Part |

Tour of Java

.
~o|e

é BOOK.mkr Page2 Wednesday, March 14 2001 124 PM

ZIN

ﬁ-}

é BOOK.mkr Page3 Wednesday, March 14 2001 124 PM

CHAPTER

] Primitive Java

HE primary focus of this bodk is problem solving techniques that all ow the
Tconstruction of sophisticated, time-efficient programs. Nearly al of the mate-
rial discussed is applicable in any programming language. Some would argue that
a broad pseudocode description o these techniques could suffice to demonstrate
concepts. However, we believe that working with live codeis vitally important.

There is no shortage of programing languages avail able. At the time of this

>

writing, C++ is the language in widest use both academicdly and commercialy.
However, in 1996, Java exploded onto the scene & aviable antender.

Java's primary apped isthat it is a safe, portable language that suppats mod-
ern dbjed-oriented constructs. Many C++ constructs that are mnfusingto novices
are not foundin Java. Compared to C++, many common programming errors are
caught by Java either at compile time or at run time. Java has an exception mecd-
anism that requires the programmer to explicitly ded with errors and a relatively
simple model that distinguishes between primitive types (such asi nt) and user-
defined types. Java does not have an explicit pointer type.

Javais portable: for example, an integer has the same range of valuesin every
Java implementation, regardless of the underlying computer architecture. Java

also provides agraphicd user interface (GUI) todlkit that allows input and ouput

ﬁ%

é BOOK.mkr Page4 Wednesday, March 14 2001 124 PM

Bl Frimitive Java

to be performed using forms. Althoughwe do ot discussthistoadlkit in the text, it

is relatively easy to use. Most important, it is also portable to every Java imple-
mentation. Java's phil osophy is “write once, run everywhere.”

In the first five dchapters, we discuss the feaures of Java that are used
throughaut the book. Unused features and technicdities are not covered. Those
looking for deeper Java information will find it in the many Java books that are
avail able.

We begin by discussng the part of the language that mirrors a 1970s pro-
gramming language such as Pasca or C. This includes primitive types, basic
operations, conditional and looping constructs, and the Java equivalent of func-

tions.

>

In this chapter, we will see

» Some of the basics of Java, including simplelexicd elements

» The Java primitive types, including some of the operations that primitive-

typed variables can perform
» How conditional statements and loop constructs are implemented in Java

« Anintroductionto the static method — the Java equivalent of the function

and procedure that is used in non-objed-oriented languages

1.1 The General Environment
How are Java gpli cation programs entered, compil ed, and run? The answer, of

course, depends on the particular platform that hosts the Java wmpiler.

ﬁ%

é BOOK.mkr Page5 Wednesday, March 14 2001 124 PM é

The General Environment

1

Java source @de resides in files whaose names end with the .j ava suffix. javac compiles

The loca compiler, javac, compiles the program and generates . cl ass files, -1 a@vafiesand

. . .) generates . cl ass
which contain bytecode. Java bytecodes represent the portable intermediate lan-

files containing

guage that is interpreted by running the Java interpreter, java. The interpreter is bytecode. java

also known as the virtual machine. invokes the Java

For Java programs, input can come from one of many places: inferpreter (which is

also known as the

» Theterminal, whose input is denoted as standard input virtual machine).

» Additional parametersin the invocation of the exeautable program —

command-line arguments
* A GUI component

4 « Afile >

Command-line aguments are particularly important for spedfying program
options. They are discussd in Sedion 2.4.5. Java provides mechanisms to read
and write files. This is discussed kriefly in Sedion 26.3 and in more detail in
Sedion 4.5.3 as an example of the decorator pattern. Many operating systems
provide an aternative known as file redirection, in which the operating system
arranges to take inpu from (or send output to) a file in a manner that is transpar-

ent to the running program. On Unix, for instance, the command

javaProgram<i nputfile>o0 utputfile
automatically arranges things 9 that any terminal reads are redirected to come

fromi nput fi |l e and termina writes arerredireded to gotoout put fil e.

ﬁ%

é BOOK.mkr Page6 Wednesday, March 14 2001 124 PM

Bl Frimitive Java

Q(%

Comments make

code easier for hu-

mans to read. Java

has three forms of

comments.

1.2 The First Program

Let us begin by examining the simple Java program shown in Figure 1.1. This

program prints a short phrase to the terminal. Note the line numbers $own on the

left of the ade are not part of the program. They are supplied for easy reference
Place the program in the sourcefile Fi r st Progr am j ava and then com-

pile and run it. Note that the name of the source file must match the name of the

class(shown online 4), including case @mnventions. If you are using the JDK, the

commands are:1

javacFi rstProgram.java
javaF ir st Program

1.2.1 Comments
Java has three forms of comments. The first form, which is inherited from C,
begins with the token / * and endswith */ . Hereis an example:
[*T his isa

two |inec onment* /
Comments do not nest.

The second form, which is inherited from C++, begins with the token / /.
There is no ending token. Rather, the comment extends up to the end d the line.

Thisis diownonlinesland2in Figure 1.1.

1

If you are using Sun’s DK, javac and java are used diredly. Otherwise, in atypical interadive development

environment (IDE), such as JBuil der, these commands are executed behind the scenes on your behalf.

ﬁ%

é BOOK.mkr Page 7 Wednesday, March 14 2001 124 PM

1

The First Program

Thethird form beginswith/ ** instead of / *. Thisform can be used to pro-
vide information to the javadoc utility, which will generate documentation from
comments. Thisform is discussed in Section 3.3.

Comments exist to make wmde eaier for humans to read. These humans
include other programmers who may have to modify or use your code, as well as

yourself. A well-commented program isasign of agood programmer.

1 //F irstp rogram
2 //IMW9 /1/01
3
4 publicc lassFirstProgram
5 {
> 6 publics taticvoidmain(String[]a rgs) .
7 {
8 Systemout.printin(" Ist hereanybodyo utt here?") ;
9 }
10 }

Figure 1.1 A simple first program

1.2.2 main
A Java program consists of a mllecion o interacting classes, which contain When the program
methods. The Java equivalent of the function or procedure is the static method, ' "un- fhe special
function mai n is
which is described in Section 1.6. When any program is run, the special static
invoked.
method mai n isinvoked. Line 6 of Figure 1.1 shows that the static method mai n

isinvoked, possbly with command-line arguments. The parameter types of mai n

and the voi d return type shown are required.

ﬁ%

é BOOK.mkr Page8 Wednesday, March 14 2001 124 PM

Ell Frimitive Java

\

printl nisusedto

perform output.

1.2.3 Terminal Output

The program in Figure 1.1 consists of a single statement, shown online 8.
printin is the primary output mechanism in Java. Here, a constant string is
placed on the standard output stream Syst em.out by applying apr i ntin
method. Input and ouput is discussed in more detail in Sedion 2.6. For now we
mention only that the same syntax is used to perform output for any entity,

whether that entity is an integer, floating point, string, or some other type.

1.3 Primitive Types

Java defines eight primitive types. It also allows the programmer grea flexibility
to define new types of objeds, called classes. However, primitive types and user-
defined types have important differences in Java. In this sction, we examine the

primitive types and the basic operations that can be performed on them.

>

é BOOK.mkr Page9 Wednesday, March 14 2001 124 PM é

Primitive Types m

?

1.3.1 The Primitive Types
Java has eight primitive types, shown in Figure 1.2. The most commonistheinte- Java's primitive

ger, which is pedfied by the keyword int . Unlike with many other languages, VPSS ore infeger.

floating-point,
the range of integers is not machine-dependent. Rather, it is the same in any Java
Boolean, and

implementation, regardless of the underlying computer architecture. Java dso character

alowsentities of type byt e, shor t , and| ong. Floating-point numbers are rep-

resented by the typesfl oat and doubl e. doubl e has more significant digits, "¢ Unicode stan-

_— . dard contains over
so use of it isrecommended over use of f | oat . The char typeisused to repre-

30,000 distinct

sent single charaders. A char occupies 16 hts to represent the Unicode stan-
coded characters

dard. The Unicode standard contains over 30,000 dstinct coded characters covering the princi-

covering the principal written languages. The low end d Unicode isidenticd to P9 Written lan-

> guages. >
ASCII. Thefina primitive typeisbool ean, whichiseithert r ue or f al se.

é BOOK.mkr Page 10 Wednesday, March 14 2001 1:24 PM

Primitive Java

Primitive Type What It Stores Range

byte 8-bit integer -128 to 127

short 16-bit integer -32,768 to0 32,767

i nt 32-bit integer -2,147,483,648 to 2,147 ,483,647

| ong 64-bit integer 06345 263 _ 1

fl oat 32-bit floating- 6 significant digits, (1074, 1038)
point

doubl e 64-bit floating- 15 significant digits, (107324, 10308)
point

char Unicode
character

bool ean Boolean variable fals eandtrue

Figure 1.2 The eight primitive types in Java

1.3.2 Constants

Integer constants Integer constants can be represented in either deamal, octal, or hexadecimal

can be repre- notation. Octal notation isindicated by aleading 0; hexadedmal isindicaed by a

sented in either
leading Ox or OX. The following are dl equivalent ways of representing the inte-

decimal, octal, or
ger 37: 37, 045, 0x25 . Octal integers are not used in this text. However, we

hexadecimal nota-
tion. must be aware of them so that we use leading Os only when we intend to. Hexa-
decimals are used in only one place(Section 121), and we will revisit them at

that point.

é(%

é BOOK.mkr Page 11 Wednesday, March 14 2001 1:24 PM

Primitive Types n

A character constant is enclosed with a pair of single quotation marks, asin
"a' . Internaly, this character sequenceisinterpreted as a small number. The out-
put routines later interpret that small number as the wrresponding character. A
string constant consists of a sequence of charaders enclosed within dauble quaa-
tionmarks, asin " Hel | 0" . There ae some spedal sequences, known as escape
sequences, that are used (for instance, how does one represent a single quatation
mark?). Inthistextweuse' \n' ," \\' ;" \" ' Jand'\ "' , which mean, respec
tively, the newline charader, badkslash character, single quotation mark, and dou-

ble quotation mark.

1.3.3 Declaration and Initialization of Primitive Types

Any variable, including those of a primitive type, is declared by providing its
name, itstype, and optionally, itsinitial value. The name must be an identifier. An
identifier may consist of any combination of letters, digits, and the underscore
charader; it may na start with adigit, however. Reserved words, such asi nt , are
not alowed. Althoughit islegal to do so, you shoud not reuse identifier names
that are already visibly used (for example, do not use mai n as the name of an
entity).

Java is case-sensitive, meaning that Age and age are different identifiers.
This text uses the following convention for naming variables: All variables gart
with alowercase |etter and new words gart with an uppercase letter. An example
istheidentifier m ni mnumMage.

Here are some examples of dedarations:

ﬁ%

A string constant
consists of a se-
quence of charac-
ters enclosed by

double quotes.

Escape sequences
are used to repre-
sent certain char-

acter constants.

A variable is named
by using an identi-

fier,

Java is case-

sensitive.

—

1

é BOOK.mkr Page 12 Wednesday, March 14 2001 1:24 PM

Primitive Java

intn um3 //D efaultin itialization
doubl e m ni numAMge =4 .50; /1S tandard initializati on
intx= 0,n uml= O; //T woentiti esared ecl ared

intn um2=n un;

A variable shoud be dedared nea itsfirst use. As will be shown, the place

ment of a dedaration determinesits sope and meaning.

1.3.4 Terminal Input and Output
Basic formatted terminal 1/0O isaccomplished by r eadLi ne andprin t | n. The
standard input stream is System.in , and the standard output stream is
System out .
The basic medchanism for formatted 1/0 usesthe St r i ng type, which is dis-
cussd in Sedion 2.3. For output, + combinestwo St r i ngs. If the second argu- 5
ment isnot a St ri ng, atemporary St ri ng is created for it if it is a primitive
type. These conversions to Stri ng can also be defined for objects (Sedion
3.4.3). For input, we must aswciate a BufferedReader objea with
System in.ThenaStri ngisread and can be parsed. A more detailed dscus-

sionof 1/0, including a treament of formatted files, isin Sedion 26.

1.4 Basic Operators
This dion describes some of the operators availablein Java. These operators are
used to form expressions. A constant or entity by itself is an expression, as are

combinations of constants and variables with operators. An expression foll owed

ﬁ%

é BOOK.mkr Pege 13 Wednesday, March 14 2001 1:24 PM é

Basic Operators

1

by a semicolon is a simple statement. In Section 15, we examine other types of

statements, which introduce alditional operators.

1.4.1 Assignment Operators

A simple Java program that illustrates a few operatorsis srownin Figure 1.3. The
basic assignment operator isthe equals sgn. For example, online 16 the variable
a is assigned the value of the variable ¢ (which at that point is 6). Subsequent
changesto the value of ¢ donot affed a. Assgnment operators can be chained, as
inz=y=x=0.

Another assgnment operator is the +=, whose useisillustrated on line 18 of Java provides a

host of assignment

the figure. The += operator adds the value on the right-hand side (of the += oper-

> operators, includ-
ator) to the variable on the left-hand side. Thus, in the figure, ¢ is incremented

* =

ing=,+=,-=,

from its value of 6 before line 18, to avalue of 14. and/ =
Java provides various other asignment operators, such as - =, *=, and/ =,
which alter the variable on the left-hand side of the operator via subtraction, mul-

tiplication, and division, respectively.

