ô , I J , K I > ? + * L K * Ô
> I @ O / 3 6 7 4 ; E 6 ; 1 5

; E 3 : 3 4 c 2 ; . 5 6 2 . 9 1 d
- 6 2 . 0 3 : 6 ; . : - 6 7
� 3 8 3 ; 3 : / 1 7 3 8
� � 3 ë 6 / 1 7 1 7 9 ; E 3
5 1 : 4 ; 3 ë 0 : 3 4 4 1 . 7 � ; E 3 7
; E 3 4 3 - . 7 8
3 ë 0 : 3 4 4 1 . 7 1 4 7 . ;
3 C 6 2 c 6 ; 3 8 B

One important rule is that && and | | are short-circuit evaluation operations.

Short-circuit evaluation means that if the result can be determined by examining

the first expression, then the second expression is not evaluated. For instance, in

x ! = 0 && 1 / x ! = 3

if x is 0, then the first half is fa l se . Automatically the result of the AND must

be f al se, so the second half is not evaluated. This is a good thing because divi-

sion-by-zero would give erroneous behavior. Short-circuit evaluation allows us to

not have to worry about dividing by zero.2

BOOK.mkr Page 18 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f � �

W X ó X � � �]
if ý _ � _] \] ^ _

� E 3
i f

4 ; 6 ; 3 / 3 7 ; 1 4
; E 3 5 c 7 8 6 / 3 7 ; 6 2
8 3 - 1 4 1 . 7 / 6 D 3 : B

The i f statement is the fundamental decision maker. Its basic form is

if(expression)
 statement
next statement

If expression evaluates to t r ue, then statement is executed; otherwise, it

is not. When the i f statement is completed (without an unhandled error), control

passes to the next statement.

Optionally, we can use an i f - els e statement, as follows:

if(expression)
 statement1
else
 statement2
next statement

2. There are (extremely) rare cases in which it is preferable to not short-circuit. In such cases, the & and | opera-

tors with bool ean arguments guarantee that both arguments are evaluated, even if the result of the operation

can be determined from the first argument.

x y x && y X || y !x

f al se f al se f al se f al se t r ue

f al se t r ue f al se t r ue t r ue

t r ue f al se f al se t r ue f al se

t r ue t r ue t r ue t r ue f al se

s t u v w x y z þ ÿ f ä % � ' } % ' g 	 Þ � % ' | � � � ' � f

BOOK.mkr Page 19 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �× �

In this case, if expression evaluates to t r ue, then statement1 is exe-

cuted; otherwise, statement2 is executed. In either case, control then passes to

the next statement, as in

Syst em.o ut . pr i nt (" 1/ x i s ");
i f (x != 0)
 Syst em. out . pr in t (1 / x);
el se
 Syst em. out . pr in t (" Undef in ed") ;
Syst em.o ut . pr i nt l n() ;

Remember that at each of the i f and el se clauses contain at most one state-

ment, no matter how you indent. Here are two mistakes:

i f (x == 0) ; // ; i s n ul l s t at ement (and c ount s)
 Syst em. out . pr in t l n(" x i s zer o ") ;
el se
 Syst em. out . pr in t (" x i s ") ;
 Syst em. out . pr in t l n(x) ; / / T wo s t at ement s

È 4 3 / 1 - . 2 . 7 � �
1 ; 4 3 2 5 1 4 ; E 3 O K L L
b > * > ? M ? O > B

È < L @ , � 1 4 6 4 3 d
Ê c 3 7 - 3 . 5 4 ; 6 ; 3 d
/ 3 7 ; 4 H 1 ; E 1 7
� : 6 - 3 4 B

The first mistake is the inclusion of the ; at the end of the first i f . This semico-

lon by itself counts as the null statement; consequently, this fragment won’t com-

pile (the el se is no longer associated with an i f). Once that mistake is fixed, we

have a logic error: that is, the last line is not part of the els e, even though the

indentation suggests it is. To fix this problem, we have to use a block, in which we

enclose a sequence of statements by a pair of braces:

i f (x == 0)
 Syst em. out . pr in t l n(" x i s zer o") ;
el se
{
 Syst em. out . pr in t (" x i s ") ;
 Syst em. out . pr in t l n(x) ;
}

BOOK.mkr Page 20 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f × �

The i f statement can itself be the target of an i f or el se clause, as can

other control statements discussed later in this section. In the case of nested i f -

el se statements, an el se matches the innermost dangling i f . It may be neces-

sary to add braces if that is not the intended meaning.

W X ó X Ø � �]
while ý _ � _] \] ^ _

� E 3
whi l e

b > * > ? Ô
M ? O > 1 4 . 7 3 . 5 ; E : 3 3
� 6 4 1 - 5 . : / 4
. 5 2 . . 0 1 7 9 B

Java provides three basic forms of looping: the whi l e statement, f or statement,

and do statement. The syntax for the while statement is

while(expression)
 statement
next statement

Note that like the if statement, there is no semicolon in the syntax. If one is

present, it will be taken as the null statement.

While expression is t r ue, statement is executed; then expression

is reevaluated. If expression is initially f al se, then statement will never

be executed. Generally, statement does something that can potentially alter the

value of expression; otherwise, the loop could be infinite. When the whi l e

loop terminates (normally), control resumes at the next statement.

BOOK.mkr Page 21 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �× ×
W X ó X ó � �]

for ý _ � _] \] ^ _
� E 3

fo r
b > * > ? M ? O >

1 4 6 2 . . 0 1 7 9 - . 7 d
4 ; : c - ; ; E 6 ; 1 4 c 4 3 8
0 : 1 / 6 : 1 2 � 5 . : 4 1 / 0 2 3
1 ; 3 : 6 ; 1 . 7 B

The whil e statement is suff icient to express all repetition. Even so, Java pro-

vides two other forms of looping: for statement and do statement. The for

statement is used primarily for iteration. Its syntax is

for(initialization; test; update)
 statement
next statement

Here, initialization, test, and update are all expressions, and all three

are optional. If test is not provided, it defaults to t r ue. There is no semicolon

after the closing parenthesis.

The f or statement is executed by first performing the initialization.

Then, while test is t r ue, the following two actions occur: statement is per-

formed, and then update is performed. If initialization and update are

omitted, then the f or statement behaves exactly like a whi l e statement. The

advantage of a f or statement is clarity in that for variables that count (or iterate),

the f or statement makes it much easier to see what the range of the counter is.

The following fragment prints the first 100 positive integers:

f or (i nt i = 1 ; i <= 1 00; i ++)
 Syst em. out . pr in t l n(i) ;

This fragment illustrates the common technique of declaring a counter in the ini-

tialization portion of the loop. This counter’s scope extends only inside the loop.

Both initialization and update may use a comma to allow multiple

expressions. The following fragment il lustrates this idiom:

BOOK.mkr Page 22 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f × à

f or (i = 0 , s um = 0; i < = n ; i ++, s um += n)
 Syst em. out . pr in t l n(i + "\ t " + s um);

Loops nest in the same way as i f statements. For instance, we can find all

pairs of small numbers whose sum equals their product (such as 2 and 2, whose

sum and product are both 4):

f or (i nt i = 1 ; i <= 1 0; i ++)
 f or(i nt j = 1; j < = 1 0; j ++)
 i f (i + j == i * j)
 Syst em.out . pr i nt ln (i + " , " + j) ;

As we wil l see, however, when we nest loops we can easily create programs

whose running times grow quickly.

W X ó X � � �]
do ý _ � _] \] ^ _

� E 3
do

b > * > ? M ? O > 1 4
6 2 . . 0 1 7 9 - . 7 4 ; : c - ;
; E 6 ; 9 c 6 : 6 7 ; 3 3 4 ; E 3
2 . . 0 1 4 3 ë 3 - c ; 3 8 6 ;
2 3 6 4 ; . 7 - 3 B

The whi l e statement repeatedly performs a test. If the test is t r ue, it then exe-

cutes an embedded statement. However, if the initial test is f al se, the embedded

statement is never executed. In some cases, however, we would like to guarantee

that the embedded statement is executed at least once. This is done using the do

statement. The do statement is identical to the whi le statement, except that the

test is performed after the embedded statement. The syntax is

do
 statement
while(expression);
next statement

Notice that the do statement includes a semicolon. A typical use of the do state-

ment is shown in the following pseudocode fragment:

BOOK.mkr Page 23 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �× �

do
{
 Pr ompt u ser ;
 Read v al ue;
} w hi l e(v al ue i s no g ood) ;

The do statement is by far the least frequently used of the three looping con-

structs. However, when we have to do something at least once, and for some rea-

son a f or loop is inappropriate, then the do statement is the method of choice.

W X ó X �
break

� ^ Ð
continue

The f or and whi l e statements provide for termination before the start of a

repeated statement. The do statement al lows termination after execution of a

repeated statement. Occasionall y, we would li ke to terminate execution in the

middle of a repeated (compound) statement. The break statement, which is the

keyword br eak followed by a semicolon, can be used to achieve this. Typically,

an i f statement would precede the br eak , as in

whi l e(. . .)
{
 . . .
 i f (somet hi ng)
 break;
 . . .
}

BOOK.mkr Page 24 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f × (
� E 3

br eak
b > * > ? Ô

M ? O > 3 ë 1 ; 4 ; E 3
1 7 7 3 : / . 4 ; 2 . . 0 . :
swi t ch

4 ; 6 ; 3 / 3 7 ; B
� E 3 L * < ? L ? A
br eak

b > * > ? M ? O >
3 ë 1 ; 4 5 : . / 6 7 3 4 ; 3 8
2 . . 0 B

The br eak statement exits the innermost loop only (it is also used in con-

junction with the swi t ch statement, described in the next section). If there are

several loops that need exiting, the br eak wil l not work, and most likely you

have poorly designed code. Even so, Java provides a labeled break statement. In

the labeled br eak statement, a loop is labeled, and then a br eak statement can

be applied to the loop, regardless of how many other loops are nested. Here is an

example:

 out er:
 whil e(. . .)
 {
 whi l e(. . .)
 i f (d is ast er)
 break out er ; / / G o t o a ft er o ut er
 }
 / / Cont r ol p ass es h er e a ft er o ut er lo op i s e xi t ed

� E 3
cont in ue

b > * > ? M ? O > 9 . 3 4 ; .
; E 3 7 3 ë ; 1 ; 3 : 6 ; 1 . 7 . 5
; E 3 1 7 7 3 : / . 4 ; 2 . . 0 B

Occasionally, we want to give up on the current iteration of a loop and go on

to the next iteration. This can be handled by using a continue statement. Like

the br eak statement, the cont i nue statement includes a semicolon and applies

to the innermost loop only. The following fragment prints the first 100 integers,

with the exception of those divisible by 10:

f or (i nt i = 1 ; i <= 1 00; i ++)
{
 i f (i % 1 0 = = 0)
 continue;
 Syst em. out . pr in t l n(i) ;
}

BOOK.mkr Page 25 Wednesday, March 14, 2001 1:24 PM

Of course, in this example, there are alternatives to the cont i nue statement.

However, continue is commonly used to avoid compli cated if-else pat-

terns inside loops.

W X ó X � � �]
switch ý _ � _] \] ^ _

� E 3
swi t ch

b > * > ? Ô
M ? O > 1 4 c 4 3 8 ; . 4 3 d
2 3 - ; 6 / . 7 9 4 3 C 3 : 6 2
4 / 6 2 2 1 7 ; 3 9 3 : G . :
- E 6 : 6 - ; 3 : P C 6 2 c 3 4 B

The switch statement is used to select among several small integer (or charac-

ter) values. I t consists of an expression and a block. The block contains a

sequence of statements and a collection of labels, which represent possible values

of the expression. All the labels must be distinct compile-time constants. An

optional default label, if present, matches any unrepresented label. If there is no

applicable case for the swi t ch expression, the swi t ch statement is over; other-

wise, control passes to the appropriate label and all statements from that point on

are executed. A break statement may be used to force early termination of the

swi t ch and is almost always used to separate logically distinct cases. An exam-

ple of the typical structure is shown in Figure 1.5.

W X ó X � � �] Z [^ Ð � _ � [^ � � � �] � � _ [�
� E 3 , @ O A I > I @ O * L

@ Ì ? J * > @ J
?:

1 4 c 4 3 8
6 4 6 4 E . : ; E 6 7 8 5 . :
4 1 / 0 2 3

i f - el se

4 ; 6 ; 3 / 3 7 ; 4 B

The conditional operator ?: is used as a shorthand for simple i f-else state-

ments. The general form is

testExpr ? yesExpr : noExpr

testExpr is evaluated first, followed by either yesExpr or noExpr, produc-

ing the result of the entire expression. yesExpr is evaluated if testExpr is

t r ue; otherwise, noExpr is evaluated. The precedence of the conditional opera-

BOOK.mkr Page 26 Wednesday, March 14, 2001 1:24 PM

ì ' $ í 	 � 	 ' $ � % î � � �
 $ � f × h

tor is just above that of the assignment operators. This allows us to avoid using

parentheses when assigning the result of the conditional operator to a variable. As

an example, the minimum of x and y is assigned to mi nVal as follows:

mi nVal = x < = y ? x : y ;

i
switch(someChar act er)j
{ k
 case ' (' :

l
 case ' [' :m
 case ' { ' :n
 / / C ode t o p r ocess o peni ng s ymbol so
 break;pq
 case ') ' :i r
 case '] ' :i i
 case ' } ' :i j
 / / C ode t o p r ocess c l os i ng s ymbol si k
 break;i l

i m
 case ' \ n' :i n
 / / C ode t o h andl e n ewl i ne c har act eri o
 break;i pi q
 default: j r
 / / C ode t o h andl e o t her c asesj i
 break;j j
}

s t u v w x y z � � � � ' ä � ' } �
switch

f � � �
 $ �

BOOK.mkr Page 27 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �× �
� � � � � � � ñ T

È M ? > N @ A 1 4 4 1 / 1 2 6 :
; . 6 5 c 7 - ; 1 . 7 1 7
. ; E 3 : 2 6 7 9 c 6 9 3 4 B
� E 3 M ? > N @ A N ? * A ? J
- . 7 4 1 4 ; 4 . 5 ; E 3
7 6 / 3 � : 3 ; c : 7 ; � 0 3 �
6 7 8 0 6 : 6 / 3 ; 3 : 2 1 4 ; B
� E 3 M ? > N @ A A ? , L * Ô
J * > I @ O 1 7 - 2 c 8 3 4 ; E 3
� . 8 � B
È

publ i c

st at i c
/ 3 ; E . 8

1 4 ; E 3 3 Ê c 1 C 6 2 3 7 ; . 5
6 	 d 4 ; � 2 3 9 2 . � 6 2
5 c 7 - ; 1 . 7 B

� 7 , * L L Ô < = Ô + * L K ? � ; E 3
6 - ; c 6 2 6 : 9 c / 3 7 ; 4
6 : 3 - . 0 1 3 8 1 7 ; . ; E 3
5 . : / 6 2 0 6 : 6 / 3 ; 3 : 4 B

 6 : 1 6 � 2 3 4 6 : 3
0 6 4 4 3 8 c 4 1 7 9 - 6 2 2 d
� � d C 6 2 c 3 B

What is known as a function or procedure in other languages is called a method in

Java. A more complete treatment of methods is provided in Chapter 3. This sec-

tion presents some of the basics for writing C-li ke functions, such as main , so

that we can write some simple programs.

A method header consists of a name, a (possibly empty) list of parameters,

and a return type. The actual code to implement the method, sometimes called the

method body, is formally a block. A method declaration consists of a header plus

the body. An example of a method declaration and a mai n routine that uses it is

shown in Figure 1.6.

By prefacing each method with the words publ i c st at i c , we can mimic

the C-style global function. Although declaring a method as st at i c is a useful

technique in some instances, it should not be overused, since in general we do not

want to use Java to write “C-style” code We will discuss the more typical use of

st at i c in Section 3.5.

The method name is an identifier. The parameter list consists of zero or more

formal parameters, each with a specified type. When a method is called, the

actual arguments are sent into the formal parameters using normal assignment.

This means primitive types are passed using call-by-value parameter passing

only. The actual arguments cannot be altered by the function. As with most mod-

ern programming languages, method declarations may be arranged in any order.

BOOK.mkr Page 28 Wednesday, March 14, 2001 1:24 PM

� � " ' í f × �
i

publ i c c l ass M i nTestj
{k
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

l
 {m
 i nt a = 3 ;n
 i nt b = 7 ;op
 Syst em. out . pr i nt l n(m i n(a , b)) ;q
 }i ri i
 / / M et hod d ec l ar at i oni j
 publ i c s t at i c i nt m i n(i nt x , i nt y)i k
 {i l
 r et ur n x < y ? x : y ;i m
 }i n
}

s t u v w x y z � % % ä f � � � � 	 ' $ ' }
 � " ' í í Þ % � � � � 	 ' $ � $ í Þ � % % f

� E 3
r et urn

b > * > ? Ô
M ? O > 1 4 c 4 3 8 ; . : 3 d
; c : 7 6 C 6 2 c 3 ; . ; E 3
- 6 2 2 3 : B

The return statement is used to return a value to the caller. If the return

type is void , then no value is returned, and r et ur n; should be used.

W X � X W � �] � � [� Ð � ^ â [Ó �] _ � [Ð � � \] `

Suppose we need to write a routine that returns the maximum of three in t s. A

reasonable method header would be

i nt m ax(i nt a , i nt b , i nt c)

In some languages, this may be unacceptable i f max is already declared. For

instance, we may also have

i nt m ax(i nt a , i nt b)

BOOK.mkr Page 29 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �à �
� + ? J L @ * A I O É . 5 6

/ 3 ; E . 8 7 6 / 3
/ 3 6 7 4 ; E 6 ; 4 3 C 3 : 6 2
/ 3 ; E . 8 4 / 6 � E 6 C 3
; E 3 4 6 / 3 7 6 / 3 6 4
2 . 7 9 6 4 ; E 3 1 : 0 6 : 6 / d
3 ; 3 : 2 1 4 ; ; � 0 3 4 8 1 5 5 3 : B

Java allows the overloading of method names. This means that several meth-

ods may have the same name and be declared in the same class scope as long as

their signatures (that is, their parameter list types) differ. When a call to max is

made, the compiler can deduce which of the intended meanings should be applied

based on the actual argument types. Two signatures may have the same number of

parameters, as long as at least one of the parameter list types differs.

Note that the return type is not included in the signature. This means it is ille-

gal to have two methods in the same class scope whose only difference is the

return type. Methods in different class scopes may have the same names, signa-

tures, and even return types; this is discussed in Chapter 3.

W X � X Y ý _ [� � â] Z � � ` `] `

Entities that are declared inside the body of a method are local variables and can

be accessed by name only within the method body. These entiti es are created

when the method body is executed and disappear when the method body termi-

nates.

st at i c f i nal

C 6 : 1 6 � 2 3 4 6 : 3 - . 7 d
4 ; 6 7 ; 4 B

A variable declared outside the body of a method is global to the class. It is

similar to global variables in other languages if the word st at i c is used (which

is likely to be required so as to make the entity accessible by static methods). If

both st at i c and f i nal are used, they are global symbolic constants. As an

example,

st at i c f i nal d ouble P I = 3 . 1415926535897932;

BOOK.mkr Page 30 Wednesday, March 14, 2001 1:24 PM

ß � � Þ � f ' } � " # �
 à �

Note the use of the common convention of naming symbolic constants

entirely in uppercase. If several words form the identifier name, they are sepa-

rated by the underscore character, as in MAX_I NT_VALUE.

If the word st at i c is omitted, then the variable (or constant) has a different

meaning, which is discussed in Section 3.4.6.

ý � \ \ � � �

This chapter discussed the primitive features of Java, such as primitive types,

operators, conditional and looping statements, and methods that are found in

almost any language.

Any nontrivial program will require the use of nonprimitive types, called ref-

erence types, which are discussed in the next chapter.

� � �] Ï _ ` [Ó _ �] � � \]

assignment operators In Java, used to alter the value of a variable. These

operators include =, +=, - =, * =, and / =. (13)

autoincrement (++) and autodecrement (--) operators Operators that add

and subtract 1, respectively. There are two forms of incrementing and dec-

rementing, prefix and postfix. (15)

binary arithmetic operators Used to perform basic arithmetic. Java provides

several, including +, - , * , / , and %. (14)

block A sequence of statements within braces. (20)

BOOK.mkr Page 31 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �à ×

break statement A statement that exits the innermost loop or swi t ch state-

ment. (25)

bytecode Portable intermediate code generated by the Java compiler. (5)

BOOK.mkr Page 32 Wednesday, March 14, 2001 1:24 PM

ß � � Þ � f ' } � " # �
 à à

call-by-value The Java parameter-passing mechanism whereby the actual

argument is copied into the formal parameter. (28)

comments Make code easier for humans to read but have no semantic mean-

ing. Java has three forms of comments. (6)

conditional operator (?:) An operator that is used in an expression as a

shorthand for simple i f -el se statements. (26)

continue statement A statement that goes to the next iteration of the inner-

most loop. (25)

do statement A looping construct that guarantees the loop is executed at least

once. (23)

equality operators In Java, == and ! = are used to compare two values; they

return either t r ue or f al se (as appropriate). (17)

escape sequence Used to represent certain character constants. (11)

for statement A looping construct used primarily for simple iteration. (22)

identifier Used to name a variable or method. (11)

if statement The fundamental decision maker. (19)

integral types by t e, char , shor t , i nt , and l ong. (9)

java The java interpreter, which processes bytecodes. (5)

javac The java compiler; generates bytecodes. (5)

labeled break statement A br eak statement used to exit from nested loops.

(25)

logical operators &&, | | , and ! , used to simulate the Boolean algebra con-

cepts of AND, OR, and NOT. (18)

BOOK.mkr Page 33 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �à �

main The special function that is invoked when the program is run. (7)

method The Java equivalent of a function. (28)

method declaration Consists of the method header and body. (28)

method header Consists of the name, return type, and parameter list. (28)

null statement A statement that consists of a semicolon by itself. (20)

octal and hexadecimal integer constants Integer constants can be represented

in either decimal, octal, or hexadecimal notation. Octal notation is indi-

cated by a leading 0; hexadecimal is indicated by a leading 0x or 0X. (10)

overloading of a method name The action of allowing several methods to

have the same name as long as their parameter list types differ. (30)

primitive types In Java, integer, floating-point, Boolean, and character. (9)

relational operators In Java, <, <=, >, and >= are used to decide which of two

values is smaller or larger; they return t r ue or f al se. (17)

return statement A statement used to return information to the caller. (29)

short-circuit evaluation The process whereby if the result of a logical opera-

tor can be determined by examining the first expression, then the second

expression is not evaluated. (18)

signature The combination of the method name and the parameter list types.

The return type is not part of the signature. (30)

standard input The terminal, unless redirected. There are also streams for

standard output and standard error.

static final entity A global constant. (30)

BOOK.mkr Page 34 Wednesday, March 14, 2001 1:24 PM

ì '

 ' $ & � � ' � f à (

static method Occasionally used to mimic C-style functions; discussed

more fully in Section 3.5. (29)

string constant A constant that consists of a sequence of characters enclosed

by double quotes. (11)

switch statement A statement used to select among several small integral

values. (26)

type conversion operator An operator used to generate an unnamed tempo-

rary variable of a new type. (16)

unary operators Require one operand. Several unary operators are defined,

including unary minus (-) and the autoincrement and autodecrement oper-

ators (++ and - -). (15)

Unicode International character set that contains over 30,000 distinct charac-

ters covering the principle written languages. (9)

while statement The most basic form of looping. (21)

virtual machine The bytecode interpreter. (5)

Z [\ \ [^ õ � � [� `

1. Adding unnecessary semicolons gives logical errors because the semico-

lon by itself is the null statement. This means that an unintended semico-

lon immediately following a f or , whi l e, or i f statement is very likely

to go undetected and will break your program.

BOOK.mkr Page 35 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �à Q

2. At compile time, the Java compiler is required to detect all instances in

which a method that is supposed to return a value fails to do so. Occasion-

ally, it provides a false alarm, and you have to rearrange code.

3. A leading 0 makes an integer constant octal when seen as a token in

source code. So 037 is equivalent to decimal 31.

4. Use && and | | for logical operations; & and | do not short circuit.

5. The el se clause matches the closest dangling i f . It is common to forget

to include the braces needed to match the el se to a distant dangling i f .

6. When a swi t ch statement is used, it is common to forget the br eak

statement between logical cases. If it is forgotten, control passes through

to the next case; generally, this is not the desired behavior.

7. Escape sequences begin with the backslash \ , not the forward slash / .

8. Mismatched braces may give misleading answers. Use Bal ance,

described in Section 11.1, to check if this is the cause of a compiler error

message.

9. The name of the Java source file must match the name of the class being

compiled.

BOOK.mkr Page 36 Wednesday, March 14, 2001 1:24 PM

& � � Þ 	 f f à h
� ^ _ �] Ñ ^ _] � ^] _

Following are the available files for this chapter. Everything is self-contained, and

nothing is used later in the text.

FirstProgram.java The first program, as shown in Figure 1.1

MinTest.java Illustration of methods, as shown in Figure 1.6.

OperatorTest.java Demonstration of various operators, as shown in

Figure 1.3.

õ �] � Ï � `] `
� � � � � � �

1.1. What extensions are used for Java source and compiled files?

1.2. Describe the three kinds of comments used in Java programs.

1.3. What are the eight primitive types in Java?

1.4. What is the difference between the * and * = operators?

1.5. Explain the difference between the prefix and postfix increment operators.

1.6. Describe the three types of loops in Java.

1.7. Describe all the uses of a br eak statement. What is a labeled br eak

statement?

1.8. What does the cont i nue statement do?

1.9. What is method overloading?

1.10. Describe call-by-value.

BOOK.mkr Page 37 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �à �
� � � � � � !

1.11. Let b have the value of 5 and c have the value of 8. What is the value of a,

b, and c after each line of the following program fragment:

a = b ++ + c ++;
a = b ++ + + +c;
a = + +b + c ++;
a = + +b + + +c;

1.12. What is the result of t r ue & & f al se | | t r ue?

1.13. For the following, give an example in which the f or loop on the left is not

equivalent to the whi l e loop on the right:

 i ni t ;
f or (i ni t ; t est ; up dat e) whi l e(t es t)
{ {
 st at ement s st at ement s
 update ;
} }

1.14. For the following program, what are the possible outputs:

publ i c cl ass What Is X
{
 publ i c s t at i c voi d f (i nt x)
 { / * b ody u nknown * / }

 publ i c s t at i c voi d m ai n(S tr i ng [] a rg s)
 {
 i nt x = 0 ;
 f (x) ;
 Syst em. out. pr i nt l n(x);
 }
}

� � " � # $ � % $
1.15. Write a whi l e statement that is equivalent to the following f or frag-

ment. Why would this be useful?

BOOK.mkr Page 38 Wednesday, March 14, 2001 1:24 PM

& � � Þ 	 f f à �

f or (; ;)
 st at ement

1.16. Write a program to generate the addition and multiplication tables for sin-

gle-digit numbers (the table that elementary school students are accus-

tomed to seeing).

1.17. Write two static methods. The first should return the maximum of three

integers, and the second should return the maximum of four integers.

1.18. Write a static method that takes a year as a parameter and returns t r ue if

the year is a leap year, and f al se otherwise.

" � � & � # ' ' % � & " � � ($ �)
1.19. Write a program to determine all pairs of positive integers, , such

that and is an integer.

1.20. Write a method that prints the representation of its integer parameter as a

Roman numeral. Thus, if the parameter is 1998, the output is

MCMXCVI I I .

1.21. Suppose you want to print out numbers in brackets, formatted as follows:

[1] [2] [3] , and so on. Write a method that takes two parameters:

howMany and l i neLengt h. The method should print out line numbers

from 1 to howMany in the previous format, but it should not output more

than l i neLengt h characters on any one line. It should not start a [

unless it can fit the corresponding] .

a b,()

a b 1000< < a2 b2 1+ +() ab()⁄

BOOK.mkr Page 39 Wednesday, March 14, 2001 1:24 PM

� � 	
 	 � 	 � � � � �� �

1.22. In the following decimal arithmetic puzzle, each of the ten different letters

is assigned a digit. Write a program that finds all possible solutions (one of

which is shown).

 MARK A=1 W=2 N =3 R =4 E =5 9147
 + A LLEN L=6 K =7 I =8 M =9 S =0 + 1 6653
 - - - - - - - - - -
 WEI SS 25800

ô] Ó] �] ^ Ï] `

Some of the C-style material in this chapter is taken from [5]. The complete Java

language specification may be found in [3]. Introductory Java books include [1],

[2] and [4].

1. G. Cornell and C. S. Horstmann, Core Java 2 Volumes 1 and 2, 4th ed.,

Prentice-Hall , Englewood Cliffs, N.J., 2000.

2. J. Lewis and W. Loftus, Java Software Solutions: Foundations of Pro-

gram Design, Addison-Wesley, Reading, Mass., 1997.

3. J. Gosling, B. Joy, and G. Steele, The Java Language Specification, 2nd

ed, Addison-Wesley, Reading, Mass., 2000.