é BOOK.mkr Pege 14 Wednesday, March 14 2001 1:24 PM

2l Frimitive Java

Q(%

Java provides sev-
eral binary arith-
metic operators,
including +, - ,*,

!, and %

1 publicc |assOperatorTest

2 {

3 /P rogramtoi Ilustrateb asico perators

4 /1T heoutputi sasf ollows:

5 /11 286

6 /1686

7 /1/681 4

8 /12 281 4

9 /12 41033

10

11 publics taticvoidmain(String[]a rgs)

12 {

13 inta=1 2,b=8 ,c=6 ;

14

15 Systemout.printin(a+""+b+""+¢c) ;
16 a=c ;

17 Systemout.println(a+""+b+""+c¢) ;
18 c+=b;

19 Systemout.printin(a+""+b+""+¢c) ;
20 a=b+c ;

21 Systemout.println(a+""+b+""+c¢) ;
22 a++;

23 ++b;

24 c=a ++++ +b;

25 Systemout.println(a+""+b+""+¢c) ;
26 }

27 }

Figure 1.3 Program that illustrates operators

1.4.2 Binary Arithmetic Operators

Line 20 in Figure 1.3 ill ustrates one of the binary arithmetic operators that are
typical of all programming languages: the aldition operator (+). The + operator
causes the values of b and ¢ to be alded together; b and ¢ remain unchanged.
The resulting value is assigned to a. Other arithmetic operators typicdly used in
Java ae-, *,/, and % which are used, respedively, for subtradion, multiplica
tion, division, and remainder. Integer division returns only the integral part and

discards any remainder.

é BOOK.mkr Page 15 Wednesday, March 14 2001 1:24 PM

Basic Operators

As is typicd, addition and subtradion have the same precalence, and this
precedenceis lower than the precedence of the groupconsisting of the multiplica
tion, division, and mod operators; thus 1+2* 3 evaluates to 7. All of these opera-
tors asociate from left to right (so 3- 2- 2 evaluates to —1). All operators have

precedence and associativity. The complete table of operatorsisin Appendix A.

1.4.3 Unary Operators

In addition to hinary arithmetic operators, which require two operands, Java pro-
vides unary operators, which require only one operand. The most familiar of
these is the unary minus, which evaluates to the negative of its operand. Thus - x
returns the negative of x.

Java dso provides the autoincrement operator to add 1 to a variable —
denoted by ++ — and the aitodeaement operator to subtract 1 from avariable —
denoted by - - . The most benign wse of thisfeaureis siown onlines 22 and 23
Figure 1.3. In bah lines, the autoincrement operator ++ adds 1 to the value of the
variable. In Java, however, an operator applied to an expresgon yields an expres-
sion that has a value. Althoudh it is guaranteed that the variable will be incre-
mented before the execution of the next statement, the question arises: What isthe
value of the autoincrement expresson if it isused in alarger expresson?

In this case, the placement of the ++ is crucial. The semantics of ++x isthat
the value of the expresson is the new value of x. Thisis cdled the prefix incre-
ment. In contrast, x++ means the value of the expression is the original value of

X. Thisis cdled the postfix increment. This feaureis sown in line 24 of Figure

ﬁ%

Several unary oper-
ators are defined,

including - .

Aufoincrement and
autodecrement
add 1 and subtract
1. respectively. The
operators for doing
this are ++ and - - .
There are two forms
of incrementing
and decrementing:

prefix and postfix.

—

?

é BOOK.mkr Pege 16 Wednesday, March 14 2001 1:24 PM

Il rFrimitive Java

The type conver-
sion operatoris
used to generate a
temporary entity of

a new type.

1.3. a and b are both incremented by 1, and ¢ is obtained by adding the original

value of a to the incremented value of b.

1.4.4 Type Conversions
The type conversion operator isused to generate atemporary entity of anew type.

Consider, for instance,

doubl e quoti ent;

intx= 6;
inty= 10;
quotient=x/y ; /1P robablywrong!

Thefirst operation isthe division, and sincex andy are bath integers, theresult is
integer division, and we obtain 0. Integer O is then implicitly converted to a
doubl e so that it can be assigned to quot ie nt . But we had intended
guotient to be asigned 0.6. The solution isto generate atemporary variable
for either x or y so that the divisionis performed using the rules for doubl e.

Thiswould be dore as follows;

quotient=(d ouble)x/y ;

Note that neither x nor y are changed. An umamed temporary is created, and its
valueisused for the division. The type conversion gperator has higher precedence
than division does, so x is type-converted and then the division is performed
(rather than the anversion coming after the division of two i nt s being per-

formed).

é BOOK.mkr Page 17 Wednesday, March 14 2001 1:24 PM

Conditional Statements

1.5 Conditional Statements

This fdion examines gatements that affect the flow of control: conditional state-

ments and loops. As a mnseguence, new operators are introduced.

1.5.1 Relational and Equality Operators

The basic test that we can perform on primitive types is the comparison. Thisis
dore using the equality and inequality operators, as well as the relational opera-
tors (lessthan, greder than, and so on).

In Java, the equality operatorsare==and ! =. For example, In Java, the

equality operators

| ef t Expr ==ri ght Expr are == and 1= .
> evaluatestot rue if | ef t Expr andri ght Expr areequal; otherwise, it evalu- b

atestof al se. Similarly,

| ef t Expr!=right Expr
evaluatesto true if lef t Expr andrigh t Expr arenot equal andtofal se
otherwise.
The relational operators are <, <=, >, and >=. These have natural meanings The relational oper-

atorsare <, <=, >,

for the built-in types. The relational operators have higher preceadence than the
and >=,

equality operators. Both have lower precalence than the aithmetic operators but

higher precalencethan the assgnment operators, so the use of parenthesesis fre-

guently unrecessary. All of these operators associate from left to right, but this

fad is useless In the expresson a<b<6, for example, the first < generates a

ﬁ%

é BOOK.mkr Pege 18 Wednesday, March 14 2001 1:24 PM

Il Frimitive Java

Java provides logi-
cal operators that
are used to simulate
the Boolean alge-
bra concepts of
AND, OR, and NOT.
The corresponding
operators are &&,

[|.and!.

Short-circuit evalua-
tion means that if
the result of a logi-
cal operator can
be determined

by examining the
first expression, then
the second
expression is not

evaluated.

bool ean and the semndisillega becaise < is not defined for bool eans. The

next sedion describes the arrect way to perform this test.

1.5.2 Logical Operators
Java provides logical operatorsthat are used to simulate the Boolean algebra con-
cepts of AND, OR, and NOT. These ae sometimes known as conjunction, dis-
junction, and negation, respedively, whose @rrespondng operators are &&, ||
and! . Thetest in the previous dionis properly implemented asa<b && b <6.
The precedenceof conjunctionand disjunctionis sufficiently low that parentheses
are nat needed. && has higher precedencethan | | , while! isgrouped with other
unary operators. Inpus and ouputs for the logicd operators are bool ean. Fig-
ure 1.4 shows the result of applying the logical operators for all passble inputs.
One important rule isthat && and | | are short-circuit evaluation operations.
Short-circuit evaluation means that if the result can be determined by examining

the first expresson, then the second expressonis not evaluated. For instance, in

x!' =0 &&1/x! =3

if x is0, then the first half isfa | se. Automaticaly the result of the AND must
bef al se, so the second hlf isnot evaluated. Thisis agoad thing because divi-
sion-by-zero would gve aroneous behavior. Short-circuit evaluation allows us to

not have to worry about dividing by zero.2

é BOOK.mkr Page 19 Wednesday, March 14 2001 1:24 PM é

Conditional Statements m

X y X && y X1y I'x
fal se fal se fal se fal se true
fal se true fal se true true
true fal se fal se true fal se
true true true true fal se

Figure 1.4 Result of logical operators

1.5.3 Thei f Statement

Thei f statement is the fundamental decision maker. Itsbasic formis Thei f statementis

the fundamental

if(expression) decision maker.
st at emrent

next statenent
If expressi on evaluatestot r ue, then st at ement is exeauted; otherwise, it
isnot. When thei f statement is completed (without an urhanded error), control
passs to the next statement.
Optionally, wecanuse ai f - els e statement, as foll ows:

i f(expression)

statenment 1
el se

st at ement 2
next statenent

2 There ae (extremely) rare casesin which it is preferable to na short-circuit. In such cases, the & and | opera-
torswith bool ean arguments guarantee that both arguments are evaluated, even if the result of the operation

can be determined from the first argument.

ﬁ%

é BOOK.mkr Page 20 Wednesday, March 14 2001 1:24 PM

Primitive Java

A semicolon by
itself is the null

statement.

A blockis a se-
guence of state-
ments within

braces.

In this case, if expressi on evaluatestot r ue, then st at enent 1 is exe-
cuted; otherwise, st at enent 2 isexeauted. In either case, control then passesto
the next statement, asin
Systemo ut.print("1/xi s");
if(x!=0)

Systemout. print(1/x);
el se

Systemout.print (" Undefin ed") ;
Systemo ut.println() ;

Remember that at ead of thei f and el se clauses contain at most one state-

ment, no matter how youindent. Here ae two mistakes:

if(x==0) ; ;i snull statement(andc ounts)
Systemout.println(" xi s zero") ;

el se
Systemout.print(" xi s");
Systemout.println(x) ; //T wos tatements

The first mistake isthe inclusion of the; at the end o thefirsti f . This smico-
lon by itself counts as the null statement; consequently, this fragment won't com-
pile (theel se isnolonger associated withani f). Once that mistake isfixed, we
have alogic eror: that is, the last line is not part of the els e, even though the
indentation suggestsit is. To fix this problem, we have to use ablock, in which we

enclose aseguence of statements by a pair of braces:

if(x==0)
Systemout.println(" xi s zero") ;
el se
{
Systemout.print(" xi s");
Systemout.println(x) ;
}

ﬁ%

é BOOK.mkr Pege 21 Wednesday, March 14 2001 1:24 PM

Conditional Statements

Thei f statement can itself be the target of ani f or el se clause, as can
other control statements discussed later in this dion. In the cae of nested i f -
el se statements, an el se matches the innermost danglingi f . It may be neces-

sary to add bracesif that is not the intended meaning.

1.5.4 The whi | e Statement

Java provides three basic forms of looping: the whi | e statement, f or statement, The whi | e state-

and do statement. The syntax for thewhi | e statement is mentis one of three

basic forms
whi | e(expression) of looping.
st at ement
next statenent
Note that like the if statement, there is no semicolon in the syntax. If oneis -

present, it will be taken as the null statement.

Whileexpr essi onist rue, st at enent isexecuted; thenexpr essi on
isreevaluated. If expr essi onisinitialy f al se, then st at enent will never
be exeauted. Generally, st at enent does ssmething that can paentially alter the
value of expr essi on; otherwise, the loop could be infinite. When the whi | e

loop terminates (normally), control resumes at the next statement.

- 4~

é BOOK.mkr Page 22 Wednesday, March 14 2001 1:24 PM

Primitive Java

The fo r statement
is a looping con-
struct that is used
primarily for simple

iteration.

1.5.5 The f or Statement
The whil e statement is aufficient to expressall repetition. Even so, Java pro-
vides two ather forms of looping: for statement and do statement. The f or

statement is used primarily for iteration. Its g/ntax is

for(initialization; test; update)
st at ement
next statenent

Here i nitialization,test,andupdat e are dl expressons, and all three
areoptional. If t est isnot provided, it defaultstot r ue. Thereis no semicolon
after the dosing parenthesis.

Thef or statement is executed by first performingthei ni ti al i zati on.
Then, whilet est ist r ue, thefollowing two actions occur: st at enent is per-
formed, and then updat e isperformed. If i ni ti al i zati on andupdat e are
omitted, then the f or statement behaves exadly like awhi | e statement. The
advantage of af or statement is clarity in that for variables that count (or iterate),
the f or statement makes it much easier to seewhat the range of the munter is.
The foll owing fragment prints the first 100 positive integers:
for(i nti=1 i <=100;i ++)

Systemout.println(i) ;
This fragment illustrates the common technique of dedaring a wunter in the ini-
tialization portion of the loop. This cournter’s sope extends only inside the loop.

Bothinitializati onandupdat e may use acommato allow multiple

expressons. The following fragment il lustrates this idiom:

ﬁ%

é BOOK.mkr Page 23 Wednesday, March 14 2001 1:24 PM

Conditional Statements

for(i =0,s um= 0;i< =n; i++s um+=n)
Systemout.println(i+"\ t"+s um);

Loops nest in the same way asi f statements. For instance, we cn find all
pairs of small numbers whose sum equals their product (such as 2 and 2, whose

sum and product are both 4):

for(i nti=1 i <=10;i ++)
for(i ntj=1;j< =10; j++)
if(i+v] ==i*j)
System.out.printin (i+" o+

Aswe will seg however, when we nest loops we can easily crede programs

whose running times grow quickly.

1.5.6 The do Statement

The whi | e statement repeaedly performs atest. If thetest ist r ue, it then exe-
cutes an embedded statement. However, if theinitial testisf al se, the enbedded
statement is never exeauted. In some cases, however, we would like to guarantee
that the embedded statement is exeauted at least once Thisis done using the do
statement. The do statement is identicd to the whi le statement, except that the

test is performed after the embedded statement. The syntax is

do
st at ement
whi | e(expression);
next statenent
Noticethat the do statement includes a semicolon. A typical use of the do state-

ment is shown in the following pseudocode fragment:

ﬁ%

The do statement is
a looping construct
that guarantees the
loop is executed at

least once.