4. W. Savitch, An Introduction to Computer Science & Programming, 2nd

ed, Prentice-Hall, Englewood Cli ffs, N.J., 2001.

5. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice-

Hall , Englewood Cli ffs, N.J., 1995.

BOOK.mkr Page 40 Wednesday, March 14, 2001 1:24 PM

� � � � � � �

HAPTER 1 examined the Java primitive types. All types that are not one

of the eight primitive types are reference types, including important enti-

ties such as strings, arrays, and file streams.

In this chapter, we will see:

• What a reference type and value is

• How reference types differ from primitive types

• Examples of reference types, including strings, arrays, and streams

• How exceptions are used to signal erroneous behavior

R � � * � � + T � , � - � � � � Û � .

Chapter 1 described the eight primitive types, along with some of the operations

that these types can perform. All other types in Java are reference types, including

strings, arrays, and fi le streams. So what is a reference? A reference variable

(often abbreviated as simply reference) in Java is a variable that somehow stores

the memory address where an object resides.

As an example, in Figure 2.1 are two objects of type Poi nt . It happens, by

chance, that these objects are stored in memory locations 1000 and 1024, respec-

BOOK.mkr Page 41 Wednesday, March 14, 2001 1:24 PM

ÿ } � $ Þ ! � | f� ×

tively. For these two objects, there are three references: poi nt1 , poi nt 2, and

poi nt 3. poi nt 1 and poi nt 3 both reference the object stored at memory

location 1000; poi nt 2 references the object stored at memory location 1024.

Both poi nt 1 and poi nt 3 store the value 1000, while poi nt 2 stores the value

1024. Note that the actual locations, such as 1000 and 1024, are assigned by the

compiler at its discretion (when it finds available memory). Thus these values are

not useful externally as numbers. However, the fact that poi nt 1 and poi nt 3

store identical values is useful: It means they are referencing the same object.

A reference will always store the memory address where some object is

residing, unless it is not currently referencing any object. In this case, it will store

the null reference, nul l . Java does not allow references to primitive variables.

There are two broad categories of operations that can be applied to reference

variables. One allows us to examine or manipulate the reference value. For

instance, if we change the stored value of poi nt 1 (which is 1000), we could

have it reference another object. We can also compare poi nt 1 and poi nt 3 and

determine if they are referencing the same object. The other category of opera-

tions applies to the object being referenced; perhaps we could examine or change

the internal state of one of the Poi nt objects. For instance, we could examine

some of Poi nt ’s x and y coordinates.

Before we describe what can be done with references, let us see what is not

allowed. Consider the expression poi nt1 * poi nt 2. Since the stored values of

poi nt 1 and poi nt 2 are 1000 and 1024, respectively, their product would be

1024000. However, this is a meaningless calculation that could not have any pos-

BOOK.mkr Page 42 Wednesday, March 14, 2001 1:24 PM

/ " � � f � ÿ } � $ Þ 0 � à

sible use. Reference variables store addresses, and there is no logical meaning

that can be associated with multiplying two addresses.

Similarly, poi nt 1++ has no Java meaning; it suggests that poi nt 1 —

1000 — should be increased to 1001, but in that case it might not be referencing a

valid Poi nt object. Many languages define the pointer, which behaves like a ref-

erence variable. However, pointers in C++ are much more dangerous because

arithmetic on stored addresses is allowed. Thus, in C++, poi nt 1++ has a mean-

ing. Because C++ allows pointers to primitive types, one must be careful to dis-

tinguish between arithmetic on addresses and arithmetic on the objects being

referenced. This is done by explicitly dereferencing the pointer. In practice, C++’s

unsafe pointers tend to cause numerous programming errors.

Some operations are performed on references themselves, while other opera-

tions are performed on the objects being referenced. In Java, the only operators

that are allowed for reference types (with one exception made for St r i ngs) are

assignment via = and equality comparison via == or ! =.

BOOK.mkr Page 43 Wednesday, March 14, 2001 1:24 PM

ÿ } � $ Þ ! � | f� �

s t u v w x Ç z y { $ 	 % % ä f � � � � 	 ' $ ' } � � } � $ Þ 1 ! "
Point

' � � Þ � f � ' � í � �

 2
3 4 5 6 3 7 8 9 : 3 ; < = = = : > 4 ? @ ? 4 ? ; 7 ? A B 5 B 3 9 C point1 8 ; A point3 DE C ? Point 3 B F ? 7 9 > 9 3 4 ? A 8 9 G ? G 3 4 5 6 3 7 8 9 : 3 ; < = H I : > 4 ? @ ? 4 ? ; 7 ? AB 5 point2 D E C ? G ? G 3 4 5 6 3 7 8 9 : 3 ; > J C ? 4 ? 9 C ? K 8 4 : 8 B 6 ? > 8 4 ?> 9 3 4 ? A 8 4 ? 8 4 B : 9 4 8 4 5

L M N O P Q R S R E C ? 4 ? > T 6 9 3 @ poi nt3=point2 U point3 ; 3 J 4 ? @ ? 4 ? ; 7 ? > 9 C ?> 8 G ? 3 B F ? 7 9 8 > point2

(0, 0)

(5, 12)

poi nt 1 = 1000

 1000

 1024

3600

(0, 0)

(5, 12)

poi nt 1

(at 1000)

(at 1024)

 3200 poi nt 2 = 1024

poi nt 3 = 10005124

poi nt 2

poi nt 3

(0, 0)

(5, 12)

poi nt 1 = 1000

 1000

 1024

3600

(0, 0)

(5, 12)

poi nt 1

(at 1000)

(at 1024)

 3200 poi nt 2 = 1024

poi nt 3 = 10245124

poi nt 2

poi nt 3

BOOK.mkr Page 44 Wednesday, March 14, 2001 1:24 PM

V 8 > : 7 > 3 @ W B F ? 7 9 > 8 ; A X ? @ ? 4 ? ; 7 ? > Y Z

Figure 2.2 il lustrates the assignment operator for reference variables. By

assigning poi nt 3 the stored value of poi nt2 , we have poi nt 3 reference the

same object that poi nt 2 was referencing. Now, poi nt 2==poi nt 3 is t r ue

because poi nt 2 and poi nt 3 both store 1024 and thus reference the same

object. poi nt 1! =poi nt 2 is also t r ue because poi nt 1 and poi nt 2 refer-

ence different objects.

The other category of operations deals with the object that is being refer-

enced. There are only three basic actions that can be done:

1. Apply a type conversion (Section 1.4.4).
2. Access an internal field or call a method via the dot operator (.)

(Section 2.2.1).
3. Use the i ns t anceof operator to verify that the stored object is

of a certain type (Section 3.5.3).

 The next section illustrates in more detail the common reference operations.

[\ [] ^ _ ` a _ b c d e f g a h _ ^ i j k g c g l g i a g _
m n o p q p r p n s t u v w x y z

p n y n z { p n | } ~ � p n �
~ � { � } n ~ n � � y � y { y q }
{ � � } z �

In Java, an object is an instance of any of the nonprimitive types. Objects are

treated differently from primitive types. Primitive types, as already shown, are

handled by value, meaning that the values assumed by the primitive variables are

stored in those variables and copied from primitive variable to primitive variable

during assignments. As shown in Section 2.1, reference variables store references

to objects. The actual object is stored somewhere in memory, and the reference

variable stores the object’s memory address. Thus a reference variable simply

represents a name for that part of memory. This means that primitive variables

BOOK.mkr Page 45 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Y �

and reference variables behave differently. This section examines these differ-

ences in more detail and ill ustrates the operations that are allowed for reference

variables.

� � � � � � � � � � � � � � � � � � � �
. �

The dot operator (.) is used to select a method that is applied to an object. For

instance, suppose we have an object of type Ci r cl e that defines an are a

method. If t heCi rc l e references a Ci r c l e, then we can compute the area of

the referenced Ci r c l e (and save it to a variable of type doubl e) by doing this:

doubl e t heAr ea = th eCi r c l e. are a() ;

It is possible that t heCi rc l e stores the nul l reference. In this case, applying

the dot operator will generate a Null Poi nt erE xce pt i on when the program

runs. Generally, this will cause abnormal termination.

The dot operator can also be used to access individual components of an

object, provided arrangements have been made to allow internal components to

be viewable. Chapter 3 discusses how these arrangements are made. It also

explains why it is generally preferable to not allow direct access of individual

components.

� �
We have already seen the syntax for declaring primitive variables. For objects,

there is an important difference. When we declare a reference variable, we are

BOOK.mkr Page 46 Wednesday, March 14, 2001 1:24 PM

V 8 > : 7 > 3 @ W B F ? 7 9 > 8 ; A X ? @ ? 4 ? ; 7 ? > Y �

simply providing a name that can be used to reference an object that is stored in

memory. However, the declaration by i tself does not provide that object. For

example, suppose there is an object of type But t on that we want to add into an

existing Panel p, using the method add (all this is provided in the Java library).

Consider the statements

But t on b; / / b m ay r ef er ence a B ut t on o bj ec t
b. set Label (" No"); / / L abel t he b ut t on b r ef er s t o " No"
p. add(b) ; / / a nd ad d t o P anel p

 � } n p � } � } � } n | }
{ � � } y z ¡ } | ¢ p � } ¡ r n ~
~ £ ¤ } | { y z p ¢ ¢ ~ | p { } ¡ �
¥ { { � p { � ~ y n { r { � }
� } � } � } n | } y z { ~
nul l

� ¦ ~ | � } p { } { � }
~ £ ¤ } | { r § z }

new
�

All seems well with these statements until we remember that b is the name of

some But t on object but no But t on has been created yet. As a result, after the

declaration of b the value stored by the reference variable b is nul l , meaning b

is not yet referring to a valid But t on object. Consequently, the second line is

il legal because we are attempting to alter an object that does not exist. In this sce-

nario, the compiler will probably detect the error, stating that “b is uninitialized.”

In other cases, the compiler wil l not notice, and a run-time error will result in the

cryptic Nul l Poi nt er Exc ept i on error message.

¦ � }
new ¨ } � © ~ � ¡ y z

§ z } ¡ { ~ w s ª « x ¬ w x
p n ~ £ ¤ } | { �

The (only common) way to allocate an object is to use the new keyword.

new is used to construct an object. One way to do this is as follows:

But t on b; / / b m ay r ef er ence a B ut t on o bj ec t
b = n ew But t on() ; / / N ow b r ef er s t o an a l l ocat ed obj ect
b. set Label (" No"); / / L abel t he B ut t on b r ef er s t o " No"
p. add(b) ; / / a nd ad d i t t o P anel p

® p � } n { � } z } z p � } � } ¯
° § y � } ¡ © � } n

new
y z

§ z } ¡ �

Note, parentheses are required after the object name.

It is also possible to combine the declaration and object construction, as in

BOOK.mkr Page 47 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Y ±

But t on b = n ew Butt on() ;
b. set Label (" No"); / / L abel t he B ut t on b r ef er s t o " No"
p. add(b) ; / / a nd ad d i t t o P anel p

¦ � } | ~ n z { � § | { y ~ n
| p n z � } | y � � p n y n y ¯
{ y p ¢ z { p { } ~ � { � } ~ £ ¯

¤ } | { �

Many objects can also be constructed with initial values. For instance, it hap-

pens that the But t on can be constructed with a St r i ng that specifies the label:

But t on b = n ew Butt on(" No");
p. add(b) ; / / a dd it t o P anel p

� � � � ² ³ � � � � ´ � µ � � � � � � � � �
o p q p § z } z ¶ · ¬ t · ¶ v

w s ¸ ¸ v w x ¹ s ª � y { � º p � ¯
£ p º } | ~ ¢ ¢ } | { y ~ n r
§ n � } � } � } n | } ¡ � } � ¯
~ � � y z p § { ~ � p { y | p ¢ ¢ �
� } | ¢ p y � } ¡ �

Since al l objects must be constructed, we might expect that when they are no

longer needed, we must explicitly destroy them. In Java, when a constructed

object is no longer referenced by any object variable, the memory it consumes

wil l automatically be reclaimed and therefore be made available. This technique

is known as garbage collection.

The run-time system (i.e. the Java Virtual Machine) guarantees that as long as

it is possible to access an object by a reference, or a chain of references, the object

will never be reclaimed. Once the object is unreachable by a chain of references,

it can be reclaimed at the discretion of the runtime system if memory is low. It is

possible that if memory does not run low, the virtual machine will not attempt to

reclaim these objects.

BOOK.mkr Page 48 Wednesday, March 14, 2001 1:24 PM

V 8 > : 7 > 3 @ W B F ? 7 9 > 8 ; A X ? @ ? 4 ? ; 7 ? > Y »
� � � � ¼ � � � ½ � � � � � ´ � �

=

l hs
p n ¡

r hs
z { p n ¡

� ~ � ¸ v ¾ x ¿ À · ª Á « ¹ Á v
p n ¡ ¬ ¹ ¶ À x ¿ À · ª Á « ¹ Á v r
� } z � } | { y q } ¢ � �

Suppose we have two primitive variables l hs and r hs where lhs and rhs

stand for left-hand side and right-hand side, respectively. Then the assignment

statement

l hs = rh s;

has a simple meaning: The value stored in r hs is copied to the primitive variable

l hs . Subsequent changes to either l hs or r hs do not affect the other.

Â ~ � ~ £ ¤ } | { z r
=

y z p
� } � } � } n | } p z z y º n ¯
� } n { r � p { � } � { � p n
p n ~ £ ¤ } | { | ~ � � �

For objects, the meaning of = is the same: stored values are copied. If l hs

and r hs are references (of compatible types), then after the assignment state-

ment, l hs will refer to the same object that r hs does. Here, what is being copied

is an address. The object that l hs used to refer to is no longer referred to by l hs .

If l hs was the only reference to that object, then that object is now unreferenced

and subject to garbage collection. Note that the objects are not copied.

Here are some examples. First, suppose we want two But t on objects. Then

suppose we try to obtain them first by creating noBut t on. Then we attempt to

create yesBut t on by modifying noBut t on as follows:

But t on noBut t on = new But t on(" No") ;
But t on yesBut t on = noBut t on;
yesBut to n. set Label(" Yes") ;
p. add(noBut t on) ;
p. add(yesBut t on);

This does not work because only one But t on object has been constructed. Thus

the second statement simply states that yesBut t on is now another name for the

constructed But t on at line one. That constructed But t on is now known by two

BOOK.mkr Page 49 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Z Ã

names. On line three, the constructed But to n has its label changed to Yes , but

this means that the single Butt on object, known by two names, is now labelled

Yes . The last two lines add that But t on object to the Panel p twice.