é BOOK.mkr Page 24 Wednesday, March 14 2001 1:24 PM

Primitive Java

do

{
Pronptu ser;

Read v al ue;
}while(v aluei s nog ood) ;

The do statement is by far the least frequently used df the threelooping con
structs. However, when we have to dosomething at least once, and for some rea

son af or loopisinappropriate, then the do statement is the method o choice

1.5.7 break andconti nue
The f or andwhi | e statements provide for termination before the start of a
repeded statement. The do statement allows termination after execution o a
repeated statement. Occasionally, we would like to terminate execution in the
> middle of arepeaed (compound) statement. The br eak statement, which is the >
keyword br eak followed by a semicolon, can be used to achieve this. Typicdly,
ani f statement would precede the br eak, asin

while(...)
{

i f(sonething)
br eak;

é BOOK.mkr Pege 25 Wednesday, March 14 2001 1:24 PM é

1

Conditional Statements

The br eak statement exits the innermost loop only (it is also used in con- The br eak state-

junction with the swi t ch statement, described in the next sedion). If there e Men* &xitsthe

innermost loop or
several loops that need exiting, the br eak will not work, and most likely you

SW t chstatement.

have poorly designed code. Even so, Javaprovides alabeled br eak statement. In The labeled

the labeled br eak statement, aloop islabeled, and then abr eak statement can br eak statement

be applied to the loop, regardiessof how many other loops are nested. Hereisan &' flom a nested

loop.
example:
out er:
whil e(. ..)
{
while(. ..)
if(d is aster)
break outer; //G ot oaft ero uter
}
» /1l Controlp assesh ereaft ero uterlo opi se xited >

Occasionally, we want to give up onthe current iteration of aloop and go on The cont in ue

to the next iteration. This can be handled by usingacont i nue statement. Like S$f@feémentgoesto

. . .) the next iteration of
thebr eak statement, thecont i nue statement includes a semicolon and applies

the innermost loop.
to the innermost loop only. The following fragment prints the first 100 integers,

with the exception of those divisible by 10:

for(i nti=1 i <=100;i ++)
{
if(i%l1 0==0)
conti nue;
Systemout.println(i) ;

- 4~

é BOOK.mkr Page 26 Wednesday, March 14 2001 1:24 PM

The swi t ch state-
ment is used fo se-
lect among several
small integer (or

character) values.

The conditional
operator ?. is used
as a shorthand for
simple i f-el se

statements.

Of course, in this example, there are alternatives to the cont i nue statement.
However, continue is commonly used to avoid complicated if-else pat-

ternsinside loops.

1.5.8 The sw t ch Statement

The swi t ch statement is used to seled among several small integer (or charac
ter) values. It consists of an expression and a block. The block contains a
sequence of statements and a wlledion d labels, which represent possble values
of the expresson. All the labels must be distinct compile-time constants. An
optional default label, if present, matches any unrepresented label. If thereis no
applicable casefor theswi t ch expressgon, theswi t ch statement is over; other-
wise, control passes to the gpropriate label and al statements from that point on
are executed. A break statement may be used to force early termination d the
swi t ch and isamost always used to separate logicaly distinct cases. An exam-

ple of the typicd structureis shownin Figure 1.5.

1.5.9 The Conditional Operator
The conditional operator ?: isused as a shorthand for simplei f-else state-

ments. The general formis

test Expr ? yesExpr : noExpr
t est Expr isevauated first, followed by either yesExpr or noExpr, produc-
ing the result of the entire expression. yesExpr is evaluated if t est Expr is

t r ue; otherwise, noExpr isevaluated. The precedence of the mndtional opera-

ﬁ%

é BOOK.mkr Pege 27 Wednesday, March 14 2001 1:24 PM é

Conditional Statements

tor is just above that of the assgnment operators. This allows us to avoid using
parentheses when assgning the result of the conditional operator to avariable. As

an example, the minimum of x andy isassgned to ni nVal asfollows:
mnVal =x< =y? x:y ;

1 sw tch(soneCharacter)

2 {

3 case' (':

4 case' [':

5 case' {'

6 //C odet oprocesso penings ynbols
7 br eak;

8

9

case')’
10 case']
11 case' }':

12 //C odet oprocessc | osings ynbols

13 br eak;

14 N
r 15 case' \n': ’

16 //C odet ohandlen ewinec haracter

17 br eak;

18

19 defaul t:

20 //C odet oh andleotherc ases

21 br eak;

22 }

Figure 1.5 Layout of a switch statement

- 4~ 4

é BOOK.mkr Page 28 Wednesday, March 14 2001 1:24 PM

Primitive Java

A method is similar
to a function in
other languages.
The method header
consists of the
name, return type,
and parameter list.
The method decla-
ration includes the
body.

Apublic

stati ¢ method
is the equivalent of
a C-style global
function.

In call-by-value, the
actual arguments
are copied info the
formal parameters.
Variables are
passed using call-

by-value.

1.6 Methods

What is known as afunction or procedure in other languagesis cdled amethod in
Java. A more complete treament of methods is provided in Chapter 3. This ¢
tion presents some of the basics for writing C-like functions, such as nain , so
that we Gan write some simple programs.

A method header consists of a name, a (possbly empty) list of parameters,
and areturn type. The adua code to implement the method, sometimes cdled the
method body, isformally ablock. A method declaration consists of a header plus
the body. An example of a method dedaration and amai n routine that usesit is
shown in Figure 1.6.

By prefadng each method with the words publ i ¢ st ati ¢, we can mimic
the C-style global function. Although declaring a method as st at i ¢ is a useful
technique in some instances, it should not be overused, sincein general we do nd
want to use Javato write “C-style” code We will discussthe more typicd use of
stati c in Sedion 35.

The method rameis an identifier. The parameter list consists of zero or more
formal parameters, ead with a specified type. When a method is called, the
actual arguments are sent into the formal parameters using namal assgnment.
This means primitive types are passed using call-by-value parameter passng
only. The actual arguments cannat be dtered by the function. As with most mod-

ern programming languages, method cedarations may be aranged in any order.

ﬁ%

é BOOK.mkr Page 29 Wednesday, March 14 2001 1:24 PM

Q(%

Methods

1 publicc | assMinTest

2 {

3 publics taticvoidmain(String[]a rgs)
4 {

5 inta=3 ;

6 intbh=7 ;

7

8 Systemout.printin(min(a ,b))

9 }

10

11 /I M ethodd eclaration

12 publics tatici ntmin(i ntx ,i nty)

13 {

14 returnx<y?x:y ;

15 }

16 }
Figure 1.6 lllustration of method declaration and calls

The r et ur n statement is used to return a value to the cdler. If the return Theret urn state-

typeisvoid , then novalueisreturned, andr et ur n; should be used. mentis used fo re-

turn a value to the
caller.

1.6.1 Overloading of Method Names
Suppose we need to write aroutine that returns the maximum of threein t s. A

reasonable method header would be

intmax(i nta ,i ntb ,i ntc)
In some languages, this may be unacceptable if max is already dedared. For

instance, we may also have

intmax(i nta ,i ntb)

—

1

>

é BOOK.mkr Page 30 Wednesday, March 14 2001 1:24 PM

Primitive Java

Overloading of a
method name
means that several
methods may have
the same name as
long as their param-

eter list types differ.

static final
variables are con-

stants.

Java dlows the overloading of method names. This means that several meth-
ods may have the same name and be dedared in the same class €ope & long as
their signatures (that is, their parameter list types) differ. When a cdl to max is
made, the compil er can deduce which of the intended meanings should be gplied
based on the adual argument types. Two signatures may have the same number of
parameters, aslongas at |east one of the parameter list types differs.

Note that the return typeis not included in the signature. Thismeansit isille-
ga to have two methods in the same dass €ope whaose only difference is the
return type. Methods in dfferent class scopes may have the same names, signa-

tures, and even return types; thisis discussed in Chapter 3.

1.6.2 Storage Classes

Entities that are dedared inside the body of a method are locd variables and can
be acessed by name only within the method body. These entities are created
when the method body is executed and disappear when the method body termi-
nates.

A variable dedared outside the body of a method is global to the dass It is
similar to global variablesin other langueges if theword st at i ¢ isused (which
is likely to be required so as to make the entity accessble by static methods). If
both stati c and fi nal are used, they are global symbolic constants. As an

example,

static finald oubleP =3 .1415926535897932;

ﬁ%

>

é BOOK.mkr Page 31 Wednesday, March 14 2001 1:24 PM é

Objects of the Game

1

>

Note the use of the common convention o naming symbolic constants
entirely in uppercase. If several words form the identifier name, they are sepa-
rated by the underscore charader, asin MAX | NT_VALUE.

If theword st at i ¢ isomitted, then the variable (or constant) has a different

meaning, which is discussed in Section 3.4.6.

Summary
This chapter discussed the primitive features of Java, such as primitive types,
operators, conditional and looping statements, and methods that are foundin
almost any language.

Any nontrivial program will require the use of norprimitive types, cdled ref-

erence types, which are discussed in the next chapter.

Objects of the Game ﬁaﬁ
assignment operators In Java, used to alter the value of avariable. These
operatorsinclude =, +=,- =, *= and/ =. (13)
autoincrement (++) and autodecrement (- -) operator s Operators that add
and subtrad 1, respedively. There are two forms of incrementing and dec
rementing, prefix and postfix. (15)
binary arithmetic operators Used to perform basic aithmetic. Java provides
several, including +, -, *,/ , and % (14)

block A sequenceof statements within braces. (20)

ﬁ%

é BOOK.mkr Page 32 Wednesday, March 14 2001 1:24 PM é

Primitive Java

br eak statement A statement that exits the innermost loop or swi t ch state-
ment. (25)

bytecode Portable intermediate code generated by the Java compil er. (5)

é BOOK.mkr Page 33 Wednesday, March 14 2001 1:24 PM é

Objects of the Game

1

call-by-value The Java parameter-passng mecdanism whereby the actual
argument is copied into the formal parameter. (28)

comments Make mde esier for humans to read but have no semantic mean-
ing. Java has threeforms of comments. (6)

conditional operator (?:) An operator that isused in an expresgon as a
shorthand for simplei f -el se statements. (26)

cont i nue statement A statement that goes to the next iteration of the inner-
most loop. (25)

do statement A looping construct that guarantees the loop is exeauted at least
once. (23)

equality operatorsin Java, == and! = are used to compare two values; they
return either t r ue or f al se (asappropriate). (17)

escape sequence Used to represent certain charader constants. (11)

f or statement A looping construct used primarily for simpleiteration. (22)

identifier Used to name avariable or method. (11)

i f statement The fundamental decision maker. (19)

integral typesbyt e, char,short,int,andl ong. (9)

java Thejavainterpreter, which processs byteaodes. (5)

javac The java compil er; generates byteades. (5)

labeled br eak statement A br eak statement used to exit from nested loops.
(25

logical operators&&, | | , and! , used to simulate the Boolean algebra mn-

ceptsof AND, OR, and NOT. (18)

ﬁ%

é BOOK.mkr Page 34 Wednesday, March 14 2001 1:24 PM

Primitive Java

mai n The spedal function that isinvoked when the program isrun. (7)

method The Java equivalent of afunction. (28)

method declar ation Consists of the method header and body. (28)

method header Consists of the name, return type, and parameter list. (28)

null statement A statement that consists of a semicolon by itself. (20)

octal and hexadecimal integer constants Integer constants can be represented
in either decimal, octal, or hexadecimal notation. Octal notation isindi-
cated by aleading 0; hexadecimal isindicated by aleading Ox or 0X. (10)

overloading of a method name The adion of allowing several methods to
have the same name as longas their parameter list types differ. (30)

primitive types In Java, integer, floating-point, Boolean, and character. (9)

relational operatorsinJava, <, <=, >, and>= are used to dedde which of two
valuesis gnaller or larger; they returnt r ue or f al se. (17)

r et ur n statement A statement used to return information to the cler. (29)

short-circuit evaluation The processwhereby if the result of alogicd opera-
tor can be determined by examining the first expresson, then the second
expressonis not evaluated. (18)

signature The combination of the method name and the parameter list types.
The return type is not part of the signature. (30)

standard input Theterminal, unlessredireded. There are also streams for
standard ouput and standard error.

static final entity A global constant. (30)

ﬁ%

>

é BOOK.mkr Page 35 Wednesday, March 14 2001 1:24 PM é

Common Errors

1

st at i ¢ method Occasionally used to mimic C-style functions; discussed
more fully in Sedion 35. (29)

string constant A constant that consists of a sequence of charaders enclosed
by doude quates. (11)

swi t ch statement A statement used to seled amongseveral small integral
values. (26)

type conversion operator An operator used to generate an unnamed tempo-
rary variable of anew type. (16)

unary operator s Require one operand. Several unary operators are defined,
including unary minus (-) and the autoincrement and autodeaement oper-
ators (++ and - -). (15)

Unicode International charader set that contains over 30,000 distinct charac-
ters covering the principle written languages. (9)

whi | e statement The most basic form of looping. (21)

virtual machine The byteade interpreter. (5)

Common Errors

1. Adding unnecessary semicolons gives logicd errors becaise the semico-
lonby itself isthe null statement. This means that an unintended semico-
lonimmediately followingaf or,whi | e, ori f statement isvery likely

to go urdeteded and will bregk your program.

ﬁ%

é BOOK.mkr Page 36 Wednesday, March 14 2001 1:24 PM

\

Primitive Java

At compil e time, the Java compiler isrequired to deted all instancesin
which amethodthat is supposed to return a value fail sto do so. Occasion
aly, it provides afalse darm, and you have to rearange code.

A leading 0 makes an integer constant octal when seen asatokenin

source @de. So 037 isequivalent to dedmal 31.

Use&& and| | for logical operations; & and| do nd short circuit.
Theel se clause matchesthe closest danglingi f . It iscommonto forget
to include the braces neaded to match the el se to adistant danglingi f .
When aswi t ch statement isused, it iscommon to forget the br eak
statement between logical cases. If it is forgotten, control passes through
to the next case; generally, thisis not the desired behavior.

Escape sequences begin with the backslash \ , not the forward slash / .
Mismatched braces may give misleading answers. Use Bal ance,
described in Section 11.1, to check if thisis the caise of a compil er error
message.

The name of the Java source file must match the name of the dassbeing

compiled.

>

é BOOK.mkr Page 37 Wednesday, March 14 2001 1:24 PM

4

1

On the Internet

Following are the avail able files for this chapter. Everything is self-contained, and

nothing is used later in the text.

FirstProgram.java Thefirst program, as ownin Figure 1.1
MinTest.java [llustration of methods, as shown in Figure 1.6.
Operator Test.java Demonstration of various operators, as shownin
Figure 1.3.
Exercises
In Short
1.1. What extensions are used for Java source and compiled fil es?
- 1.2. Describe the three kinds of comments used in Java programs.
1.3. What are the eight primitive typesin Java?
1.4. What isthe difference between the* and * = operators?
1.5. Explain the difference between the prefix and postfix increment operators.
1.6. Describe the three types of loopsin Java.
1.7. Describe dl the uses of a br eak statement. What is a labeled br eak
statement?
1.8. What doesthecont i nue statement do?
1.9. What is method overloading?
1.10. Describe call-by-value.

Exercises

é BOOK.mkr Page 38 Wednesday, March 14 2001 1:24 PM

Primitive Java

In Theory
1.11. Letb havethevalue of 5andc havethe value of 8. What is the value of a,

b, and c after each line of the following program fragment:

++ +C ++;
++ + + +C;
+b +c ++;
+b ++ +c;

OO
TR TRTIT
+ + oo

1.12. Whatistheresultoftrue & &f al se| |t rue?
1.13. For thefollowing, give an examplein which thef or loop ontheleftisnot

equivalent to thewhi | e loop on theright:

init;
for(i nit;t est;up date) whil e(t est)
{ {
b stat enent s statement s 3
update ;
} }

1.14. For thefollowing program, what are the posshble outputs:

public classWhatls X

{
publics tatic voidf (i ntx)
{ /*b odyu nknown* /}
publics tatic voidmain(S tring[]a rgs)
{
intx=0 ;
f(x) 5
System out. println(x);
}
}

In Practice

1.15. Write awhi | e statement that is equivalent to the following f or frag-

ment. Why would this be useful ?

ﬁ%

é BOOK.mkr Page 39 Wednesday, March 14 2001 1:24 PM

1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

for(; ;)
st at enent

Write aprogram to generate the addition and multiplication tables for sin-
gle-digit numbers (the table that elementary school students are acacs-
tomed to seeng).

Write two static methods. The first should return the maximum of three
integers, and the second should return the maximum of four integers.
Write astatic method that takes a yea as a parameter and returnst r ue if

theyea isaleg yea, and f al se otherwise.

Programming Projects

Write aprogram to determine dl pairs of positive integers, (a, b), such
that a<b <1000 and (a2 + b2 + 1)/ (ab) isan integer.

Write amethod that prints the representation of its integer parameter as a
Roman numeral. Thus, if the parameter is 1998, the output is
MCMXCVI | 1 .

Suppose you want to print out numbers in bracets, formatted as follows:
[1]1[2][3], and so on Write a method that takes two parameters:
howiany andl i neLengt h. The method should print out line numbers
from 1 to howMany in the previous format, but it should nd output more
than | i neLengt h charaders on any one line. It should not start a [

unlessit can fit the crresponding] .

Exercises

é BOOK.mkr Page 40 Wednesday, March 14 2001 1:24 PM

Primitive Java

1.22. Inthefollowing dedmal arithmetic puzze, each of the ten dfferent letters
isassgned adigit. Write aprogram that finds all possble solutions (one of
whichis drown).

MARK A=1W=2N=3R=4E=5 9147

+ ALLEN L=6K =71 =8M=9S =0 +1 6653

VAEI SS 25800
References

Some of the C-style material in this chapter is taken from [5]. The mmplete Java

language spedficaion may be foundin [3]. Introductory Java books include [1],

[2] and [4].

1. G. Cornell and C. S. Horstmann, Core Java 2 Volumes 1 and 2, 4th ed.,

Prentice-Hall, Englewood Cliffs, N.J., 2000.

2. J. Lewisand W. Loftus, Java Software Solutions: Foundations of Pro-

gram Design, Addison-Wesley, Realing, Mass, 1997.

3. J Godling, B. Joy, and G. Stede, The Java Language Specification, 2nd

ed, Addison-Wesley, Reading, Mass, 2000.

4. W. Savitch, An Introduction to Computer Science & Programming, 2nd

ed, Prentice-Hall, Englewoad Cliffs, N.J., 2001

5. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice-

Hall, Englewoaod Cliffs, N.J., 19%.

ﬁ%

4

é BOOK.mkr Page41 Wednesday, March 14 2001 1:24 PM

CHAPTER

% Reference Types

C HAPTER 1 examined the Java primitive types. All types that are not one
of the a@ght primitive types are reference types, including important enti-
ties such as grings, arrays, and file streams.

In this chapter, we will see

What areference type andvalueis

b » How referencetypes differ from primitive types

>

Examples of referencetypes, including strings, arrays, and streams

» How exceptions are used to signa erroneous behavior

2.1 What Is a Reference?
Chapter 1 described the @ght primitive types, alongwith some of the operations
that these types can perform. All other typesin Java are referencetypes, including
strings, arrays, and file streams. So what is a reference? A reference variable
(often abbreviated as Smply reference) in Javais a variable that somehow stores
the memory addresswhere an objed resides.

As an example, in Figure 2.1 are two oljeds of type Poi nt . It happens, by

chance, that these objeds are stored in memory locaions 1000 and 1®4, respec

ﬁ%

é BOOK.mkr Page 42 Wednesday, March 14 2001 1:24 PM

Reference Types

tively. For these two dbjeds, there are three references: poi ntl , poi nt 2, and
poi nt 3. poi nt 1 and poi nt 3 both reference the objed stored at memory
locaion 10M®; poi nt 2 references the objed stored at memory location 1024.
Both poi nt 1 and poi nt 3 store the value 1000, while poi nt 2 storesthe value
1024. Note that the adual locations, such as 1000 and 1024, are assgned by the
compiler at its discretion (when it finds available memory). Thus these values are
not useful externally as numbers. However, the fad that poi nt 1 and poi nt 3
storeidenticd valuesis useful: It meansthey are referencing the same objed.

A reference will aways dore the memory address where some objed is
residing, unlessit is not currently referencing any object. In this case, it will store
the null reference, nul | . Java does nat allow references to primitive variables.

There ae two broad caegories of operations that can be goplied to reference
variables. One allows us to examine or manipulate the reference value. For
instance, if we change the stored value of poi nt 1 (which is 1000), we could
have it reference another objed. We can also compare poi nt 1 andpoi nt 3 and
determine if they are referencing the same objed. The other category of opera-
tions applies to the objed being referenced; perhaps we could examine or change
the internal state of one of the Poi nt objeds. For instance we could examine
some of Poi nt 'sx and y coordinates.

Before we describe what can be done with references, let us e what is not
allowed. Consider the expression poi ntl * poi nt 2. Since the stored values of
poi nt 1 and poi nt 2 are 1000 and 102, respectively, their product would be

1024000. However, thisis ameaningesscalculation that could na have ay pos-

ﬁ%

é BOOK.mkr Page 43 Wednesday, March 14 2001 1:24 PM é

What Is a Reference?

sible use. Reference variables dore aldresses, and there is no logicd meaning
that can be associated with multiplying two addresses.

Similarly, poi nt 1++ has no Java meaning; it suggests that poi nt 1 —
1000 — should beincreased to 1001, but in that case it might not be referencing a
valid Poi nt objed. Many languages define the pointer, which behaves like aref-
erence variable. However, pointers in C++ are much more dangerous because
arithmetic on stored addressesis allowed. Thus, in C++, poi nt 1++ hasamean-
ing. Because C++ allows pointers to primitive types, one must be caeful to dis-
tingush between arithmetic on addresses and arithmetic on the objeds being
referenced. Thisis done by explicitly dereferencing the pointer. In practice, C++'s
unsafe pointers tend to cause numerous programming errors.

Some operations are performed on references themselves, while other opera-
tions are performed on the objeds being referenced. In Java, the only operators
that are dlowed for reference types (with one exception made for St ri ngs) are

assgnment via= and equality comparisonvia==or ! =.

é BOOK.mkr Page 44 Wednesday, March 14 2001 1:24 PM

m Reference Types

\\
1000 | (0,0) poi nt 1 (0,0)
1024 | (5,12) (at 1000
3200 | point2=1024 ~
3600 | poi nt1 =1000 poi nt 2 (5,12
poi nt 3

Figure 2.1 An illustration of a reference: The Point object stored at mem-
ory location 1000 is referenced by both pointl and point3
The Point object stored at memory location 1024 is referenced
by point2 . The memory locations where the variables are

’ stored are arbitrary
—
1000 | (0.0) poi ntl\ (0,0)
1024 | (5,12) (@ 1000)
3200 | point2=1024 —
3600 | poi nt1=1000 poi nt 2\ (5,12)
5124 | point 3 =1024
poi nt 3

Figure 2.2 The result of poi nt3=point2 :point3 now references the
same object as point2

ﬁ%

é BOOK.mkr Page 45 Wednesday, March 14 2001 1:24 PM é

Bassics of Objects and References

1

Figure 2.2 illustrates the assgnment operator for reference variables. By
assgning poi nt 3 the stored value of poi nt2 , we have poi nt 3 reference the
same objed that poi nt 2 was referencing. Now, poi nt 2==poi nt 3 istrue
because poi nt 2 and poi nt 3 both store 1024 and thus reference the same
object. poi nt 1! =poi nt 2 isasot r ue becaise poi nt 1 and poi nt 2 refer-
ence different objeds.

The other caegory of operations deds with the objed that is being refer-

enced. There ae only three basic adions that can be done:

1. Apply atype conversion (Section 14.4).

2. Accessan internal field or cdl a method viathe dot operator (.)
(Section 2.2.1).

3. Usethei nst anceof operator to verify that the stored ojed is
b of acertain type (Sedion 3.5.3). b

The next sectionill ustrates in more detail the common reference operations.

2.2 Basics of Objects and References
In Java, an object is an instance of any of the nonprimitive types. Objects are In Java. an objectis

treaed differently from primitive types. Primitive types, as already shown, are o" instance of any

. o) of the nonprimitive
handled by value, meaning that the values assumed by the primitive variables are

types.
stored in those variables and copied from primitive variable to primitive variable
during assgnments. As shown in Sedion 21, reference variables gore references
to objects. The actual object is dored somewhere in memory, and the reference

variable stores the object’s memory address. Thus a reference variable simply

represents a name for that part of memory. This means that primitive variables

ﬁ%

é BOOK.mkr Page 46 Wednesday, March 14 2001 1:24 PM

m Reference Types

and reference variables behave differently. This section examines these differ-
ences in more detail and ill ustrates the operations that are dlowed for reference

variables.

2.2.1 The Dot Operator (.)

The dot operator (.) is used to seled a method that is applied to an object. For
instance, suppose we have an object of type Cir cl e that defines an are a
method If t heCi rc | e referencesa Cir cl e, then we can compute the aeaof

thereferenced G r ¢l e (and save it to avariable of typedoubl e) by doing this:

doubl e theArea=th eGCrcle.area() ;

Itisposshblethat t heCi rc | e storesthe nul | reference In this case, applying

>

the dot operator will generate aNull Poi nt erE xce pt i on when the program
runs. Generally, thiswill cause dnormal termination.

The dot operator can also be used to access individual components of an
object, provided arrangements have been made to alow internal components to
be viewable. Chapter 3 dscusses how these arangements are made. It also
explains why it is generaly preferable to nd alow dired acess of individual

comporents.
2.2.2 Declaration of Objects

We have drealy seen the syntax for declaring primitive variables. For objeds,

there is an important difference. When we dedare areference variable, we ae

ﬁ%

é BOOK.mkr Page 47 Wednesday, March 14 2001 1:24 PM

Bassics of Objects and References

simply providing a name that can be used to reference an olject that is dored in
memory. However, the dedaration by itself does not provide that objed. For
example, suppose there is an oljed of type But t on that we want to add into an
existing Panel p, using the method add (all thisis provided in the Javalibrary).