The fact that yesBut t on never referred to its own object is immaterial in

this example. The problem is the assignment. Consider

But t on noBut t on = new But t on(" No") ;
But t on yesBut t on = new B ut t on() ;
yesBut to n = n oBut to n;
yesBut to n. set Label(" Yes") ;
p. add(noBut t on) ;
p. add(yesBut t on);

The consequences are the same. Here, there are two But t on objects that have

been constructed. At the end of the sequence, the first object is being referenced

by both noBut t on and yesBut t on, while the second object is unreferenced.

At first glance, the fact that objects cannot be copied seems like a severe lim-

itation. Actually, it is not, although this does take a li ttle getting used to. (Some

objects do need to be copied. For those, if a cl one method is available, it should

be used. However, c l one is not used in this text.)

BOOK.mkr Page 50 Wednesday, March 14, 2001 1:24 PM

V 8 > : 7 > 3 @ W B F ? 7 9 > 8 ; A X ? @ ? 4 ? ; 7 ? > Z Ä
� � � � Å Æ � � � Ç � � � � Æ � � � � � ´

È p ¢ ¢ ¯ £ � ¯ q p ¢ § }
� } p n z { � p { � ~ � � } � } � ¯
} n | } { � � } z r { � } � ~ � ¯
� p ¢ � p � p � } { } � � } � ¯
} � } n | } z { � } z p � }
~ £ ¤ } | { p z ¡ ~ } z { � }
p | { § p ¢
p � º § � } n { �

Because of call -by-value, the actual arguments are sent into the formal parameters

using normal assignment. If the parameter is a reference type, then we know that

normal assignment means that the formal parameter now references the same

object as does the actual argument. Any method applied to the formal parameter

is thus also being appli ed to the actual argument. In other languages, this is

known as call-by-reference parameter passing. Using this terminology for Java

would be somewhat misleading because it implies that the parameter passing is

different. In reali ty, the parameter passing has not changed; rather, it is the param-

eters that have changed, from nonreference types to reference types.

As an example, suppose we pass yesBut t on as a parameter to the

cl ear But t on routine that is defined as follows:

 publ i c s t at i c voi d c l ear But t on(B ut to n b)
 {
 b. set Label(" No") ;
 b = n ul l ;
 }

BOOK.mkr Page 51 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Z É

L M N O P Q R S Ê E C ? 4 ? > T 6 9 3 @ 7 8 6 6 Ë B 5 Ë K 8 6 T ? D Ì 8 Í b : > 8 7 3 � 5 3 @ yes Button Î Ì B Í8 @ 9 ? 4 b.set Label("No") U 7 C 8 ; Ï ? > 9 3 9 C ? > 9 8 9 ? 3 @ 9 C ?3 B F ? 7 9 4 ? @ ? 4 ? ; 7 ? A B 5 b 8 4 ? 4 ? @ 6 ? 7 9 ? A : ; 3 B F ? 7 9 4 ? @ ? 4 ? ; 7 ? A B 5
yesB utton B ? 7 8 T > ? 9 C ? > ? 8 4 ? > 8 G ? 3 B F ? 7 9 Î Ì 7 Í 8 @ 9 ? 4
b=nu l l U 7 C 8 ; Ï ? 9 3 K 8 6 T ? 3 @ b A 3 ? > ; 3 9 8 @ @ ? 7 9 K 8 6 T ? 3 @
yesB utton Î Ì A Í 8 @ 9 ? 4 G ? 9 C 3 A 4 ? 9 T 4 ; > Ð b : > A ? > 9 4 3 5 ? A D

Then, as Figure 2.3 shows, b references the same object as yesB utton , and

changes made to the state of this object by methods invoked through b will be

seen when c l ear But t on returns. Changes to the value of b (i.e. which object it

references) will not have any affect on yesBut t on.

� � � � Ñ � � � ½ � � � � � ´ � �
==

For primitive types, == is true if the stored values are identical. For reference

types, its meaning is different but is perfectly consistent with the previous discus-

sion.

Yes
yesBut t on

b

(a)

No
yesBut t on

b

(b)

No
yesBut t on

b = null

(c)

No
yesBut t on

(d)

BOOK.mkr Page 52 Wednesday, March 14, 2001 1:24 PM

V 8 > : 7 > Ò @ W B F ? 7 9 > 8 ; A X ? @ ? 4 ? ; 7 ? > Z Ó
Â ~ � � } � } � } n | } { � � } z r
==

y z { � § } ~ n ¢ � y � { � }
{ © ~ � } � } � } n | } z � } � ¯
} � } n | } { � } « · Ô v

s t u v w x �

Two reference types are equal via == if they refer to the same stored object

(or they are both nul l). Consider, for example, the following:

But t on a = n ew Butt on(" Yes") ;
But t on b = n ew Butt on(" Yes") ;
But t on c = b ;

Here, we have two objects. The first is known by the name a, and the second is

known by two names: b and c . b==c is t r ue. However, even though a and b are

referencing objects that seem to have the same value, a==b is f al se, since they

reference different objects. Similar rules apply for ! =.

¦ � }
equals

� } { � ~ ¡ | p n £ }
§ z } ¡ { ~ { } z {
© � } { � } � { © ~ � } � } � ¯
} n | } z � } � } � } n | }
~ £ ¤ } | { z { � p { � p q }
y ¡ } n { y | p ¢ z { p { } z �

Sometimes it is important to know if the states of the objects being referenced

are identical. All objects can be compared by using equal s , but for many

objects (including But t on) equal s returns f al se unless the two references

are referencing the same object (in other words, for some objects equal s is no

more than the == test). We wil l see an example of where equal s is useful when

the St r i ng object is discussed in Section 2.3.

� � � � Õ Ö � � � � � � � � � � × � � � � � Ø � � ´ � � � � � � � � � �
Except for the single exception described in the next section, new operators, such

as +, - , * , and / cannot be defined to work for objects. Thus there is no < opera-

tor available for any object. Instead, a named method, such as le ssTh an, must

be defined for this task.

BOOK.mkr Page 53 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Z Y
[\ Ù Ú h l ` i Û _

¦ � }
St r i ng

£ } ¯
� p q } z ¢ y ¨ } p � } � } � ¯
} n | } { � � } �

Strings in Java are handled with the Strin g reference type. The language does

make it appear that the St r i ng type is a primitive type because it provides the +

and += operator for concatenation. However, this is the only reference type for

which any operator overloading is allowed. Otherwise, the St r i ng behaves like

any other object.

� � ² � � Ü � � � � � � � Ý � � � � ´ ½ � � � � Þ � � � � � �
ß { � y n º z p � } ¹ Ô Ô x · ¿
t ¸ v à { � p { y z r { � }
St r i ng

~ £ ¤ } | { © y ¢ ¢
n ~ { £ } | � p n º } ¡ �

There are two fundamental rules about a St r ing object. First, with the excep-

tion of the concatenation operators, i t behaves li ke an object. Second, the

St r i ng is immutable. This means that once a St r i ng object is constructed, its

contents may not be changed.

Because a St r i ng is immutable, it is always safe to use the = operator with

it. Thus a St r i ng may be declared as follows:

St r i ng empt y = "" ;
St r i ng message = "H el l o"
St r i ng r epeat = me ssage;

After these declarations, there are two Str i ng objects. The first is the empty

string, which is referenced by empt y. The second is the St r i ng " Hel lo "

which is referenced by both message and r epeat . For most objects being ref-

erenced by both message and repea t could be a problem. However, because

St rin gs are immutable, the sharing of Str i ng objects is safe, as well as eff i-

cient. The only way to change the value that the string repeat refers to is to

BOOK.mkr Page 54 Wednesday, March 14, 2001 1:24 PM

á 9 4 : ; Ï > Z Z

construct a new St r i ng and have r epeat reference it. This has no effect on the

St r i ng that message references.

� � ² � � Ý � � � � ´ µ � � � � � � � � � � � �
Java does not allow operator overloading for reference types. However, a special

language exemption is granted for string concatenation.

ß { � y n º | ~ n | p { } n p ¯
{ y ~ n y z � } � � ~ � � } ¡
© y { �

+ â p n ¡
+= ã �

The operator +, when at least one operand is a St r i ng, performs concate-

nation. The result is a reference to a newly constructed St r i ng object. For

example,

" t hi s" + " t hat " / / G ener ate s " t hi s t hat "
" abc" + 5 / / G ener ate s " abc5"
5 + " abc " / / G ener ate s " 5abc"
" a" + "b " + " c" / / G ener ate s " abc"

Single-character strings should not be replaced with character constants;

Exercise 2.6 asks you to show why. Note that operator + is left-associative, and

thus

" a" + 1 + 2 / / G ener ate s " a12"
1 + 2 + " a" / / G ener ate s " 3a"
1 + (2 + " a") / / G ener ate s " 12a"

Also, operator += is provided for the St r i ng. The effect of str +=exp is

the same as st r =st r +exp. Specifically, this means that st r wil l reference the

newly constructed St r i ng generated by st r +exp.

BOOK.mkr Page 55 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Z �
� � ² � ² µ � Ç � � � � � ´ Ý � � � � ´ �

ä z }
equals

p n ¡
compareTo

{ ~
� } � � ~ � � z { � y n º | ~ � ¯
� p � y z ~ n �

Since the basic assignment operator works for St r i ngs, it is tempting to assume

that the relational and equality operators also work. This is not true.

In accordance with the ban on operator overloading, relational operators (<,

>, <=, and >=) are not defined for the St r i ng object. Further, == and ! = have

the typical meaning for reference variables. For two St r i ng objects l hs and

r hs , for example l hs==r hs is t r ue only if l hs and r hs refer to the same

St r i ng object. Thus, if they refer to different objects that have identical con-

tents, l hs==r hs is f al se. Similar logic applies for ! =.

To compare two St r i ng objects for equali ty, we use equal s .

l hs. equal s(r hs) is t r ue if l hs and r hs reference St r i ngs that store

identical values.

A more general test can be performed with the method compar eTo.

l hs. compar eTo(r hs) compares two St r i ng objects, l hs and r hs . It

returns a negative number, zero, or a positive number, depending on whether l hs

is lexicographically less than, equal to, or greater than r hs , respectively.

BOOK.mkr Page 56 Wednesday, March 14, 2001 1:24 PM

á 9 4 : ; Ï > Z �
� � ² � ¼ � � � � �

String
½ � � � � Ø �

ä z }
length

r
charAt

r p n ¡
substring

{ ~
| ~ � � § { } z { � y n º
¢ } n º { � r º } { p z y n º ¢ }
| � p � p | { } � r p n ¡ º } {
p z § £ z { � y n º r � } z � } | ¯
{ y q } ¢ � �

The length of a St r i ng object (an empty string has length zero) can be obtained

with the method l engt h. Since l engt h is a method, parentheses are required.

Two methods are defined to access individual characters in a St r i ng. The

method char At gets a single character by specifying a position (the first posi-

tion is position 0). The method subst r i ng returns a reference to a newly con-

structed St r i ng. The call is made by specifying the starting point and the first

nonincluded position.

Here is an example of these three methods:

St r i ng gr eet i ng = " hel l o" ;
i nt l en = g r eeti ng. l engt h() ; / / l en i s 5
char c h = g r eeti ng. char At (1) ; / / c h i s 'e '
St r i ng sub = g r eeti ng. subst r in g(2 , 4) ; / / s ub i s "l l "

� � ² � Å µ � � × � � � � � ´ � � � � � � å � � � � � Ý � � � � ´ �
toString

| ~ n ¯
q } � { z � � y � y { y q } { � � } z
â p n ¡ ~ £ ¤ } | { z ã { ~
St r i ng

z �

String concatenation provides a lazy way to convert any primitive to a Str i ng .

For instance, " " +45. 3 returns the newly constructed Str i ng "4 5.3 " . There

are also methods to do this directly.

The method t oSt r i ng can be used to convert any primitive type to a

St r i ng. As an example, I nt eger . t oSt r i ng(45) returns a reference to the

newly constructed St r i ng " 45" . All reference types also provide an implemen-

tation of t oSt r i ng of varying quali ty. In fact, when operator + has only one

St r i ng argument, the nonSt r i ng argument is converted to a St r i ng by auto-

BOOK.mkr Page 57 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >Z ±

matically applying an appropriate t oSt r i ng. For the integer types, an alterna-

tive form of I nt eger . t oSt r i ng allows the specification of a radix. Thus

Syst em.o ut . pr i nt l n(" 55 i n b ase 2 : " +
 I nt eger . to St r i ng(5 5, 2)) ;

prints out the binary representation of 55.

The i nt value that is represented by a St r i ng can be obtained by calling

the method I nt eger . par seI nt . This method generates an exception if the

St r i ng does not represent an i nt . Exceptions are discussed in Section 2.5.

Similar ideas work for a doubl es. Here are some examples:

i nt x = I nt eger. par seI nt (" 75") ;
doubl e y = D oubl e.p ar seDoubl e(" 3. 14") ;

[\ æ ç l l ^ è _
¥ n · ¬ ¬ · é z { ~ � } z p
| ~ ¢ ¢ } | { y ~ n ~ � y ¡ } n { y ¯
| p ¢ ¢ � { � � } ¡ } n { y { y } z �

An aggregate is a collection of entities stored in one unit. An array is the basic

mechanism for storing a collection of identically typed entities. In Java the array

is not a primitive type. Instead, it behaves very much like an object. Thus many of

the rules for objects also apply to arrays.

¦ � } · ¬ ¬ · é ¹ ª Á v ê ¹ ª ¶
s ë v ¬ · x s ¬

[]
� � ~ ¯

q y ¡ } z p | | } z z { ~ p n �
~ £ ¤ } | { y n { � } p � � p � �

Each entity in the array can be accessed via the array indexing operator [] .

We say that the [] operator indexes the array, meaning that it specifies which

object is to be accessed. Unlike C and C++, bounds checking is performed auto-

matically.

BOOK.mkr Page 58 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > Z »
¥ � � p � z p � } y n ¡ } í } ¡
z { p � { y n º p { î } � ~ � ¦ � }
n § � £ } � ~ � y { } � z
z { ~ � } ¡ y n { � } p � � p � y z
~ £ { p y n } ¡ £ � { � }
length

� y } ¢ ¡ � ï ~
� p � } n { � } z } z p � }
§ z } ¡ �

In Java, arrays are always indexed starting at zero. Thus an array a of three

items stores a[0] , a[1] , and a[2] . The number of items that can be stored in

an array a can always be obtained by a. l engt h. Note that there are no paren-

theses. A typical array loop would use

f or (i nt i = 0 ; i < a . l engt h; i ++)

� � ¼ � � � � � � � � � � � � � ð ñ � � � ´ � Ç � � � ð � � Ø ½ � � � � Ø �
An array is an object, so when the array declaration

i nt [] ar r ay1;

¦ ~ p ¢ ¢ ~ | p { } p n p � � p � r
§ z }

new
�

is given, no memory is yet allocated to store the array. ar r ay1 is simply a name

(reference) for an array, and at this point is null . To have 100 int s, for exam-

ple, we issue a new command:

ar r ay1 = n ew i nt [100] ;

Now ar r ay1 references an array of 100 i nt s.

There are other ways to declare arrays. For instance, in some contexts

i nt [] ar r ay2 = ne w i nt [1 00] ;

is acceptable. Also, initializer lists can be used, as in C or C++, to specify initial

values. In the next example, an array of four i nt s is allocated and then refer-

enced by ar r ay3 .

i nt [] ar r ay3 = { 3, 4 , 1 0, 6 } ;

BOOK.mkr Page 59 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� Ã

The brackets can go either before or after the array name. Placing them before

makes it easier to see that the name is an array type, so that is the style used here.

Declaring an array of objects (rather than primitive types) uses the same syntax.

Note, however, that when we allocate an array of objects, each object initially

stores a nul l reference. Each also must be set to reference a constructed object.

For instance, an array of five buttons is constructed as

But t on [] a r r ayOfB ut t ons;
ar r ayOfB ut t ons = ne w B ut t on [5] ;
f or (i nt i = 0 ; i < a r r ayOf But t ons. l engt h; i ++)
 ar ra yOf But t ons[i] = n ew But t on() ;

Figure 2.4 illustrates the use of arrays in Java. The program in Figure 2.4

repeatedly chooses numbers between 1 and 100, inclusive. The output is the num-

ber of times that each number has occurred. The import directive at line 1 will be

discussed in Section 3.6.1.

¥ ¢ © p � z £ } z § � } { ~
¡ } | ¢ p � } { � } | ~ � � } | {
p � � p � z y î } � ò � � ¯ £ � ¯
~ n } } � � ~ � z p � } | ~ � ¯
� ~ n �

Line 14 declares an array of integers that count the occurrences of each num-

ber. Because arrays are indexed starting at zero, the +1 is crucial i f we want to

access the item in position DIFFERENT_NUMBERS. Without it we would have an

array whose indexible range was 0 to 99, and thus any access to index 100 be out-

of-bounds. The loop at lines 15 and 16 initializes the array entries to zero; this is

actually unnecessary, since by default, array elements are initialized to zero for

primitive and null for references.

The rest of the program is relatively straightforward. It uses the Random

object defined in the j ava. ut i l library (hence the import directive at line 1).

The next I nt method repeatedly gives a (somewhat) random number in the

BOOK.mkr Page 60 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � Ä

range the includes zero but stops at one less than the parameter to next I nt ; thus

by adding one, we get a number in the desired range. The results are output at

lines 25 and 26.

ó
i mpor t j ava. ut i l . Random;ôõ
publ i c c l ass R andomNumber sö
{÷
 / / G ener at e r andom number s (f r om 1 - 100)ø
 / / P r i nt n umber o f o ccur r ences o f e ach n umberùú
 publ i c s t at i c f i nal i nt D I FF_NUMBERS = 1 00;û
 publ i c s t at i c f i nal i nt T OTAL_NUMBERS = 1 000000;ó üó ó
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)ó ô
 {ó õ
 / / C r eat e a r r ay ; i ni t i al i ze t o 0 só ö
 i nt [] n umber s = n ew i nt [D I FF_NUMBERS + 1] ;ó ÷
 f or (i nt i = 0 ; i < n umber s. l engt h; i ++)ó ø
 number s [i] = 0 ;ó ùó ú
 Random r = n ew Random() ;ó ûô ü
 / / G ener at e t he n umber sô ó
 f or (i nt i = 0 ; i < T OTAL_NUMBERS; i ++)ô ô
 number s [r . next I nt (D I FF_NUMBERS) + 1] ++;ô õ

ô ö
 / / O ut put t he s ummar yô ÷
 f or (i nt i = 1 ; i < = D I FF_NUMBERS; i ++)ô ø
 Syst em. out . pr i nt l n(i + " : " + n umber s[i]) ;ô ù
 }ô ú
}

L M N O P Q R S ý á : G � 6 ? A ? G Ò ; > 9 4 8 9 : Ò ; Ò @ 8 4 4 8 5 >

Since an array is a reference type, = does not copy arrays. Instead, if l hs and

r hs are arrays the effect of

BOOK.mkr Page 61 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� É

i nt [] l hs = n ew i nt [1 00];
i nt [] r hs = n ew i nt [1 00];
 . . .
l hs = rh s

is that the array object that was referenced by r hs is now also referenced by l hs .

Thus changing r hs[0] also changes l hs [0] . (To make l hs an independent

copy of r hs , one could use the cl one method, but often making complete cop-

ies is not really needed.)

Finally, an array can be used as a parameter to a method. The rules follow

logically from our understanding that an array name is a reference. Suppose we

have a method met hodCal l that accepts one array of i nt as its parameter. The

caller/callee views are

met hodCal l (a ct ualA r r ay) ; / / m et hod c al l
voi d m et hodCal l (in t [] f or mal Ar r ay) / / met hod d ecla r at i on

¦ � } | ~ n { } n { z ~ � p n
p � � p � p � } � p z z } ¡ £ �
� } � } � } n | } �

In accordance with the parameter-passing conventions for Java reference types,

f or mal Ar r ay references the same array object as ac t ual Arr ay. Thus

form alArray [i] accesses actu alArra y [i] . This means that i f the

method modifies any element in the array, the modifications wil l be observable

after the method execution has completed. Also note that a statement such as

f or mal Ar r ay = n ew i nt [2 0] ;

has no effect on ac tualAr r ay. Finall y, since array names are simply refer-

ences, they can be returned.

BOOK.mkr Page 62 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � Ó
� � ¼ � � � å � � Ç � � ñ � � � å þ ÿ � � � � � � �

� é ª · Ô ¹ w · ¬ ¬ · é v ê ¿
ë · ª « ¹ s ª p ¢ ¢ ~ © z § z { ~
p ¢ ¢ ~ | p { } p � £ y { � p � � ¯
z y î } ¡ p � � p � z p n ¡
� p ¨ } { � } � ¢ p � º } �
y � n } } ¡ } ¡ �

Suppose we want to read a sequence of numbers and store them in an array for

processing. The fundamental property of an array requires us to declare a size so

that the compiler can allocate the correct amount of memory. Also, we must make

this declaration prior to the first access of the array. If we have no idea how many

items to expect, then it is diff icult to make a reasonable choice for the array size.

This section shows how to expand arrays if the initial size is too small. This tech-

nique is called dynamic array expansion and allows us to allocate arbitrary-sized

arrays and make them larger or smaller as the program runs.

The allocation method for arrays that we have seen thus far is

i nt [] ar r = n ew i nt [1 0] ;

Suppose that we decide, after the declarations, that we reall y need 12 int s

instead of 10. In this case, we can use the following maneuver, which is illustrated

in Figure 2.5:

i nt [] or i gi nal = ar r ; / / 1. S ave r efe r ence t o a r r
ar r = ne w i nt [1 2] ; / / 2. H ave a re f er ence m or e memor y
f or (i nt i = 0 ; i < 1 0; i ++) / / 3 . C opy t he o l d d ata o ver
 ar r[i] = o r ig i nal [i] ;
or i gi nal = n ul l ; / / 4. U nr ef er ence o r i gi nal ar r ay

BOOK.mkr Page 63 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� Y

L M N O P Q R S � ì 4 4 8 5 ? � � 8 ; > : Ò ; Ð : ; 9 ? 4 ; 8 6 6 5 U Ì 8 Í ì 9 9 C ? > 9 8 4 9 : ; Ï � Ò : ; 9 Ð arr 4 ? � 4 ? Ë> ? ; 9 > < = : ; 9 ? Ï ? 4 > Î Ì B Í 8 @ 9 ? 4 > 9 ? � < Ð origina l 4 ? � 4 ? > ? ; 9 > 9 C ?> 8 G ? < = : ; 9 ? Ï ? 4 > Î Ì 7 Í 8 @ 9 ? 4 > 9 ? � > H 8 ; A � Ð arr 4 ? � 4 ? > ? ; 9 > < H : ; 9 ? ËÏ ? 4 > Ð 9 C ? @ : 4 > 9 < = Ò @ J C : 7 C 8 4 ? 7 Ò � : ? A @ 4 Ò G ori ginal Î 8 ; A Ì A Í8 @ 9 ? 4 > 9 ? � I Ð 9 C ? < = : ; 9 ? Ï ? 4 > 8 4 ? 8 K 8 : 6 8 B 6 ? @ Ò 4 4 ? 7 6 8 G 8 9 : Ò ; D
¥ ¢ © p � z } í � p n ¡ { � }
p � � p � { ~ p z y î } { � p { y z
z ~ � } � § ¢ { y � ¢ y | p { y q }
| ~ n z { p n { { y � } z p z
¢ p � º } � � ~ § £ ¢ y n º y z p
º ~ ~ ¡ | � ~ y | } �

A moment’s thought wil l convince you that this is an expensive operation.

This is because we copy all of the elements from or i gi nal back to ar r . If , for

instance, this array expansion is in response to reading input, it would be ineffi-

cient to reexpand every time we read a few elements. Thus when array expansion

is implemented, we always make it some multiplicative constant times as large.

For instance, we might expand it to be twice as large. In this way, when we expand

arr

arr

arr

arr

original

original

original

(a)

(b)

(c)

(d)

BOOK.mkr Page 64 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � Z

the array from N items to 2N items, the cost of the N copies can be apportioned

over the next N items that can be inserted into the array without an expansion.

ó
i mpor t j ava. i o. I nput St r eamReader ;ô
i mpor t j ava. i o. Buf f er edReader ;

õ
i mpor t j ava. i o. I OExcept i on;ö÷
publ i c c l ass R eadSt r i ngsø
{ù
 / / R ead a n u nl i mi t ed n umber o f S t r i ng; r et ur n a S t r i ng []

ú
 / / T he m i ni mal I / O d et ai l s u sed h er e a r e n ot i mpor t ant f orû
 / / t hi s e xampl e a nd a r e d i scussed i n S ect i on 2 . 6.ó ü
 publ i c s t at i c S t r i ng [] g et St r i ngs()ó ó
 {ó ô
 Buf f er edReader i n = n ew B uf f er edReader (n ewó õ
 I nput St r eamReader (S yst em. i n)) ;ó ö
 St r i ng [] a r r ay = n ew S t r i ng[5] ;ó ÷
 St r i ng o neLi ne;ó ø
 i nt i t emsRead = 0 ;ó ùó ú
 Syst em. out . pr i nt l n(" Ent er s t r i ngs, o ne p er l i ne; ") ;ó û
 Syst em. out . pr i nt l n(" Ter mi nat e w i t h e mpt y l i ne: ") ;ô üô ó
 t r yô ô
 {ô õ
 whi l e((o neLi ne = i n. r eadLi ne()) ! = n ul l & &ô ö
 ! oneLi ne. equal s(" "))ô ÷
 {ô ø
 i f (i t emsRead = = a r r ay. l engt h)ô ù
 ar r ay = r es i ze(a r r ay , a r r ay. l engt h * 2) ;ô ú
 ar r ay [i t emsRead++] = o neLi ne;ô û
 }

õ ü
 }

õ ó
 cat ch(I OExcept i on e)

õ ô
 {

õ õ
 Syst em. out . pr i nt l n(" Ear l y a bor t o f r ead. ") ;

õ ö
 }

õ ÷

õ ø
 r et ur n r esi ze(a r r ay, i t emsRead) ;

õ ù
 }

L M N O P Q R S � � Ò A ? 9 Ò 4 ? 8 A 8 ; T ; 6 : G : 9 ? A ; T G B ? 4 Ò @ Str i ng > 8 ; A Ò T 9 � T 99 C ? G Ì � 8 4 9 < Í

To make things more concrete, Figures 2.6 and 2.7 show a program that reads

an unlimited number of strings from the standard input and stores the result in a

BOOK.mkr Page 65 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� �

dynamically expanding array. An empty line is used to signal the end of input.

(The minimal I/O details used here are not important for this example and are dis-

cussed in Section 2.6.) The r esi ze routine performs the array expansion (or

shrinking), returning a reference to the new array. Similarly, the method

get St r i ngs returns (a reference to) the array where it will reside.

At the start of get St r i ngs , i t emsRead is set to 0 and we start with an

initial five-element array. We repeatedly read new items at line 23. If the array is

full , as indicated by a successful test at line 26, then the array is expanded by call-

ing r esi ze. Lines 42 to 48 perform the array expansion using the exact strategy

outlined previously. At line 28, the actual input item is assigned to the array and

the number of items read is incremented. If an error occurs on input, we simply

stop processing. Finally, at line 36 we shrink the array to match the number of

items read prior to returning.

BOOK.mkr Page 66 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � �
õ ú

 / / R esi ze a S t r i ng[] a r r ay ; r et ur n n ew a r r ay
õ û

 publ i c s t at i c S t r i ng [] r esi ze(S t r i ng [] a r r ay ,ö ü
 i nt n ewSi ze)ö ó
 {ö ô
 St r i ng [] o r i gi nal = a r r ay ;ö õ
 i nt n umToCopy = M at h. mi n(o r i gi nal . l engt h, n ewSi ze) ;ö öö ÷
 ar r ay = n ew S t r i ng[n ewSi ze] ;ö ø
 f or (i nt i = 0 ; i < n umToCopy; i ++)ö ù
 ar r ay [i] = o r i gi nal [i] ;ö ú
 r et ur n a r r ay;ö û
 }÷ ü÷ ó
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)÷ ô
 {÷ õ
 St r i ng [] a r r ay = g et St r i ngs() ;÷ ö
 f or (i nt i = 0 ; i < a r r ay . l engt h; i ++)÷ ÷
 Syst em. out . pr i nt l n(a r r ay [i]) ;÷ ø
 }÷ ù
}

L M N O P Q R S � � Ò A ? 9 Ò 4 ? 8 A 8 ; T ; 6 : G : 9 ? A ; T G B ? 4 Ò @ Str i ng > 8 ; A Ò T 9 � T 99 C ? G Ì � 8 4 9 H Í

2.4.3 ArrayList

¦ � }
Ar r ayL i st

y z
§ z } ¡ � ~ � } í � p n ¡ y n º
p � � p � z �

The technique used in Section 2.4.2 is so common that the Java Library contains

an Ar r ayLi st type with built-in functionality to mimic it. The basic idea is that

an Ar r ayLi st maintains not only a size, but also a capacity; the capacity is the

amount of memory that it has reserved. The capacity of the Ar r ayLi s t is really

an internal detail, not something that you need worry about.