Consider the statements

Button b; //bm ay reference aButtono bject
b. set Label (" No"); //L abel thebutton br eferst o "No"
p.add(b) ; //a ndad dt oPanel p

All seans well with these statements until we remember that b is the name of
some But t on objed but no But t on has been created yet. As aresult, after the
declaration of b the value stored by the referencevariable b isnul | , meaning b
is not yet referring to avalid But t on objed. Consequently, the second lineis
illegal because we ae atemptingto ater an objed that does not exist. In this e
nario, the compiler will probably deted the eror, stating that “b is uninitialized.”
In ather cases, the compiler will not notice, and a run-time eror will result in the
cryptic Nul | Poi nt er Exc ept i on error message.

The (only common) way to allocate an ohjed is to use the new keyword.

newis used to construct an objed. One way to dothisis asfollows:

Button b;

b=n ew Button() ;
b. set Label (" No");
p.add(b) ;

//bm ay reference aButtono bject
/IN owb referst o anallocated object
//L abel theButton br eferst o "No"
/la ndad di tt oPanelp

Note, parentheses are required after the objed name.

It is also possble to combine the dedaration and oljed construction, asin

ﬁ%

When a reference
type is declared, no
object is allocated.
At that point, the
reference is to

nul | .To create the

object, use new

The newkeyword is
used to construct

an object.

Parentheses are re-
quired when newis

used.

é BOOK.mkr Page 48 Wednesday, March 14 2001 1:24 PM

m Reference Types

Q(%

The construction
can specify an ini-
tial state of the ob-

ject.

Java uses garbage
collection. With gar-
bage collection,
unreferenced mem-
ory is automatically

reclaimed.

Button b=n ewButt on() ;
b. set Label (" No"); /L abel theButtonb referst o "No"
p.add(b) ; /la ndad di tt oPanelp

Many dbjeds can aso be anstructed with initial values. For instance, it hap-

pens that the But t on can be mnstructed with a St ri ng that specifies the label:

Button b=n ewButt on(" No");
p.add(b) ; /la dditt oPanelp

2.2.3 Garbage Collection
Since all objects must be mnstructed, we might expect that when they are no
longer needed, we must explicitly destroy them. In Java, when a wnstructed
objed is nolonger referenced by any objed variable, the memory it consumes
will automaticdly be redaimed and therefore be made available. This technique
is known as garbage collection.

The run-time system (i.e. the Java Virtual Machine) guaranteesthat aslong as
it isposdbleto accessan dbject by areference or achain of references, the objed
will never be reclaimed. Oncethe objed is unreachable by a chain of references,
it can be redaimed at the discretion of the runtime system if memory islow. It is
possble that if memory does not run low, the virtual madcine will not attempt to

redaim these objects.

é BOOK.mkr Page 49 Wednesday, March 14 2001 1:24 PM é

Bassics of Objects and References m

?

2.2.4 The Meaning of =

Suppcse we have two primitive variables| hs and r hs wherel hs andr hs | hsandr hsstand

stand for left-hand side and right-hand side, respedively. Then the assgnment '©" /éf-hand side

and right-hand side,
statement
respectively.

lhs=rh s;
has a simple meaning: The value stored inr hs is copied to the primitive variable
| hs. Subsequent changesto either | hs or r hs do rot affed the other.
For objeds, the meaning o = is the same; stored values are wpied. If | hs Forobjects. = isa

and r hs are references (of compatible types), then after the ssgnment state- "eference assign-

ment, rather than
ment, | hs will refer to the same objed that r hs does. Here, what is being copied
an object copy.
isan address The objed that | hs used to refer toisnolonger referredto by | hs. N
If | hs wasthe only referenceto that objed, then that object is now unreferenced
and subjed to garbage wlledion. Note that the objeds are not copied.
Here ae some examples. First, suppose we want two But t on objects. Then

suppose we try to oltain them first by creating noBut t on. Then we atempt to

create yesBut t on by modifying noBut t on asfollows:

Button noButton= newButton("No") ;

Button yesButton= noButton;

yesBut to n. set Label(" Yes") ;

p. add(noButton) ;

p. add(yesButton);

This does not work because only one But t on object has been constructed. Thus
the second statement simply statesthat yesBut t on is now another name for the

constructed But t on at line one. That constructed But t on is now known by two

ﬁ%

é BOOK.mkr Page 50 Wednesday, March 14 2001 1:24 PM

Reference Types

names. On line three the constructed But to n hasits label changed to Yes, but
this means that the single Butt on objed, known by two names, is now labelled
Yes. Thelast two lines add that But t on object to the Panel p twice.

The fact that yesBut t on never referred to its own objed is immaterial in

this example. The problem is the assgnment. Consider

Button noButton= newButton("No") ;

Button yesButton= newButton() ;

yesButto n=n oButto n;

yesBut to n. set Label(" Yes") ;

p. add(noButton) ;

p. add(yesButton);

The consequences are the same. Here, there are two But t on objects that have

been constructed. At the end d the sequence, the first objed is being referenced

’ by both noBut t on and yesBut t on, while the seaond objed is unreferenced.

At first glance the fad that objeds canna be @pied seenslike asevere lim-

itation. Actually, it is not, although this does take a little getting used to. (Some

objects do nead to be apied. For thosg, if acl one method is available, it should

be used. However, cl one isnot used in thistext.)

é BOOK.mkr Page 51 Wednesday, March 14 2001 1:24 PM

Q(%

Bassics of Objects and References n

2.2.5 Parameter Passing
Because of cdl-by-value, the actual arguments are sent into the formal parameters
using normal assgnment. If the parameter is areference type, then we know that
normal assgnment means that the formal parameter now references the same
object as does the adua argument. Any method applied to the formal parameter
isthus also being applied to the actual argument. In other languages, thisis
known as call-by-reference parameter passing. Using this terminology for Java
would be somewhat misleading because it implies that the parameter passng is
different. In redity, the parameter passng has not changed; rather, it isthe param-
eters that have changed, from nonreference types to reference types.

As an example, suppose we pass yesButton as a parameter to the

cl ear But t on routine that is defined as follows:

publics tatic voidc learButton(B uttonb)

{
b. set Label(" No") ;

b=n ull;

Call-by-value
means that for refer-
ence types, the for-
mal parameter ref-
erences the same
object as does the
actual

argument.

—

1

é BOOK.mkr Page 52 Wednesday, March 14 2001 1:24 PM

Reference Types

yesButt on

b >
yesButt on
(b) T No
b >
yesButt on
(© T No
b= null
yesButt on
(d) T No

Figure 2.3 The result of call-by-value. (a) b is a copy of yes Button ; (b)
after b.set Label("No") . changes to the state of the
object referenced by b are reflected in object referenced by
yesB utton because these are same object; (¢) after
b=nul | : change to value of b does not affect value of
yesB utton ; (d) after method returns, b is destroyed.

Then, as Figure 2.3 shows, b references the same object as yesB utton , and

changes made to the state of this objed by methods invoked throughb will be

seenwhen cl ear But t on returns. Changes to the value of b (i.e. which oljed it

references) will not have any affed onyesBut t on.

2.2.6 The Meaning of ==
For primitive types, == is true if the stored values are identical. For reference
types, its meaning is different but is perfectly consistent with the previous discus-

sion.

ﬁ%

é BOOK.mkr Page 53 Wednesday, March 14 2001 1:24 PM

Bassics of Objects and References

Two reference types are equal via == if they refer to the same stored objed

(or they are bath nul |). Consider, for example, the foll owing:

Button a=n ewButt on(" Yes");
Button b=n ewButt on(" Yes");
Button c=b ;

Here, we have two objects. The first is known by the name a, and the second is
known by two names: b and ¢. b==c ist r ue. However, even though a and b are
referencing ohjeds that seem to have the samevalue, a==b isf al se, sincethey
reference different objeds. Similar rules apply for ! =.

Sometimes it isimportant to know if the states of the objects being referenced
are identicd. All objeds can be compared by using equal s, but for many
objects (including But t on) equal s returns f al se unlessthe two references
are referencing the same objed (in other words, for some objeds equal s isno

more than the == test). We will see a example of where equal s isuseful when

the St ri ng objed isdiscussed in Sedion 23.

2.2.7 No Operator Overloading for Objects

Except for the single exception described in the next section, new operators, such
as+,-,*,and/ cawnot be defined to work for objeds. Thusthere isno < opera-
tor available for any objed. Insteal, a named method, such asle ssThan, must

be defined for this task.

For reference types,

== s tfrue only if the
two references ref-
erence the same

object.

The equals
method can be
used to test
whether two refer-
ences reference
objects that have

identical states.

—

1

é BOOK.mkr Page 54 Wednesday, March 14 2001 1:24 PM

m Reference Types

The Stri ng be-
haves like a refer-

ence type.

Strings are immuta-
ble; that is, the
St ri ng object will

not be changed.

2.3 Strings

Strings in Java ae handled with the Strin g reference type. The language does
make it appea that the St r i ng typeisa primitive type because it provides the +
and += operator for concatenation. However, this is the only reference type for
which any operator overloading is allowed. Otherwise, the St r i ng behaveslike

any other objed.

2.3.1 Basics of String Manipulation
There are two fundamental rules about a St ring object. First, with the excep-
tion of the concatenation operators, it behaves like an object. Second, the
St ri ng isimmutable. This means that once aSt ri ng object is constructed, its
contents may not be changed.

Becaise aSt ri ng isimmutable, it is always sfe to use the = operator with

it. Thusa St ri ng may be dedared asfollows:

String enpty ="
String message="H ello"
String repeat =message;

After these declarations, there ae two Str i ng objeds. The first is the enpty
string, which is referenced by enpt y. The second isthe Stri ng " Hel lo "
which isreferenced by both mressage and r epeat . For most objeds being ref-
erenced by bath message andrepea t could be aproblem. However, because
Strin gsareimmutable, the sharing o Str i ng objedsis sfe, aswell as effi-

cient. The only way to change the value that the string repeat referstoisto

ﬁ%

é BOOK.mkr Page 55 Wednesday, March 14 2001 1:24 PM

1

Strings

construct anew St ri ng and haver epeat referenceit. Thishas no effed onthe

St ri ng that mressage references.

2.3.2 String Concatenation
Java does not allow operator overloading for reference types. However, a speda
language exemption is granted for string concatenation.
The operator +, when at least one operandisa St ri ng, performs concate- String concatena-

nation. The result is a reference to a newly constructed St ri ng objed. For onisperformed

with + (and +=).

example,

"this" +"t hat" /1G enerates" thist hat"

"abc"+ b5 /1 G enerates" abch"

5+" abc” /1 G enerates" 5abc” N
r "a"+'h "+" ¢" /1G enerate s" abc" r

Single-charader strings $oud not be replaced with charader constants;

Exercise 2.6 asks you to show why. Note that operator + is left-associative, and

thus

"a"+1 +2 /1 G enerates" al2"
1+2+ "a" //G enerate s" 3a"
1+(2 +" a") /1G enerates" 12a"

Also, operator += is provided for the St r i ng. The dfed of str +=exp is
thesameasstr =st r +exp. Spedficdly, thismeansthat st r will referencethe

newly constructed St r i ng generated by st r +exp.

- 4~

é BOOK.mkr Page 56 Wednesday, March 14 2001 1:24 PM

E Reference Types

\

Use equal s and
conpar eTo to
perform string com-

parison.

2.3.3 Comparing Strings

Since the basic assgnment operator worksfor St r i ngs, it istemptingto assume
that the relational and equality operators also work. Thisis nat true.

In accordance with the ban on operator overloading, relational operators (<,
>, <=, and >=) are not defined for the St r i ng objed. Further, == and ! = have
the typicd meaning for reference variables. For two St ri ng objeds | hs and
r hs, for example | hs==r hs istrue only if | hs and r hs refer to the same
Stri ng objed. Thus, if they refer to different objects that have identical con-
tents, | hs==r hs isf al se. Similar logic gpliesfor! =.

To compare two String objeds for equdity, we use equal s.
I hs. equal s(rhs) istrue if | hs and r hs reference St ri ngs that store
identica values.

A more general test can be performed with the method conpar eTo.
| hs. conpar eTo(rhs) compares two String objeds, | hs and rhs. It
returns a negative number, zero, or a positive number, depending on whether | hs

islexicographicdly lessthan, equal to, or greaer thanr hs, respedively.

>

é BOOK.mkr Page 57 Wednesday, March 14 2001 1:24 PM

2.3.4 Other St ri ng Methods

Thelength of aSt ri ng objed (an empty string has length zero) can be obtained
with the method | engt h. Sincel engt h isamethod parentheses are required.

Two methods are defined to accessindividual charactersina St ri ng. The
method char At gets a single charader by spedfying a position (the first posi-
tionis position 0). The method subst r i ng returns a reference to a newly con-
structed St ri ng. The cdl is made by spedfying the starting pant and the first
nonincluded position.

Here is an example of these three methods:

String greeting= "hello";

intl en =g reeti ng.length(); /1l eni s5
charc h =greeti ng.charAt(1) ; /lc h is'e
String sub=g reeti ng.substring(2 ,4) ; [//s ubi s"l I|I"

2.3.5 Converting Other Types of Strings

String concaenation provides alazy way to convert any primitive to a Str i ng.
For instance " " +45. 3 returns the newly constructed Str i ng "4 5.3 " . There
are dso methodsto do this diredly.

The method t oSt ri ng can be used to convert any primitive type to a
String. Asanexample, | nt eger .t oSt ri ng(45) returnsareferenceto the
newly constructed St r i ng " 45" . All referencetypes also provide an implemen-
tation of t oSt ri ng of varying quelity. In fad, when gperator + has only one

St ri ng argument, thenonSt r i ng argument is convertedtoa St r i ng by auto-

ﬁ%

Strings

Use | engt h,
char At , and
substringto
compute string
length, get asingle
character, and get
a substring. respec-

tively.

toString con-
verts primitive types
(and objects) to

Strings.

4

?

é BOOK.mkr Page 58 Wednesday, March 14 2001 1:24 PM

Reference Types

An array stores a
collection of identi-

cally typed entities.

The array indexing
operator[] pro-
vides access to any

object in the array.

maticdly applying an appropriate t oSt ri ng. For the integer types, an aterna-

tiveformof | nt eger . t oSt ri ng alowsthe spedfication of aradix. Thus

Systemo ut.println(" 55i nbase2:"+
Integer.to String(5 5, 2)) ;

prints out the binary representation of 55.

Thei nt value that is represented by a St ri ng can be obtained by calling
the method | nt eger . par sel nt. This method generates an exception if the
Stri ng does not represent an i nt . Exceptions are discussed in Section 25.

Similar ideas work for adoubl es. Here ae some examples:

i nt x=1 nteger. parselnt("75") ;
doubl e y=D oubl e.p arseDoubl e(" 3.14") ;

2.4 Arrays
An aggregate is a mllection of entities stored in one unit. An array is the basic
mechanism for storing a lledion o identicaly typed entities. In Javathe aray
is not aprimitive type. Instead, it behaves very much like an dbject. Thus many of
the rules for objeds also apply to arrays.

Each entity in the array can be acessd via the array indexing operator [] .
We say that the [| operator indexes the aray, meaning that it spedfies which
object isto be accesd. Unlike C and C++, bounds checking is performed auto-

maticdly.

é BOOK.mkr Page 59 Wednesday, March 14 2001 1:24 PM é

Arrays E

In Java, arrays are always indexed starting at zero. Thus an array a of three Arrays are indexed

1

items stores a[0] , a[1] , and a[2] . The number of items that can be stored in ~ Storfing atzero. The

) number of items
an array a can always be obtained by a. | engt h. Note that there are no paren-
stored in the array is

theses. A typical array loopwould use obtained by the

| engt h field. No
for(i nti=0 ;i <a.length; i++)
parentheses are

2.4.1 Declaration, Assignment, and Methods used.

An array is an object, so when the aray dedaration

int[] arrayl;
is given, no memory is yet allocated to store the aray. ar r ayl is smply aname Toallocate an array.
use hew

(reference) for an array, and at this point isnull . To have 100int s, for exam-

ple, weissie anew command:

arrayl =newi nt[100] ;
Now ar r ay 1 referencesan array of 100i nt s.

There ae other ways to dedare arays. For instance, in some @ntexts

int[] array2=ne wint[1 00] ;
is accetable. Also, initializer lists can be used, asin C or C++, to spedfy initial
values. In the next example, an array of four i nt sis allocaed and then refer-

enced by array3.

int[] array3={ 3,4 ,10, 6} ;

ﬁ%

é BOOK.mkr Page 60 Wednesday, March 14 2001 1:24 PM

m Reference Types

Always be sure to
declare the correct
array size. Off-by-
one errors are com-

mon.

The bradkets can goeither before or after the aray name. Pladng them before
makes it easier to seethat the name is an array type, so that is the style used here.
Declaring an array of objeds (rather than primitive types) uses the same syntax.
Note, however, that when we allocate an array of objeds, each objed initially
storesanul | reference. Each also must be set to reference a onstructed oljed.

For instance, an array of five buttonsis constructed as

Button []a rrayOButtons;

arrayOButtons=ne wButton[5] ;

for(i nti=0 ;1 <arrayOButtons.length; i++)
arrayOfButtons[i]=n ew Button() ;

Figure 2.4 illustrates the use of arrays in Java. The program in Figure 2.4
repeatedly chooses numbers between 1 and 100, inclusive. The output is the num-
ber of times that eady number has occurred. The import diredive & line 1 will be
discussed in Section 3.6.1.

Line 14 ceclares an array of integers that count the occurrences of each numn-
ber. Because arays are indexed starting at zero, the +1 is crucial if we want to
accessthe item in position DIFFERENT_NUMBERS$Vithout it we would have an
array whose indexible range was 0 to 99, and thus any accessto index 100 be out-
of-bounds. The loopat lines 15 and 16initializes the aray entriesto zero; thisis
actually unnecessary, since by default, array elements are initialized to zero for
primitive and null for references.

The rest of the program is relatively straightforward. It uses the Random

object defined in thej ava. uti | library (hence the import diredive & line 1).

The next | nt method repeaedly gives a (somewhat) random number in the

ﬁ%

é BOOK.mkr Page 61 Wednesday, March 14 2001 1:24 PM

Arrays u

range the includes zero but stops at one lessthan the parameter to next | nt ; thus

by adding ore, we get a number in the desired range. The results are output at

lines 25 and 26

1 inportj ava.util.Random

2

3 publicc I assRandomNunbers

4 {

5 /1G enerater andomnunbers(from1-100)

6 /1P rintn unbero fo ccurrenceso fe achn unber

7

8 publics taticf inali ntD | FF_NUVBERS = 1 00;

9 publics taticf inali ntT OTAL_NUMVBERS =1 000000;

10

11 publics taticvoidmain(String[]a rgs)

12 {

13 //C reatearray;i nitializet o0s

14 int[]n unmbers=n ewi nt[D IFF_NUMBERS +1] ;

15 for(i nti=0 ;i<n unbers.length;i ++)

16 numbers[i]=0 ; o
1]7 1

18 Randomr=n ew Randon() ;

19

20 /1G eneratet hen unbers

21 for(i nti=0 ;i<T OTAL_NUMBERS;i ++)

22 nurmbers[r .nextlInt(D I FF_NUMBERS) + 1] ++;

23

24 /10O utputt hes ummary

25 for(i nti=1 ;i< =DIFF_NUMBERS;i ++)

26 Systemout.println(i+" :"+n unbers[i]) ;

27 }

28 }

Figure 2.4 Simple demonstration of arrays

Sincean array is areference type, = does not copy arrays. Instea, if | hs and

r hs are araysthe dfea of

- 4~

é BOOK.mkr Page 62 Wednesday, March 14 2001 1:24 PM

Reference Types

The contents of an
array are passed by

reference.

int[] lhs=n ewint[1l O00];
int[] rhs=n ewint[1l O00];

I hs-:- r.h S
isthat the aray object that was referenced by r hs isnow also referenced by | hs.
Thus changing r hs[0] also changes| hs[0] . (To make | hs an independent
copy of r hs, one could usethe cl one method, but often making complete mp-
iesisnot redly needed.)

Finally, an array can be used as a parameter to a method. The rules foll ow
logicdly from our understanding that an array name is a reference. Suppose we
have amethod met hodCal | that acceptsone aray of i nt asits parameter. The

cdler/cdleeviews are

nmet hodCal | (a ctualArray) ; /Imethodc all
voi d met hodCal | (in t[]f ormd Array)/ [/ methodd eclaration

In accordance with the parameter-passng conventions for Java reference types,
f or mal Array references the same aray object asact ual Arr ay. Thus
form alArray [i] accesses actu alArra y[i] . This means that if the
method modifies any element in the array, the modifications will be observable

after the method execution has completed. Also note that a statement such as

formal Array=n ew int[2 O] ;

has no effect on actualAr ray. Finaly, since aray names are simply refer-

ences, they can be returned.

ﬁ%

é BOOK.mkr Page 63 Wednesday, March 14 2001 1:24 PM é

Arrays

1

2.4.2 Dynamic Array Expansion
Suppose we want to read a sequence of numbers and store them in an array for Dynamic array ex-

processng. The fundamental property of an array requires us to declare asizesp Ponsion dllows usto

. allocate arbitrary-
that the compiler can allocate the crrect amount of memory. Also, we must make
sized arrays and

this dedaration prior to the first accessof the array. If we have no idea how many
make them larger

items to exped, then it is difficult to make areasonable dhoice for the aray size if needed.

This sction shows how to expand arrays if the initial sizeistoo small. Thistedh-

nigueis caled dynamic array expansion and allows usto allocate abitrary-sized

arrays and make them larger or small er as the program runs.

The dlocation method for arrays that we have seen thus far is

3 int[] arr=n ewint[1 0] ; >
Suppose that we decide, after the declarations, that we really need 12 int s

instead of 10. In this case, we can use the following maneuver, whichisillustrated

in Figure 2.5:

int[] original= arr; /1l 1.S aver eferencet oarr

arr=ne wint[l 21]; /! 2.H aveare ferencemore nenory

for(i nti=0 ;i <10;i ++) //3 .Copyt heolddatao ver
arrfi]=o0 riginal [i] ;

original=n ull; /1l 4.U nreferenceoriginal array

- 4~

é BOOK.mkr Peage 64 Wednesday, March 14 2001 1:24 PM

m Reference Types

Always expand the
array to a size that is
some multiplicative
constant times as
large. Doubling is a

good choice.

arr e Y
@)
arr —
original />
(b)
arr 11—
original "
(©
arr "
original
(d)

Figure 2.5 Array expansion, internally: (a) At the starting point, arr repre-
sents 10 integers; (b) afterstep 1, origina | represents the
same 10 integers; (¢) after steps 2 and 3, arr represents 12 inte-
gers, the first 10 of which are copied from ori ginal ; and (d)
after step 4, the 10 integers are available for reclamation.

A moment’s thought will convince you that this is an expensive operation.
Thisis because we cpy all of the dementsfrom ori gi nal badktoarr.If, for
instance, this array expansion is in response to reading input, it would be ineffi-
cient to reexpand every time we real a few elements. Thus when array expansion

is implemented, we aways make it some multiplicative constant times as large.

For instance, we might expand it to betwice alarge. In thisway, when we expand

ﬁ%

>

é BOOK.mkr Page 65 Wednesday, March 14 2001 1:24 PM

Arrays

the aray from N items to 2N items, the st of the N copies can be gportioned

over the next N items that can be inserted into the aray without an expansion.

1 inportj ava.io.lnputStreanReader;
2 inportj ava.io.BufferedReader;
3 inportj ava.io.|OException;

4

5 publicc lassReadStrings

6 {

7 /IR eadanunlimtednunbero fS tring;r eturna$S tring[]

8 /1T heminimall /Odetailsusedherearenoti nportantf or

9 /1t hise xanpleandarediscussedi nSection2.6.

10 publics taticString[]lg etStrings()

11 {

12 Buf f eredReaderi n=n ewBufferedReader(n ew

13 | nput StreanReader (S ystemin)) ;

14 String[]Ja rray=n ewString[5] ;

15 Stringo neli ne;

16 inti temsRead=0 ;

17

18 Systemout.println(" Enters trings,o neperl ine;") ;
> 19 Systemout.println(" Termnatewithenptyl ine:") ; >

20

21 try

22 {

23 while((o neLine=i n.readLine())! =null& &

24 I oneLi ne. equal s(" "))

25 {

26 if(i tensRead==array.length)

27 array=r esize(array,a rray.length*2) ;

28 array[i temsRead++]=0 neline;

29 }

30 }

31 catch(l OExceptione)

32 {

33 Systemout.println(" Earlyaborto fr ead.") ;

34 }

35

36 returnr esize(a rray,i tensRead) ;

37 }

Figure 2.6 Code to read an unlimited number of Str i ngs and output
them (part 1)

To make things more concrete, Figures 2.6 and 2.7 show a program that reads

an unlimited number of strings from the standard input and stores the result in a

ﬁ%

é BOOK.mkr Page 66 Wednesday, March 14 2001 1:24 PM

m Reference Types

dynamicdly expanding array. An empty line is used to signal the end of inpu.
(The minimal /O details used here are not important for this example and are dis-
cused in Sedion 26.) The r esi ze routine performs the aray expansion (or
shrinking), returning a reference to the new array. Similarly, the method
get St ri ngs returns (areferenceto) the array where it will reside.

At the start of get Stri ngs, i t enmsRead is set to 0and we start with an
initial five-element array. We repeatedly read new items at line 23. If the array is
full, asindicated by a succes<ul test at line 26, then the aray is expanded by cdl-
ingresi ze. Lines42to 48perform the aray expansion wsing the exact strategy
outlined previously. At line 28, the actual input item is assgned to the aray and

the number of items read is incremented. If an error occurs on input, we simply

>

stop pocesdng. Finaly, at line 36 we shrink the array to match the number of

items read prior to returning.

é BOOK.mkr Page 67 Wednesday, March 14 2001 1:24 PM

Arrays

38 /IR esizea$S tring[]Ja rray;r eturnnewarray

39 publics taticString[]r esize(String[]la rray,
40 i ntn ewSi ze)

41 {

42 String[]o riginal=a rray;

43 intn umfoCopy=M ath.nmin(o riginal.length,n ewSize) ;
44

45 array=n ewString[n ewSize] ;

46 for(i nti=0 ;i<n umroCopy;i ++)

47 array[i]=o0 riginal [i] ;

48 returnarray;

49 }

50

51 publics taticvoidmain(String[]la rgs)

52 {

53 String[]la rray=g etStrings() ;

54 for(i nti=0 ;i<a rray.length;i ++)

55 Systemout.printin(a rray[i]) ;

56 }

57 }

Figure 2.7 Code 1o read an unlimited number of Str i ngs and output
them (part 2)

>

2.4.3 Arrayli st

The technique used in Sedion 24.2 is so common that the Java Library contains The Ar rayLi st is

anArrayLi st typewith built-in functionality to mimicit. The basic ideaisthat Used for expanding

arrays.
an ArrayLi st maintains not only asize, but also a capaaty; the caacity isthe

amount of memory that it has reserved. The capaaty of the Ar r ayLi st isreally
an internal detail, not something that you reed worry abott.