¦ � }
add

� § n | { y ~ n y n ¯
| � } p z } z { � } z y î } £ �

� r p ¡ ¡ z p n } © y { } �
{ ~ { � } p � � p � p { { � }
p � � � ~ � � y p { } � ~ z y ¯
{ y ~ n r } í � p n ¡ y n º | p ¯
� p | y { � y � n } } ¡ } ¡ �

The add function increases the size by one, and adds a new item into the array

at the appropriate position. This is a trivial operation if capacity has not been

reached. If it has, the capacity is automatically expanded, using the strategy

described in Section 2.4.2. The Ar r ayLi st is initialized with a size of 0.

BOOK.mkr Page 67 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� ±
ó

i mpor t j ava. i o. I nput St r eamReader ;ô
i mpor t j ava. i o. Buf f er edReader ;

õ
i mpor t j ava. i o. I OExcept i on;ö÷
i mpor t j ava. ut i l . Ar r ayLi s t ;øù
publ i c c l ass R eadSt r i ngsWi t hAr r ayLi st

ú
{û
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)ó ü
 {ó ó
 Ar r ayLi st a r r ay = g et St r i ngs() ;ó ô
 f or (i nt i = 0 ; i < a r r ay . s i ze() ; i ++)ó õ
 Syst em. out . pr i nt l n(a r r ay . get (i)) ;ó ö
 }ó ÷ó ø
 / / R ead a n u nl i mi t ed n umber o f S t r i ng; r et ur n a n A r r ayLi s tó ù
 / / T he m i ni mal I / O d et ai l s u sed h er e a r e n ot i mpor t ant f oró ú
 / / t hi s e xampl e a nd a r e d i scussed i n S ect i on 2 . 6.ó û
 publ i c s t at i c A r r ayLi st g et St r i ngs()ô ü
 {ô ó
 Buf f er edReader i n = n ew B uf f er edReader (n ewô ô
 I nput St r eamReader (S yst em. i n)) ;ô õ
 Ar r ayLi st a r r ay = n ew A r r ayLi st () ;ô ö
 St r i ng o neLi ne;ô ÷ô ø
 Syst em. out . pr i nt l n(" Ent er s t r i ngs, o ne p er l i ne; ") ;ô ù
 Syst em. out . pr i nt l n(" Ter mi nat e w i t h e mpt y l i ne: ") ;ô ú

ô û
 t r y

õ ü
 {

õ ó
 whi l e((o neLi ne = i n. r eadLi ne()) ! = n ul l & &

õ ô
 ! oneLi ne. equal s(" "))

õ õ
 ar r ay . add(o neLi ne) ;

õ ö
 }

õ ÷
 cat ch(I OExcept i on e)

õ ø
 {

õ ù
 Syst em. out . pr i nt l n(" Ear l y a bor t o f r ead. ") ;

õ ú
 }

õ û
 ö ü
 r et ur n a r r ay;ö ó
 }ö ô
}

L M N O P Q R S 	 � Ò A ? 9 Ò 4 ? 8 A 8 ; T ; 6 : G : 9 ? A ; T G B ? 4 Ò @ Str i ng > 8 ; A Ò T 9 � T 99 C ? G Ð T > : ; Ï 8 ; ArrayList

Because indexing via [] is reserved only for primitive arrays, much as was

the case for St r i ngs, we have to use a method to access the Ar r ayLi st items.

BOOK.mkr Page 68 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � »

The get method returns the object at a specified index, and the set method can

be used to change the value of a reference at a specified index; get thus behaves

like the char At method. We will be describing the implementation details of

Ar r ayLi s t at several points in the text, and eventually write our own version.

The code in Figure 2.8 shows how add is used in getS t rings ; it is clearly

much simpler than the getStrings function in Section 2.4.2. It is important to

mention, however, that only objects (which are accessed by reference variables)

can be added into an Ar r ayLi s t . The eight primitive types cannot. However,

there is an easy workaround for that, which we wil l discuss in Section 4.6.2.

� � ¼ � ¼ ½ Þ � � � Ø � Ç � � � � � � � � ñ � � � å �
¥ Ô ¸ x ¹ Á ¹ Ô v ª « ¹ s ª · ¸

· ¬ ¬ · é y z p n p � � p �
{ � p { y z p | | } z z } ¡ £ �
� ~ � } { � p n ~ n } y n ¯
¡ } í �

Sometimes arrays need to be accessed based on more than one index. A common

example of this is a matrix. A multidimensional array is an array that is accessed

by more than one index. It is allocated by specifying the size of its indices, and

each element is accessed by placing each index in its own pair of brackets. As an

example, the declaration

i nt [][] x = n ew i nt [2] [3] ;

defines the two-dimensional array x , with the first index (representing the number

of rows) ranging from 0 to 1 and the second index (the number of columns) rang-

ing from 0 to 2 (for a total of six objects). The compiler sets aside six memory

locations for these objects.

BOOK.mkr Page 69 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� Ã

In the example above, the two dimensional array is actually an array of

arrays. As such, the number of rows is x.l engt h, which is 2. The number of

columns is x[0] . l engt h or x[1] . l engt h, both of which are 3.

Figure 2.9 illustrates how to print the contents of a two-dimensional array.

The code works not only for rectangular two-dimensional arrays, but also for

ragged two-dimensional arrays, in which the number of columns varies from row

to row. This is easily handled by using m[i] . l engt h at line 11 to represent the

number of columns in row i . We also handle the possibility that rows might be

nul l (which is different than length 0), with the test at line 7. The mai n routine

il lustrates the declaration of two-dimensional arrays for the case where initial val-

ues are known. It is simply an extension of the one-dimensional case discussed in

Section 2.4.1. Array a is a straightforward rectangular matrix, array b has a nul l

row, and array c is ragged.

BOOK.mkr Page 70 Wednesday, March 14, 2001 1:24 PM

ì 4 4 8 5 > � Ä
ó

c l ass M at r i xDemoô
{

õ
 publ i c s t at i c v oi d p r i nt Mat r i x(i nt [] [] m)ö
 {÷
 f or (i nt i = 0 ; i < m . l engt h; i ++)ø
 {ù
 i f (m [i] = = n ul l)

ú
 Syst em. out . pr i nt l n(" (nul l) ") ;û
 el seó ü
 {ó ó
 f or (i nt j = 0 ; j < m [i] . l engt h; j ++)ó ô
 Syst em. out . pr i nt (m [i] [j] + " ") ;ó õ
 Syst em. out . pr i nt l n() ;ó ö
 }ó ÷
 }ó ø
 }ó ùó ú
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)ó û
 {ô ü
 i nt [] [] a = { { 1 , 2 } , { 3 , 4 } , { 5 , 6 } } ;ô ó
 i nt [] [] b = { { 1 , 2 } , n ul l , { 5 , 6 } } ;ô ô
 i nt [] [] c = { { 1 , 2 } , { 3 , 4 , 5 } , { 6 } } ;ô õ

ô ö
 Syst em. out . pr i nt l n(" a: ") ; p r i nt Mat r i x(a) ;ô ÷
 Syst em. out . pr i nt l n(" b: ") ; p r i nt Mat r i x(b) ;ô ø
 Syst em. out . pr i nt l n(" c: ") ; p r i nt Mat r i x(c) ;ô ù
 }ô ú
}

L M N O P Q R S
 � 4 : ; 9 : ; Ï 8 9 J Ò Ë A : G ? ; > : Ò ; 8 6 8 4 4 8 5

� � ¼ � Å µ � Ç Ç � � Ø � � � � � ñ � ´ Þ Ç � � � �
 s Ô Ô · ª Á ¿ ¸ ¹ ª v · ¬ ¿

¶ Ô v ª x « p � } p q p y ¢ ¯
p £ ¢ } £ � } í p � y n y n º
{ � } � p � p � } { } � { ~
mai n

�

Command-line arguments are available by examining the parameter to mai n. The

array of strings represents the additional command-line arguments. For instance,

when the program is invoked,

j ava E cho t hi s t hat

ar gs[0] references the Str i ng "t h is" and ar gs[1] references the

St r i ng " t hat " . Thus the program in Figure 2.10 implements the ec ho

command.

BOOK.mkr Page 71 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� É
ó

publ i c c l ass E choô
{

õ
 / / L i st t he c ommand- l i ne a r gument sö
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)÷
 {ø
 f or (i nt i = 0 ; i < a r gs. l engt h - 1 ; i ++)ù
 Syst em. out . pr i nt (a r gs[i] + " ") ;

ú
 i f (a r gs. l engt h ! = 0)û
 Syst em. out . pr i nt l n(a r gs[a r gs. l engt h - 1]) ;ó ü
 el seó ó
 Syst em. out . pr i nt l n(" No a r gument s t o e cho") ;ó ô
 }ó õ
}

L M N O P Q R S � � E C ? echo 7 Ò G G 8 ; A

[\ � � � a g � h ` b i � ^ i j � ` i Û
� ê w v ë x ¹ s ª « p � } § z } ¡

{ ~ � p n ¡ ¢ }
} í | } � { y ~ n p ¢ ~ | ¯
| § � � } n | } z z § | � p z
} � � ~ � z �

Exceptions are objects that store information and are transmitted outside the nor-

mal return sequence. They are propagated back through the calling sequence until

some routine catches the exception. At that point, the information stored in the

object can be extracted to provide error handling. Such information will always

include details about where the exception was created. The other important piece

of information is the type of the exception object. For instance, when an

Ar rayInd exOutBo undsEx ception is propagated, it is clear that the basic

problem is a bad index. Exceptions are used to signal exceptional occurrences

such as errors.

BOOK.mkr Page 72 Wednesday, March 14, 2001 1:24 PM

� � 7 ? � 9 : Ò ; � 8 ; A 6 : ; Ï � Ó
� � Å � � Æ � � � � � � � � ´ þ ÿ � � � � � � � �

¥
try

t ¸ s w � } n ¯
| ¢ ~ z } z | ~ ¡ } { � p {
� y º � { º } n } � p { }
p n } í | } � { y ~ n �

The code in Figure 2.11 il lustrates the use of exceptions. Code that might result in

an exception’s being propagated is enclosed in a t r y block. The try block

extends from lines 17 to 21. Immediately following the t r y block are the excep-

tion handlers. This part of the code is jumped to only if an exception is raised; at

the point the exception is raised, the tr y block in which it came from is consid-

ered terminated. Each cat ch block is attempted in order until a matching han-

dler i s found. An I OExc ept i on i s generated by re adL i ne i f some

unexpected error occurs, and a NumberForm atExc eptio n is generated by

par seI nt if oneLi ne is not convertible to an i nt .

BOOK.mkr Page 73 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� Y
ó

i mpor t j ava. i o. Buf f er edReader ;ô
i mpor t j ava. i o. I nput St r eamReader ;

õ
i mpor t j ava. i o. I OExcept i on;ö÷
publ i c c l ass D i v i deByTwoø
{ù
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

ú
 {û
 / / B uf f er edReader i s d i scussed i n S ect i on 2 . 6ó ü
 Buf f er edReader i n = n ew B uf f er edReader (n ewó ó
 I nput St r eamReader (S yst em. i n)) ;ó ô
 i nt x ;ó õ
 St r i ng o neLi ne;ó öó ÷
 Syst em. out . pr i nt l n(" Ent er a n i nt eger : ") ;ó ø
 t r yó ù
 {ó ú
 oneLi ne = i n. r eadLi ne() ;ó û
 x = I nt eger . par seI nt (o neLi ne) ;ô ü
 Syst em. out . pr i nt l n(" Hal f o f x i s " + (x / 2)) ;ô ó
 }ô ô
 cat ch(I OExcept i on e)ô õ
 { S yst em. out . pr i nt l n(e) ; }ô ö
 cat ch(N umber For mat Except i on e)ô ÷
 { S yst em. out . pr i nt l n(e) ; }ô ø
 }ô ù
}

L M N O P Q R S � � á : G � 6 ? � 4 Ò Ï 4 8 G 9 Ò : 6 6 T > 9 4 8 9 ? ? � 7 ? � 9 : Ò ; >

¥
catch

t ¸ s w �
� � ~ | } z z } z p n } í ¯
| } � { y ~ n �

The code in the cat ch block — in this case line 23 or 25 — is executed if

the appropriate exception is matched. Then the cat ch block and the the t r y /

cat ch sequence is considered terminated.1 A meaningful message is printed

from the exception object e. Alternatively, additional processing and more

detailed error messages could be given.

1. Note that both t r y and cat ch require a block and not simply a single statement. Thus braces are not optional.

To save space, we often place simple catch clauses on a single line with their braces, indented two additional

spaces, rather than use three lines. Later in the text we will use this style for one-line methods.

BOOK.mkr Page 74 Wednesday, March 14, 2001 1:24 PM

� � 7 ? � 9 : Ò ; � 8 ; A 6 : ; Ï � Z
� � Å � � � � �

finally
µ � � Þ � �

¦ � }
finally

w ¸ · « v y z p ¢ © p � z
} í } | § { } ¡ { ~ � � y ~ � { ~
| ~ � � ¢ } { y ~ n ~ � p
£ ¢ ~ | ¨ r � } º p � ¡ ¢ } z z ~ �
} í | } � { y ~ n z �

Some objects that are created in a t ry block must be cleaned up. For instance,

files that are opened in the t r y block may need to be closed prior to leaving the

t ry block. One problem with this is that if an exception object is thrown during

execution of the t r y block, the clean up might be omitted because the exception

will cause an immediate break from the t r y block. Although we can place the

clean up immediately after the last catch clause, this works only if the excep-

tion is caught by one of the ca t ch clauses. And this may be diff icult to guaran-

tee.

The f i nal l y clause that may follow the last cat ch block (or the t r y

block if there are no cat ch blocks) is used in this situation. The f i nal l y

clause consists of the keyword f i nal l y followed by the f i nal l y block.

There are three basic scenarios.

1. If the t r y block executes without exception, control passes to the
f i nal l y block. This is true even if the t r y block exits prior to
the last statement via a r et ur n, br eak , or cont i nue.

2. If an uncaught exception is encountered inside the t r y block,
control passes to the f i nal l y block. Then, after executing the
f i nal l y block, the exception propagates.

3. If a caught exception is encountered in the t r y block, control
passes to the appropriate cat ch block. Then, after executing the
cat ch block, the f i nal ly block is executed.

� � Å � ² µ � Ç Ç � � þ ÿ � � � � � � � �
� ª ¿ x ¹ Ô v v ê w v ë ¿
x ¹ s ª « ¡ ~ n ~ { � p q } { ~

£ } � p n ¡ ¢ } ¡ �

There are several types of standard exceptions in Java. The standard run-time

exceptions include events such as integer divide-by-zero and illegal array access.