The add function increases the size by one, and addsanew item intothearray The add function in-

a the gppropriate position. This is a trivial operation if capacity has not been C'edses the size by

. . . .) 1, adds a new item
reached. If it has, the @pacity is automatically expanded, using the strategy
to the array at the

described in Section 24.2. The Arr ayLi st isinitialized with asizeof 0. . .
appropriate posi-
tion, expanding ca-

pacity if needed.

ﬁ%

é BOOK.mkr Page 68 Wednesday, March 14 2001 1:24 PM

m Reference Types

1 inportj ava.io.lnputStreanReader;
2 inportj ava.io.BufferedReader;
3 inportj ava.io.|OException;

4
5 inportj ava.util.ArraylList;
6
7 publicc lassReadStri ngsWthArraylLi st
8 {
9 publics taticvoidmain(String[]Ja rgs)
10 {
11 ArraylLista rray=g etStrings() ;
12 for(i nti=0 ;i<a rray.size() ;i ++)
13 Systemout.printin(a rray.get(i)) ;
14 }
15
16 /IR eadanunlinmtednunbero fS tring;r eturnanArraylLi st
17 /1T heminimall /Odetailsusedherearenoti nportantf or
18 /1t hise xampleandarediscussedi nSection2.6.
19 publics taticArrayListg etStrings()
20 {
21 Buf f eredReaderi n=n ewBufferedReader(n ew
22 | nput StreanmReader (S ystemin)) ;
23 ArrayLista rray=n ewArraylList() ;
24 Stringo neLine;
25
» 26 Systemout.println(" Enters trings,o neperl ine;") ; -
27 Systemout.printiln(" Termnatewithenptyl ine:") ;
28
29 try
30 {
31 while((o neLine=i n.readLine())! =null& &
32 I'oneLi ne. equal s(" "))
33 array.add(o neLine) ;
34 }
35 catch(l OExceptione)
36 {
37 Systemout.printin(" Earlyaborto fr ead.") ;
38 }
39
40 returnarray;
41 }
42 }

Figure 2.8 Code to read an unlimited number of Str i ngs and output
them, using an ArrayList

Because indexing via[] isreserved ony for primitive arays, much as was

the caefor St ri ngs, we haveto use amethodto acessthe Ar r ayLi st items.

ﬁ%

é BOOK.mkr Page 69 Wednesday, March 14 2001 1:24 PM

\

The get method returns the object at a spedfied index, andthe set method can
be used to change the value of areference a a specified index; get thus behaves
like the char At method. We will be describing the implementation detail s of
ArraylLi st at severa pointsin the text, and eventually write our own version.
The wode in Figure 2.8 shows how add isused in getS trings ; it isclealy
much simpler than the getStrings ~ function in Sedion 24.2. It isimportant to
mention, however, that only objects (which are accessed by reference variables)
can be alded into an ArrayLi st. The aght primitive types cannot. However,

thereis an easy workarourd for that, which we will discussin Sedion 4.6.2.

2.4.4 Multidimensional Arrays

Sometimes arrays need to be acessed based on more than one index. A common
example of thisisamatrix. A multidimensional array is an array that is accessed
by more than one index. It is all ocated by specifying the size of itsindices, and
each element is accessd by placing each index in its own pair of brackets. Asan

example, the dedaration

int[][I1x=n ewint[2] [3];

defines the two-dimensional array x, with thefirst index (representing the number
of rows) ranging from 0 to 1 and the second index (the number of columns) rang-
ing from O to 2 (for atotal of six ojeds). The compiler sets aside six memory

locaions for these objeds.

Arrays m

A multidimensional
qarray is an array
that is accessed by
more than one in-

dex.

1

>

é BOOK.mkr Page 70 Wednesday, March 14 2001 1:24 PM

Reference Types

In the example @ove, the two dimensional array is adualy an array of
arrays. As auch, the number of rows is x.I engt h, which is 2. The number of
columnsisx[0] . I engt h or x[1] . | engt h, both of which are 3.

Figure 2.9 illustrates how to print the contents of a two-dimensional array.
The ade works not only for redangular two-dimensional arrays, but also for
ragged two-dimensional arrays, in which the number of columns varies from row
torow. Thisiseasily handled by usingni i] . | engt h at line 11 to represent the
number of columns in row i . We dso handle the possbility that rows might be
nul I (whichisdifferent than length 0), with thetest at line 7. The mai n routine
il lustrates the dedaration of two-dimensional arrays for the case where initial val-
ues are known. It is smply an extension of the one-dimensional case discussed in
Sedion 2.4.1. Array a isastraightforward redangular matrix, array b hasanul |

row, and array c isragged.

- 4~

é BOOK.mkr Page 71 Wednesday, March 14 2001 1:24 PM é

Arrays

1

1 classMatrixDeno

2 {

3 publics taticvoidprintMatrix(i nt[J[]Im)

4 {

5 for(i nti=0 ;i<m .length;i ++)

6 {

7 if(ml[i]= =null)

8 Systemout.printin(" (null)") ;

9 el se

10 {

11 for(i ntj=0 ;j<m [i].length;j ++)

12 Systemout.print(mf[i] [j]l+"")

13 Systemout.println() ;

14 }

15 }

16 }

17

18 publics taticvoidmain(String[]a rgs)

19 {

20 int[J[la={{1 2} {3 .4} {5 ,6}}

21 int[J[1b={{1 ,2} ,null,{5 ,6}} ;

22 int[][lc={{1 2}y {3 .,4.,5} ,{6}} ;

23

24 Systemout.printin(" a:") ;p rintMatrix(a)

25 Systemout.printin(" b:") ;p rintMatrix(b) ;
» 26 Systemout.printin(" c:") ;p rintMatrix(c) ; -

27 }

28 }

Figure 2.9 Printing a two-dimensional array

24.5 Command-line Arguments

Command-line aguments are avail able by examining the parameter to mai n. The Command-iine ar-
array of strings represents the alditional command-ine arguments. For instance, 9Umen’s are avai-

L able by examining
when the program is invoked,
the parameter to

mai n.
javaEchot hist hat
ar gs[0] referencesthe Str i ng "t his" and ar gs[1] references the

String"that". Thusthe program in Figure 2.10 implements the echo

command.

ﬁ%

é BOOK.mkr Page 72 Wednesday, March 14 2001 1:24 PM

Reference Types

Q(%

Exceptions are used
to handle
exceptional oc-
currences such as

errors.

1 publicc lassEcho

2 {

3 //L istt hec onmand-lineargunents

4 publics taticvoidmain(String[]a rgs)

5 {

6 for(i nti=0 ;i<a rgs.length-1 ;i ++)

7 Systemout.print(a rgs[i]+"")

8 if(args.length! =0)

9 Systemout.println(a rgs[fa rgs.length-11]) ;
10 el se

11 Systemout.printin(" Noargunmentst oe cho") ;
12 }

13 }

Figure 2.10 The echo command

2.5 Exception Handling

Exceptions are objeds that store information and are transmitted outside the nor-

mal return sequence. They are propagated bad through the alling sequence until

some routine catches the exception. At that point, the information stored in the
object can be extracted to provide error handling. Such information will always
include detail s about where the exception was creaed. The other important piece
of information is the type of the exception oljec. For instance, when an
Arraylnd exOutBo undsEx ception ispropagated, it is clea that the basic
problem is a bad index. Exceptions are used to signal exceptional occurrences

such as errors.

é BOOK.mkr Page 73 Wednesday, March 14 2001 1:24 PM é

Exception Handling

?

2.5.1 Processing Exceptions
The mdein Figure 2.11 illustrates the use of exceptions. Codethat might result in At ry block en-

closes code that

an exception’'s being propagated is enclosed in at ry block. Thetry block

might generate
extends from lines 17 to 21. Immediately following thet r y block are the excep-

an exception.
tion handlers. This part of the ade is jumped to only if an exceptionis raised; at
the point the exceptionisraised, the tr y block in which it came from is consid-
ered terminated. Each cat ch block is attempted in order until a matching han-
dler is found. An | OExc epti on is generated by re adLi ne if some

unexpeded error occurs, and a NumkerForm atExc eptio n is generated by

par sel nt if oneLi ne isnot convertibletoani nt .

é BOOK.mkr Pege 74 Wednesday, March 14 2001 1:24 PM

Reference Types

1 inportj ava.io.BufferedReader;
2 inportj ava.io.|nputStreanReader;
3 inportj ava.io.|OException;

4
5 publicc lassDivideByTwo
6 {
7 publics taticvoidmain(String[]a rgs)
8 {
9 /1B ufferedReaderi sdiscussedi nSection2.6
10 Buf f eredReaderi n=n ewBufferedReader(n ew
11 | nput StreanReader (S ystemin)) ;
12 intx ;
13 Stringo neli ne;
14
15 Systemout.println(" Entera ni nteger:") ;
16 try
17 {
18 oneLine=i n.readLine() ;
19 x=1 nteger.parselnt(o neLine) ;
20 Systemout.printin(" Halfo fxi s"+(x/2)) ;
21 }
22 catch(l OExceptione)
23 {S ystemout.printin(e) ;}
24 cat ch(N unber For mat Exceptione)
25 {S ystemout.printin(e) ;}
3 26 } 5
27 }

Figure 2.11 Simple program to illustrate exceptions

A cat ch block The mde in the cat ch block — in this case line 23 or 25 — is executed if
processes an ex- the gopropriate exception is matched. Then the cat ch block and the the t ry/

ception.
cat ch sequence is considered terminated.! A meaningful message is printed

from the exception ohed e. Alternatively, additional processng and more

detail ed error messages could be given.

1 Notethat botht ry and cat ch require ablock and not simply asingle statement. Thus braces are not optional.
To save space we often placesimple cach clauses on asingle line with their braces, indented two additi onal

spacses, rather than use threelines. Later in the text we will use this style for one-line methods.

- 4~

é BOOK.mkr Page 75 Wednesday, March 14 2001 1:24 PM é

Exception Handling

1

>

25.2 Thefinal |y Clause

Some objects that are created in at ry block must be cleaned up. For instance, Thefinally

clause is always

filesthat are opened inthe t r y block may need to be dosed prior to leaving the

executed to prior to
t ry block. One problem with thisis that if an exception ofjed is thrown duing

completion of a
exeaution o thet r y block, the clean up might be omitted because the exception block, regardless of

will cause an immediate break from thet r y block. Although we can placethe exceptions.
clean up immediately after the last catch clause, this works only if the excep-
tion is caught by ore of the cat ch clauses. And this may be difficult to guaran-
tee
The final |y clause that may follow the last cat ch block (or thet ry
block if there ae no cat ch blocks) is used in this stuation. The final |y
clause consists of the keyword fi nal | y followed by the fi nal | y block.

There aethree basic scenarios.

1. If thet ry block exeautes without exception, control passesto the
finally block. Thisistrue evenif thet r y block exits prior to
the last statement via ar et ur n, br eak, or cont i nue.

2. If an urcaught exceptionis encountered inside thet r y block,
control pasestothefi nal | y block. Then, after exeauting the
fi nal | y block, the exception propagates.

3. If acaught exception isencountered inthet r y block, control
pases to the gopropriate cat ch block. Then, after exeauting the
cat ch block, thefi nal ly block isexeauted.

25.3 Common Exceptions

There ae several types of standard exceptions in Java. The standard run-time Run-time excep-

exceptions include events such as integer divide-by-zero and illegal array access ~ 0ns donothaveto

be handled.
Sincethese events can happen virtually anywhere, it would be overly burdensome

ﬁ%

é BOOK.mkr Pege 76 Wednesday, March 14 2001 1:24 PM

Reference Types

Checked excep-
tions must be han-
dled or listed in a

t hr ows clause.

to require exception handlers for them. If acatch block is provided, these
exceptions behave like ay other exception. If acat ch block is not provided for
a standard exception, and a standard exception is thrown, then it propagates as
usual, possibly past main . In this case, it causes an abnormal program termina-
tion, with an error message. Some of the common standard run-time exceptions
are shown in Figure 2.12. Generally spe&ing, these ae programming errors and
should na be caught. Nunber For mat Except i on isanotable violation of this

principle, but Nul | Poi nt er Except i on ismoretypicd.

Standard Run-time Exception Meaning
ArithnmeticException Overflow or integer division by zero.
Nurber For mat Except i on lllegal conversion of St ri ng to numeric type.
I ndexQut Of BoundsExcept i on lllegal index info an array or St ri ng.

Negati veArraySi zeExcepti on | Aftfempt to create a negative-length array.

Nul | Poi nt er Excepti on lllegal attempt to use a null reference.

SecurityException Run-time security violation.

Figure 2.12 Common standard run-time exceptions

Most exceptions are of the standard checked exception variety. If a method is
called that might either directly or indiredly throw a standard checked exception,
then the programmer must either provide acat ch block for it, or explicitly indi-
cate that the exception is to be propagated by use of at hr ows clause in the
method declaration. Note that eventually it should be handled because it isterrible
stylefor mai n to haveat hr ows clause. Some of the cmmmon standard checdked

exceptions are shown in Figure 2.13.