Since these events can happen virtually anywhere, it would be overly burdensome

BOOK.mkr Page 75 Wednesday, March 14, 2001 1:24 PM

X ? @ ? 4 ? ; 7 ? E 5 � ? >� �

to require exception handlers for them. If a catch block is provided, these

exceptions behave like any other exception. If a cat ch block is not provided for

a standard exception, and a standard exception is thrown, then it propagates as

usual, possibly past main . In this case, it causes an abnormal program termina-

tion, with an error message. Some of the common standard run-time exceptions

are shown in Figure 2.12. Generally speaking, these are programming errors and

should not be caught. Number For mat Except i on is a notable violation of this

principle, but Nul l Poi nt er Except i on is more typical.

 À v w � v Á v ê w v ë ¿
x ¹ s ª « � § z { £ } � p n ¯

¡ ¢ } ¡ ~ � ¢ y z { } ¡ y n p
throws

w ¸ · « v �

Most exceptions are of the standard checked exception variety. If a method is

called that might either directly or indirectly throw a standard checked exception,

then the programmer must either provide a cat ch block for it, or explicitly indi-

cate that the exception is to be propagated by use of a throws clause in the

method declaration. Note that eventually it should be handled because it is terrible

style for mai n to have a t hr ows clause. Some of the common standard checked

exceptions are shown in Figure 2.13.

� � � � � � � ! " � # � $ % & ' () & * � $ + � , & � � $ � -

Ar i t hmet i cExcept i on . / 0 1 2 3 4 5 4 1 6 7 8 0 9 0 1 : 6 / 6 ; 6 4 7 < = > 0 1 4 ?
Number For mat Except i on @ 3 3 0 9 A 3 B 4 7 / 0 1 ; 6 4 7 4 2 St r i ng 8 4 7 C D 0 1 6 B 8 = E 0 ?
I ndexOut Of BoundsExcept i on @ 3 3 0 9 A 3 6 7 : 0 F 6 7 8 4 A 7 A 1 1 A = 4 1 St r i ng ?
Negat i veAr r aySi zeExcept i on G 8 8 0 D E 8 8 4 B 1 0 A 8 0 A 7 0 9 A 8 6 / 0 H 3 0 7 9 8 I A 1 1 A = ?
Nul l Poi nt er Except i on @ 3 3 0 9 A 3 A 8 8 0 D E 8 8 4 C ; 0 A 7 C 3 3 1 0 2 0 1 0 7 B 0 ?
Secur i t yExcept i on J C 7 H 8 6 D 0 ; 0 B C 1 6 8 = / 6 4 3 A 8 6 4 7 ?

L M N O P Q R S � R � Ò G G Ò ; > 9 8 ; A 8 K A K T ; Ë 9 : G ? ? � 7 ? � 9 : Ò ; >

BOOK.mkr Page 76 Wednesday, March 14, 2001 1:24 PM

� � 7 ? � 9 : Ò ; � 8 ; A L : ; Ï � �
� ¬ ¬ s ¬ « p � } § n � } | ~ q ¯

} � p £ ¢ } } í | } � { y ~ n z �
Errors are virtual machine problems. The most common error is

Out Of Memor yEr r or . Others include I nt er nal Er r or and the infamous

UnknownEr r or , in which the virtual machine has decided that it is in trouble,

does not know why, but does not want to continue. Generally speaking an Er r or

is unrecoverable and should not be cauught.

� � Å � ¼ � � �
throw

� � Ø
throws

µ � � Þ � � �
¦ � }

throw
w ¸ · « v

y z § z } ¡ { ~ { � � ~ © p n
} í | } � { y ~ n �

The programmer can generate an exception by use of the throw clause. For

instance, we can create and then throw an Ar i t hmet i cExcept i on object by

t hr ow ne w Ar i t hmet i cExcept i on(" Div i de b y z ero ") ;

Since the intent is to signal to the caller that there is a problem, you should

never throw an exception only to catch it a few lines later in the same scope. In

other words, do not place a throws clause in a try block, and then handle it imme-

diately in the corresponding catch block. Instead, let it leave unhandled, and pass

the exception up to the caller. Otherwise, you are using exceptions as a cheap goto

statement, which is not good programming, and is certainly not what an excep-

tion—signalling an exceptional occurrence—is to be used for.

� � � � � � � M N &) O & � ' () & * � $ + � , & � � $ � -

j ava. i o. EOFExcept i on P 7 : H 4 2 H 2 6 3 0 < 0 2 4 1 0 B 4 D E 3 0 8 6 4 7 4 2 6 7 E C 8 ?
j ava. i o. Fi l eNot FoundExcept i on Q 6 3 0 7 4 8 2 4 C 7 : 8 4 4 E 0 7 ?

L M N O P Q R S � Ê � Ò G G Ò ; > 9 8 ; A 8 K A 7 C ? 7 R ? A ? � 7 ? � 9 : Ò ; >

BOOK.mkr Page 77 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >� ±

ó
i mpor t j ava. i o. I OExcept i on;ôõ
publ i c c l ass T hr owDemoö
{÷
 publ i c s t at i c v oi d p r ocessFi l e(S t r i ng t oFi l e)ø
 t hr ows I OExcept i onù
 {

ú
 / / O mi t t ed i mpl ement at i on p r opagat es a l lû
 / / t hr own I OExcept i on b ack t o t he c al l eró ü
 }ó óó ô
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)ó õ
 {ó ö
 f or (i nt i = 0 ; i < a r gs. l engt h; i ++)ó ÷
 {ó ø
 t r yó ù
 { p r ocessFi l e(a r gs[i]) ; }ó ú
 cat ch(I OExcept i on e)ó û
 { S yst em. er r . pr i nt l n(e) ; }ô ü
 }ô ó
 }ô ô
}

L M N O P Q R S � ý T L L T > 9 K 8 9 : Ò ; Ò @ 9 C ? throws 7 L 8 T > ?

Java allows programmers to create their own exception types. Details on cre-

ating and throwing user-defined exceptions are provided in Chapter 4.

¦ � }
throws

w ¸ · « v
y n ¡ y | p { } z � � ~ � p ¯
º p { } ¡ } í | } � { y ~ n z �

As mentioned earlier, standard checked exceptions must either be caught or

explicitly propagated to the calling routine, but they should, as a last resort, even-

tually be handled in mai n. To do the latter, the method that is unwilling to catch

the exception must indicate, via a throws clause, which exceptions it may prop-

agate. The t hr ows clause is attached at the end of the method header. Figure

j ava. i o. I OExcept i on @ 7 B 3 C : 0 ; D 4 ; 8 @ U . 0 F B 0 E 8 6 4 7 ; ?
I nt er r upt edExcept i on V I 1 4 5 7 < = 8 I 0 Thr ead.s l eep D 0 8 I 4 : ?

� � � � � � � M N &) O & � ' () & * � $ + � , & � � $ � -

L M N O P Q R S � Ê � Ò G G Ò ; > 9 8 ; A 8 K A 7 C ? 7 R ? A ? � 7 ? � 9 : Ò ; >

BOOK.mkr Page 78 Wednesday, March 14, 2001 1:24 PM

T ; � T 9 8 ; A W T 9 � T 9 � »

2.14 ill ustrates a method that propagates any I OExcept i ons that it encounters;

these must eventually be caught in mai n (since we wil l not place a t hr ows

clause in mai n).

[\ W X i � Y h ^ i j d Y h � Y h

Input and output (I/O) in Java is achieved through the use of the j ava. i o pack-

age. The types in the I/O package are all prefixed with j ava . io , including as

we have seen, j av a. i o. I OExcept i on. The import directive allows you to

avoid using complete names. For instance, with

i mpor t j ava. i o. I OExcept i on

at the top of your code, you can use I OExc ept i on as a shorthand for

j av a.i o.I OExce pti on. (Many common types, such as St r in g and Mat h

do not require import directives, as they are automatically visible by the short-

hands by virtue of being in j ava. l ang.)

The Java library is very sophisticated and has a host of options. Here, we

examine only the most basic uses, concentrating entirely on formatted I/O. In

Section 4.5.3, we will discuss the design of the library.

� � Ñ � � Ü � � � � Ý � � � � Ç � � � � � � � � � �
Like many languages, Java uses the notion of streams for I/O. To perform I/O to

the terminal, a fil e, or over the Internet, the programmer creates an associated

stream. Once that is done, all I/O commands are directed to that stream. A pro-

BOOK.mkr Page 79 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >± Ã

grammer defines a stream for each I/O target (for instance, each file requiring

input or output).

¦ � } � � } ¡ } � y n } ¡
z { � } p � z p � }
Syst em.i n

r
Syst em.o ut

r p n ¡
Syst em.e r r

�

Three streams are predefined for terminal I/O: Syst em. i n, the standard

input; Syst em. out , the standard output; and Syst em. er r , the standard error.

As already mentioned, the pr i nt and pr i nt l n methods are used for for-

matted output. Any type can be converted to a St r i ng suitable for printing by

calling its t oSt r i ng method; in many cases, this is done automatically. Unlike

with C and C++, which have an enormous number of formatting options, output

in Java is done almost exclusively by St r i ng concatenation, with no buil t-in for-

matting.

Buff eredReader

y z § z } ¡ � ~ � ¢ y n } ¯ p { ¯ p ¯
{ y � } y n � § { �

A simple method for reading formatted input is to read a single line into a

St r i ng object using r eadLi ne. The r eadl i ne method reads until it

encounters a line terminator or end of file. The characters that are read, minus the

line terminator (if read), are returned as a newly constructed St r i ng. To use

r eadLi ne, we must first construct a Buf f er edReader object from an

I nput St r eamReader object that is itself constructed from Syst em. i n.

This was illustrated in Figure 2.11 at lines 10 and 11.

If an immediate end of file is encountered, then nul l is returned. If a read

error occurs for some reason other than end of file, then some I OExcept i on is

generated. Note that the I OExcept i on, which is a standard checked exception,

must eventually be caught. In many instances, the I OExcept i on is allowed to

propagate back to a cat ch block in the mai n method; this technique was illus-

trated in Figure 2.14.

BOOK.mkr Page 80 Wednesday, March 14, 2001 1:24 PM

T ; � T 9 8 ; A W T 9 � T 9 ± Ä
� � Ñ � � � � �

StringTokenizer
� å � �

Recall that to read a single primitive type, such as an i nt , we use r eadLi ne to

read the line as a St r i ng and then apply a method to generate the primitive type

from the St r i ng. For i nt , we can use par seI nt .

BOOK.mkr Page 81 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >± É
ó

i mpor t j ava. i o. I nput St r eamReader ;ô
i mpor t j ava. i o. Buf f er edReader ;

õ
i mpor t j ava. i o. I OExcept i on;ö
i mpor t j ava. ut i l . St r i ngTokeni zer ;÷ø
publ i c c l ass M axTestù
{

ú
 publ i c s t at i c v oi d mai n(S t r i ng a r gs[])û
 {ó ü
 Buf f er edReader i n = n ew B uf f er edReader (n ewó ó
 I nput St r eamReader (S yst em. i n)) ;ó ô
 ó õ
 St r i ng o neLi ne;ó ö
 St r i ngTokeni zer s t r ;ó ÷
 i nt x ;ó ø
 i nt y ;ó ùó ú
 Syst em. out . pr i nt l n(" Ent er 2 i nt s o n o ne l i ne: ") ;ó û
 t r yô ü
 {ô ó
 oneLi ne = i n. r eadLi ne() ;ô ô
 i f (o neLi ne = = n ul l)ô õ
 r et ur n;ô ö
 ô ÷
 s t r = n ew S t r i ngTokeni zer (o neLi ne) ;ô ø
 i f (s t r . count Tokens() ! = 2)ô ù
 {ô ú
 Syst em. out . pr i nt l n(" Er r or : n eed t wo i nt s") ;ô û
 r et ur n;

õ ü
 }

õ ó
 x = I nt eger . par seI nt (s t r . next Token()) ;

õ ô
 y = I nt eger . par seI nt (s t r . next Token()) ;

õ õ
 Syst em. out . pr i nt l n(" Max: " + M at h. max(x , y)) ;

õ ö
 }

õ ÷
 cat ch(I OExcept i on e)

õ ø
 { S yst em. er r . pr i nt l n(" Unexpect ed I O e r r or ") ; }

õ ù
 cat ch(N umber For mat Except i on e)

õ ú
 { S yst em. er r . pr i nt l n(" Er r or : n eed t wo i nt s") ; }

õ û
 ö ü
 }ö ó
}

L M N O P Q R S � � � K Ò Ï K 8 G 9 C 8 9 A ? G Ò ; > 9 K 8 9 ? > 9 C ? > 9 K : ; Ï 9 Ò R ? ; : Z ? K

BOOK.mkr Page 82 Wednesday, March 14, 2001 1:24 PM

T ; � T 9 8 ; A W T 9 � T 9 ± Ó

St r i ngToken-

i zer
y z § z } ¡ { ~

} í { � p | { ¡ } ¢ y � y { } ¡
z § £ z { � y n º z � � ~ � p
¢ p � º } z { � y n º �

Sometimes we have several items on a line. For instance, suppose each line

has two i nt s. Java provides the St r i ngTokeni zer type to separate a

St r i ng into tokens. To use it by its shortened name, provide the i mpor t direc-

tive

i mpor t j ava. ut i l . St r i ngTokeniz er ;

Use of the string tokenizer is illustrated in Figure 2.15. First, at line 25, we

construct a St r i ngTokeni zer object by providing the St r i ng representing

the line of input. The count Tokens method, shown on line 26, wil l provide the

number of tokens in the St r i ng; in this example, this should be two, or else the

input is in error. Then, the next Token method returns the next token as a

St r i ng. This method throws NoSuchEl ement Except i on if there is no

token, but this is a runtime exception and does not have to be caught. At lines 31

and 32, we use next Token followed by par seI nt to obtain an i nt . All

errors, including the failure to provide exactly two tokens, are handled in the

cat ch blocks.

By default, tokens are separated by whitespace. The St r i ngTokeni zer

can be constructed to recognize other characters as delimiters and to include these

delimiters as tokens.

� � Ñ � ² Ý � [Þ � � � � � � \ � � � �
Fi l eReader

y z
§ z } ¡ � ~ � � y ¢ } y n � § { �

One of the basic rules of Java is that what works for terminal I/O also works for

files. To deal with a file, we do not construct a Buf fer edReader object from

BOOK.mkr Page 83 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >± Y

an I nput Str eamReader . Instead, we construct it from a Fi le Reader

object, which itself can be constructed by providing a filename.

An example that il lustrates these basic ideas is shown in Figure 2.16. Here, we

have a program that wil l l ist the contents of the text files that are specified as com-

mand-line arguments. The mai n routine simply steps through the command-line

arguments, passing each one to l i s t Fi l e. In l i s t Fi l e, we construct the

Fi l eReader object at line 24, and then use it to construct a Buf f er edReader

object — f i l eI n — at line 25. At that point, reading is identical to what we have

already seen.

After we are done with the file, we must close it; otherwise, we could eventu-

ally run out of streams. Note that this cannot be done at the end of the t r y block,

since an exception could cause a premature exit from the block. Thus we close the

file in a f i nal l y block, which is guaranteed to be started whether there are no

exceptions, handled exceptions, or unhandled exceptions. The code to handle the

cl ose is complex because:

1. f i l eI n must be declared outside of the try block in order to be
visible in the finally block.

2. f i l eI n must be initialized to nul l to avoid compiler com-
plaints about a possible uninitialized variable.

3. Prior to calling c l ose, we must check that f i l eI n is not nul l
to avoid generating a Nul lP oi nt er Except i on (f i l eI n
would be nul l if the file was not found, resulting in an
I OExcept i on prior to its assignment).

4. cl ose might itself throw a checked exception, and requires a try/
catch block.

BOOK.mkr Page 84 Wednesday, March 14, 2001 1:24 PM

T ; � T 9 8 ; A W T 9 � T 9 ± Z
ó

i mpor t j ava. i o. Fi l eReader ;ô
i mpor t j ava. i o. Buf f er edReader ;

õ
i mpor t j ava. i o. I OExcept i on;ö÷
publ i c c l ass L i st Fi l esø
{ù
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

ú
 {û
 i f (a r gs. l engt h = = 0)ó ü
 Syst em. out . pr i nt l n(" No f i l es s peci f i ed") ;ó ó
 f or (i nt i = 0 ; i < a r gs. l engt h; i ++)ó ô
 l i s t Fi l e(a r gs[i]) ;ó õ
 }ó öó ÷
 publ i c s t at i c v oi d l i s t Fi l e(S t r i ng f i l eName)ó ø
 {ó ù
 Fi l eReader t heFi l e;ó ú
 Buf f er edReader f i l eI n = n ul l ;ó û
 St r i ng o neLi ne;ô üô ó
 Syst em. out . pr i nt l n(" FI LE: " + f i l eName) ;ô ô
 t r yô õ
 {ô ö
 t heFi l e = n ew F i l eReader (f i l eName) ;ô ÷
 f i l eI n = n ew B uf f er edReader (t heFi l e) ;ô ø
 whi l e((o neLi ne = f i l eI n. r eadLi ne()) ! = n ul l)ô ù
 Syst em. out . pr i nt l n(o neLi ne) ;ô ú
 }ô û
 cat ch(I OExcept i on e)

õ ü
 { S yst em. out . pr i nt l n(e) ; }

õ ó
 f i nal l y

õ ô
 {

õ õ
 / / C l ose t he s t r eam

õ ö
 t r y

õ ÷
 {

õ ø
 i f (f i l eI n ! = n ul l)

õ ù
 f i l eI n. c l ose() ;

õ ú
 }

õ û
 cat ch(I OExcept i on e)ö ü
 { }ö ó
 }ö ô
 }ö õ
}

L M N O P Q R S � � � K Ò Ï K 8 G 9 Ò L : > 9 7 Ò ; 9 ? ; 9 > Ò @ 8 @ : L ?

BOOK.mkr Page 85 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >± �
ó

/ / D oubl e s pace f i l es s peci f i ed o n c ommand l i ne.ôõ
i mpor t j ava. i o. Fi l eReader ;ö
i mpor t j ava. i o. Buf f er edReader ;÷
i mpor t j ava. i o. Fi l eWr i t er ;ø
i mpor t j ava. i o. Pr i nt Wr i t er ;ù
i mpor t j ava. i o. I OExcept i on;

ú
û

publ i c c l ass D oubl eSpaceó ü
{ó ó
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)ó ô
 {ó õ
 f or (i nt i = 0 ; i < a r gs. l engt h; i ++)ó ö
 doubl eSpace(a r gs[i]) ;ó ÷
 }ó ø
 ó ù
 publ i c s t at i c v oi d d oubl eSpace(S t r i ng f i l eName)ó ú
 {ó û
 Pr i nt Wr i t er f i l eOut = n ul l ;ô ü
 Buf f er edReader f i l eI n = n ul l ;ô óô ô
 t r yô õ
 {ô ö
 f i l eI n = n ew B uf f er edReader (ô ÷
 new F i l eReader (f i l eName)) ;ô ø
 f i l eOut = n ew P r i nt Wr i t er (ô ù
 new F i l eWr i t er (f i l eName + " . ds")) ;ô ú

ô û
 St r i ng o neLi ne;

õ ü
 whi l e((o neLi ne = f i l eI n. r eadLi ne()) ! = n ul l)

õ ó
 f i l eOut . pr i nt l n(o neLi ne + " \ n") ;

õ ô
 }

õ õ
 cat ch(I OExcept i on e)

õ ö
 { e . pr i nt St ackTr ace() ; }

õ ÷õ ø
 f i nal l y

õ ù
 {

õ ú
 t r y

õ û
 {ö ü
 i f (f i l eOut ! = n ul l)ö ó
 f i l eOut . c l ose() ;ö ô
 i f (f i l eI n ! = n ul l)ö õ
 f i l eI n. c l ose() ;ö ö
 }ö ÷
 cat ch(I OExcept i on e)ö ø
 { e . pr i nt St ackTr ace() ; }ö ù
 }ö ú
 }ö û
}

L M N O P Q R S � � � K Ò Ï K 8 G 9 Ò A Ò T B L ? Ë > � 8 7 ? @ : L ? >

BOOK.mkr Page 86 Wednesday, March 14, 2001 1:24 PM

á T G G 8 K S ± �

Fi l eWr i t er
y z

§ z } ¡ � ~ � � y ¢ } ~ § { � § { �
Formatted file output is similar to file input. Fi l eWr i t er , Pr i ntWr i t er ,

and pr i nt l n replace Fi l eReader , Buf f er edReader , and r eadLi ne,

respectively. Figure 2.17 illustrates a program that double-spaces files that are

specified on the command line (the resulting files are placed in a file with a . ds

extension).

This description of Java I/O, while enough to do basic formatted I/O, hides an

interesting object-oriented design that is discussed in more detail i n Section 4.5.3.

Ý Þ Ç Ç � � å
This chapter examined reference types. A reference is a variable that stores either

the memory address where an object resides or the special reference nul l . Only

objects may be referenced; any object can be referenced by several reference vari-

ables. When two references are compared via ==, the result is t r ue if both refer-

ences refer to the same object. Similarly, = makes a reference variable reference

another object. Only a few other operations are available. The most significant is

the dot operator, which allows the selection of an object’s method or access of its

internal data.

Because there are only eight primitive types, virtually everything of conse-

quence in Java is an object and is accessed by a reference. This includes

St r i ngs, arrays, exception objects, data and file streams, and a string tokenizer.

The St r i ng is a special reference type because + and += can be used for

concatenation. Otherwise, a St r i ng is like any other reference; equal s is

required to test if the contents of two St r i ngs are identical. An array is a collec-

BOOK.mkr Page 87 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >± ±

tion of identically typed values. The array is indexed starting at 0, and index range

checking is guaranteed to be performed. Arrays can be expanded dynamically by

using new to allocate a larger amount of memory and then copying over individ-

ual elements.

Exceptions are used to signal exceptional events. An exception is signaled by

the t hr ow clause; it is propagated until handled by a cat ch block that is associ-

ated with a t r y block. Except for the run-time exceptions and errors, each method

must signal the exceptions that it might propagate by using a t hr ows list.

St r i ngTokeni zer s are used to parse a St r i ng into other St r i ngs.

Typically, it is used in conjunction with other input routines. Input is handled by

Buf f er edReader , I nput St r eamReader , and Fi l eReader objects.

 The next chapter shows how to design new types by defining a class.

� � � � � � � � � � � � ³ � Ç �
aggregate A collection of objects stored in one unit. (58)

array Stores a collection of identically typed objects. (58)

array indexing operator [] Provides access to any element in the array. (58)

ArrayList Stores a collection of objects in array-like format, with easy

expansion via the add method. (67)

BufferedReader Used for line-at-a-time input. (80)

call by reference In many programming languages, means that the formal

parameter is a reference to the actual argument. This is the natural effect

achieved in Java when call -by-value is used on reference types. (51)

BOOK.mkr Page 88 Wednesday, March 14, 2001 1:24 PM

W B F ? 7 9 > Ò @ 9 C ?] 8 G ? ± »

catch block Used to process an exception. (74)

checked exception Must be either caught or explicitly allowed to propagate by

a t hr ows clause. (76)

command-line argument Accessed by a parameter to mai n. (71)

construction For objects, is performed via the new keyword. (47)

dot member operator (.) Allows access to each member of an object. (46)

dynamic array expansion Allows us to make arrays larger if needed. (63)

equals Used to test if the values stored in two objects are the same. (53)

Error An unrecoverable exception. (77)

exception Used to handle exception occurrences, such as errors. (72)

FileReader Used for file input. (83)

FileWriter Used for file output. (87)

finally clause Always executed prior to exiting a t r y /cat ch

sequence. (75)

garbage collection Automatic reclaiming of unreferenced memory. (48)

immutable Object whose state cannot change. Specifically, the St r i ngs are

immutable. (54)

input and output (I/O) Achieved through the use of the j ava. i o

package. (79)

java.io Package that is imported for nontrivial I/O. (79)

length field Used to determine the size of an array. (59)

length method Used to determine the length of a string. (57)

lhs and rhs Stands for left-hand side and right-hand side, respectively. (49)

BOOK.mkr Page 89 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >» Ã

multidimensional array An array that is accessed by more than one index. (69)

new Used to construct an object. (47)

null reference The value of an object reference that does not refer to any

object. (42)

NullPointerException Generated when attempting to apply a method

to a nul l reference. (47)

object A nonprimitive entity. (45)

reference type Any type that is not a primitive type. (45)

run-time exception Does not have to be handled. Examples include

Ar i t hmet i cExcept i on and Nul l Poi nt er Except i on. (75)

String A special object used to store a collection of characters. (54)

string concatenation Performed with + and += operators. (55)

StringTokenizer Used to extract delimited St r i ngs from a single

St r i ng. Found in the j ava. ut i l package. (83)

System.in, System.out, and System.err The predefined I/O

streams. (80)

throw clause Used to throw an exception. (77)

throws clause Indicates that a method might propagate an exception. (78)

toString method Converts a primitive type or object to a St r i ng. (57)

try block Encloses code that might generate an exception. (73)

BOOK.mkr Page 90 Wednesday, March 14, 2001 1:24 PM

W ; 9 C ? T ; 9 ? K ; ? 9 » Ä
µ � Ç Ç � � þ � � � � �

1. For reference types and arrays, = does not make a copy of object values.

Instead, it copies addresses.

2. For reference types and strings, equal s should be used instead of == to

test if two objects have identical states.

3. Off-by-one errors are common in all languages.

4. Reference types are initialized to nul l by default. No object is con-

structed without call ing new. An “uninitialized reference variable” or

Nul l Poi nt er Except i on indicates that you forgot to allocate the

object.

5. In Java, arrays are indexed from 0 to N- 1, where N is the array size. How-

ever, range checking is performed, so an out-of-bounds array access is

detected at run-time.

6. Two-dimensional arrays are indexed as A[i] [j] , not A[i , j] .

7. Checked exceptions must either be caught or explicitly allowed to propa-

gate with a t hr ows clause.

8. Use " " and not ' ' for outputting a blank.

� � � � � ^ � � � � � � �
Following are the available files for this chapter. Everything is self-contained, and

nothing is used later in the text.

BOOK.mkr Page 91 Wednesday, March 14, 2001 1:24 PM

X ? @ ? K ? ; 7 ? E S � ? >» É

RandomNumbers.java Contains the code for the example in Figure 2.4.

ReadStrings.java Contains the code for the example in Figures 2.6

and 2.7.

ReadStringsWithArrayList.java Contains the code for the example in Figure

2.8.

MatrixDemo.java Contains the code for the example in Figure 2.9.

Echo.java Contains the code for the example in Figure 2.10.

DivideByTwo.java Contains the code for the example in Figure 2.11

MaxTest.java Contains the code for the example in Figure 2.15.

ListFiles.java Contains the code for the example in Figure 2.16.

DoubleSpace.java Contains the code for the example in Figure 2.17.

þ ÿ � � � � � � �
_ ` a b c d e

2.1. List the major differences between reference types and primitive types.

2.2. List five operations that can be applied to a reference type.

2.3. What are the differences between an array and Ar r ayLi st ?

2.4. Describe how exceptions work in Java.

2.5. List the basic operations that can be performed on strings.

f g h i j k l m

2.6. If x and y have the values of 5 and 7, respectively, what is output by the

following:

BOOK.mkr Page 92 Wednesday, March 14, 2001 1:24 PM

n o p q r s t p t u v

Syst em.o ut . pr i nt l n(x + ' ' + y) ;
Syst em.o ut . pr i nt l n(x + " " + y) ;

f g w l x y z { y j

2.7. A checksum is the 32-bit integer that is the sum of the Unicode characters

in a file (we allow silent overflow, but silent overflow is unlikely if all the

characters are ASCII) . Two identical files have the same checksum. Write

a program to compute the checksum of a file that is supplied as a com-

mand-line argument.

2.8. Modify the program in Figure 2.16 so that if no command-line arguments

are given, then the standard input is used.

2.9. Write a method that returns t r ue if St r i ng st r 1 is a prefix of

St r i ng st r 2. Do not use any of the general string searching routines

except ch ar At .

w l k | l x } } { g | w l k ~ j y z �

2.10. Write a program that outputs the number of characters, words, and lines in

the files that are supplied as command-line arguments.

2.11. In Java, floating point divide-by-zero is legal and does not result in an

exception (instead, it gives a representation of infinity, negative infinity, or

a special not-a-number symbol).

a. Verify the above description by performing some floating point divi-

sions.

BOOK.mkr Page 93 Wednesday, March 14, 2001 1:24 PM

� p � p q p � r p � � � p tu �

b. Write a static di v i de method that takes two parameters, and returns

their quotient. If the dividend is 0.0, throw an

Ar i t hmet i cExcept i on. Is a throws clause needed?

c. Write a mai n program that calls di v i de and catches the

Ar i t hmet i cExcept i on. In which method should the catch clause

be placed?

2.12. Implement a text file copy program. Include a test to make sure that the

source and destination files are different.

2.13. Each line of a file contains a name (as a string) and an age (as an integer).

a. Write a program that outputs the oldest person; in case of ties, output

any person.

b. Write a program that outputs the oldest person; in case of ties, output

all oldest people (Hint: maintain the current group of oldest people in

an Ar r ayLi st).

� � � � � � � � � �

More information can be found in the references at the end of Chapter 1.

BOOK.mkr Page 94 Wednesday, March 14, 2001 1:24 PM