ﬁ%

>

é BOOK.mkr Page 77 Wednesday, March 14 2001 1:24 PM é

Exception Handling

1

Errors are virtual macine problems. The most common error iS Errors are unrecov-
Qut OF Meror yEr r or. Others include | nt er nal Error and the infamous '@Ple exceptions.
UnknownEr r or, in which the virtual machine has decided that it is in trouble,

does nat know why, but does not want to continue. Generally speaking an Er r or

is unrecoverable and should not be caiugh.

254 Thet hrowandt hr ows Clauses
The programmer can generate an exception by use of thet hr ow clause. For Thet hr ow clause

instance, we can crede and then throw an Ar i t hnet | cExcept i on objectby S used o fhrowon

exception.

thrownew Arithneti cException(" Dvidebyzero") ;

Since the intent is to signal to the cdler that there is a problem, you should
never throw an exception only to catch it a few lines later in the same scope. In
other words, do not place ahrows clause in atry block, and then handle it imme-
diately in the crrespondng cach block. Instead, let it leave unhandled, and pass
the exception upto the cdl er. Otherwise, you are using exceptions as a thegp goto
statement, which is not good programming, and is certainly not what an excep-

tion—signalling an exceptional occurrence—isto be used for.

Standard Checked Exception Meaning

java.i o. EOFExcepti on End-of-file before completion of input.

java.io. Fi | eNot FoundExcepti on File not found to open.

Figure 2.13 Common standard checked exceptions

ﬁ%

é BOOK.mkr Pege 78 Wednesday, March 14 2001 1:24 PM

Reference Types

Standard Checked Exception Meaning
java.io. | OException Includes most I/O exceptions.
I nterruptedException Thrown by the Thr ead.s | eep method.

Figure 2.13 Common standard checked exceptions

1 inportj ava.io.|OException;
2
3 publicc lassT hrowbeno
4 {
5 publics taticv oidprocessFile(S tringt oFile)
6 throws| OException
7 {
8 /IO mttedi nplementati onp ropagatesall
9 /1t hrown| OExceptionb ackt ot hec aller
10 }
11
12 publics taticvoidmain(String[]a rgs)
13 {
14 for(i nti=0 ;i<a rgs.length;i ++)
15 {
» 16 try >
17 {p rocessFile(a rgs[i]) i}
18 catch(l OExceptione)
19 {S ystemerr.printin(e) ;}
20 }
21 }
22 }

Figure 2.14 lllustration of the throws clause

Java dlows programmers to crede their own exception types. Detail s on cre-
ating and throwing user-defined exceptions are provided in Chapter 4.
Thet hr ows clause As mentioned ealier, standard cheded exceptions must either be caught or

indicates propa- explicitly propagated to the calling routine, but they should, as alast resort, even-

gated exceptions.]]) o
tualy be handled in mai n. To dothe latter, the method that is unwilling to catch
the exception must indicae, via at hr ows clause, which exceptionsit may prop-

agate. The t hr ows clause is attached at the end o the method header. Figure

ﬁ%

é BOOK.mkr Page 79 Wednesday, March 14 2001 1:24 PM é

Input and Output

1

>

2.14illustrates a method that propagates any | OExcept i onsthat it encounters;
these must eventually be caught in mai n (since we will nat place at hr ows

clauseinmai n).

2.6 Input and Output

Input and output (1/0) in Javais achieved through the use of thej ava. i 0 padk-
age. The typesin the I/O package are al prefixed with j ava. io , including as
we have seen, j ava. i 0. | OExcept i on. The import direcive dlows youto

avoid using complete names. For instance, with

i mport java.io.| OException
at the top of your code, you can use | OExcepti on as a shorthand for
java.i o.l OExcepti on.(Many commontypes, suchasStrin g andMa h
do not require import diredives, as they are auttomatically visible by the short-
hands by virtue of beinginj ava. | ang.)

The Java library is very sophisticated and has a host of options. Here, we
examine only the most basic uses, concentrating entirely on formatted 1/O. In

Sedion 4.5.3, we will discussthe design o the library.

2.6.1 Basic Stream Operations
Like many languages, Java uses the notion of streams for 1/O. To perform 1/0O to
the terminal, afile, or over the Internet, the programmer credes an asociated

stream. Oncethat is done, all 1/0 commands are directed to that stream. A pro-

ﬁ%

é BOOK.mkr Page 80 Wednesday, March 14 2001 1:24 PM

m Reference Types

The predefined
streams are
Systemi n,
Syst emo ut ,and

Systemerr,

Buff eredReader
is used for line-at-a-

time input.

grammer defines a stream for each 1/O target (for instance, each file requiring
input or output).

Three streams are predefined for termina 1/0O: Syst em i n, the standard
input; Syst em out , the standard output; and Syst em er r, the standard error.

As drealy mentioned, the pri nt and pri nt| n methods are used for for-
matted output. Any type can be @nverted to a St ri ng suitable for printing by
calingitst oSt ri ng method; in many cases, this is done aitomatically. Unlike
with C and C++, which have an enormous number of formatting options, output
in Javais done amost exclusively by St r i ng concaenation, with no built-in for-
matting.

A simple method for reading formatted input is to read a single line into a
String object using readLi ne. The readl i ne method reads until it
encounters aline terminator or end of file. The charaders that are read, minus the
line terminator (if real), are returned as a newly constructed St ri ng. To use
readLi ne, we must first construct a Buf f er edReader objed from an
| nput St r eanReader objed that is itself constructed from System i n.
Thiswasillustrated in Figure 2.11 at lines 10 and 11.

If an immediate end o file is encountered, then nul | is returned. If area
error occurs for some reason other than end dof file, then some | OExcepti on is
generated. Note that the | OExcept i on, which isastandard checked exception,
must eventually be caught. In many instances, the | OExcept i on is alowed to
propagate badk to acat ch block in the mai n method this technique was illus-

trated in Figure 2.14.

ﬁ%

é BOOK.mkr Page 81 Wednesday, March 14 2001 1:24 PM é

1

Input and Output n
2.6.2 The StringTokeni zer Type
Recdl that to read asingle primitive type, suchasani nt , weuser eadLi ne to

read theline s aSt ri ng andthen apply amethod to generate the primitive type

fromtheStri ng. Fori nt ,we canuse par sel nt.

é BOOK.mkr Page 82 Wednesday, March 14 2001 1:24 PM

Reference Types

1 inportj ava.io.lnputStreanReader;
2 inportj ava.io.BufferedReader;

3 inportj ava.io.|OException;

4 inportj ava.util.StringTokeni zer;

5
6 publicc | assMaxTest
7 {
8 publics taticvoidmain(Stringargs[])
9 {
10 Buf f eredReaderi n=n ewBufferedReader(n ew
11 | nput StreanReader (S ystemin)) ;
12
13 Stringo neli ne;
14 StringTokeni zers tr;
15 intx ;
16 inty ;
17
18 Systemout.printin(" Enter2i ntsononel ine:") ;
19 try
20 {
21 oneLine=i n.readLine() ;
22 if(o neLine==null)
23 return;
24
25 str=n ewStringTokeni zer(o neLine) ;
» 26 if(s tr.countTokens()! =2) -
27 {
28 Systemout.printin(" Error:n eedt woi nts") ;
29 return;
30 }
31 x=1 nteger.parselnt(s tr.nextToken()) ;
32 y=1 nteger.parselnt(s tr.nextToken()) ;
33 Systemout.printin(" Max:"+M ath.max(x ,y)) ;
34 }
35 catch(l OExceptione)
36 {S ystemerr.println(" Unexpectedl Oerror") ;}
37 cat ch(N unmber For mat Exceptione)
38 {S ystemerr.printIn(" Error:n eedt woi nts") ;}
39
40 }
41 }

Figure 2.15 Program that demonstrates the string tokenizer

- 4~

é BOOK.mkr Page 83 Wednesday, March 14 2001 1:24 PM é

Input and Output

?

Sometimes we have several items on a line. For instance, suppose each line St ri ngToken-

has two i nts. Java provides the StringTokeni zer type to separate a ' 28' isusedfo

.) extract delimited
St ri ng into tokens. To useit by its shortened name, providethei nmport direc
substrings from a

tive .
large string.

i mport java.util.StringTokeniz er;

Use of the string tokenizer is illustrated in Figure 2.15. First, at line 25, we
construct a St ri ngTokeni zer objed by providing the St r i ng representing
theline of input. The count Tokens method, shown on line 26, will provide the
number of tokensin the St r i ng; in this example, this shoud be two, or else the
input is in error. Then, the next Token method returns the next token as a
St ri ng. This method throws NoSuchEl emrent Except i on if there is no
token, but thisis a runtime exception and does not have to be caught. At lines 31
and 32 we use next Token followed by par sel nt to oltain an i nt. All
errors, including the failure to provide exadly two tokens, are handled in the
cat ch blocks.

By default, tokens are separated by whitespace. The Stri ngTokeni zer
can be mnstructed to recognize other charaders as delimiters and to include these

delimiters as tokens.

2.6.3 Sequential Files
One of the basic rules of Javais that what works for terminal 1/0 also worksfor Fi | eReader is

files. To ded with afile, we do nd construct a Buf fer edReader objed from Used forfile input.

ﬁ%

é BOOK.mkr Page 84 Wednesday, March 14 2001 1:24 PM é

m Reference Types

an | nput Str eamReader . Instead, we oonstruct it from a Fi le Reader
object, which itself can be mnstructed by providing a filename.

An examplethat illustratesthese basicideasis hownin Figure 2.16. Here, we
have aprogram that will list the contents of the text fil es that are speafied as com-
mand-line aguments. The mai n routine simply steps through the command-line
arguments, passng eat onetolistFile.InlistFile, we amnstruct the
Fi | eReader objed at line 24, and then useit to construct aBuf f er edReader
object—f i | el n —at line 25. At that point, readingisidenticd to what we have
areay seen.

After we ae done with the fil e, we must close it; otherwise, we auld eventu-
aly run out of streams. Note that this cannot be done & the end o thet r y block,
sincean exception could cause apremature exit from the block. Thuswe dose the
fileinafinal | y block, which is guaranteed to be started whether there ae no
exceptions, handled exceptions, or unhandled exceptions. The code to handle the

cl ose iscomplex because:

1. fil el nmustbededared outside of thetry block in order to be
visiblein the finally block.

2. filelnmustbeinitializedtonul | to avoid compiler com-
plaints about a possible uninitialized variable.

3. Priortocalingcl ose, wemust check that fi | el nisnot nul |
to avoid generating aNul IP oi nt er Exception (fileln
would be nul I if the filewas not found, resulting in an
| OExcept i on prior to its assgnment).

4. cl ose might itself throw a cheded exception, and requires atry/
catch block.

é BOOK.mkr Page 85 Wednesday, March 14 2001 1:24 PM é

Input and Output

1 inportj ava.io.FileReader;

2 inportj ava.io.BufferedReader;

3 inportj ava.io.|OException;

4

5 publicclassListFiles

6 {

7 publics taticvoidmain(String[]a rgs)

8 {

9 if(args.length==0)

10 Systemout.printin(" Nof iless pecified") ;

11 for(i nti=0 ;i<a rgs.length;i ++)

12 listFile(a rgs[i]) ;

13 }

14

15 publics taticvoidl istFile(Stringf ileNanme)

16 {

17 Fi | eReadert heFil e;

18 Buf f eredReaderf ileln=n ull;

19 Stringo nelLine;

20

21 Systemout.println(" FILE"+f il eName) ;

22 try

23 {

24 theFile=n ewFil eReader(f ileNane) ;

25 fileln =newBufferedReader(t heFile) ;
» 26 while((o neLine=f ileln.readLine())! =null) -

27 Systemout.println(o neLine) ;

28 }

29 catch(l OExceptione)

30 { Systemout.printin(e) ;}

31 finally

32 {

33 //C loset hes tream

34 try

35 {

36 if(fileln! =null)

37 fileln.close() ;

38 }

39 catch(l OExceptione)

40 {}

41 }

42 }

43 }

Figure 2.16 Program to list contents of a file

- 4~ 4

é BOOK.mkr Page 86 Wednesday, March 14 2001 1:24 PM

m Reference Types

1 //D oubles pacef iless pecifiedonc ormmandl i ne.

2

3 inportj ava.io.Fil eReader;

4 inportj ava.io.BufferedReader;

5 inportj ava.io.FileWiter;

6 inportj ava.io.PrintWiter;

7 inportj ava.io.|OException;

8

9 publicc | ass D oubl eSpace

10 {

11 publics taticvoidmain(String[]a rgs)

12 {

13 for(i nti=0 ;i<a rgs.length;i ++)

14 doubl eSpace(a rgs[i]) ;

15 }

16

17 publics taticv oi dd oubl eSpace(S tringf il eName)

18 {

19 PrintWiter fileGut=n ull;

20 Buf f eredReaderf ileln=n ull;

21

22 try

23 {

24 fileln =newBufferedReader(

25 newFil eReader(f ileNanme)) ;
» 26 fileQut=n ewPrintWiter(-

27 newFileWiter(f ileName+" .ds")) ;

28

29 Stringo neli ne;

30 while((o neLine=f ileln.readLine())! =null)

31 fileQut.println(o neLine+" \n") ;

32 }

33 catch(l OExceptione)

34 {e .printStackTrace() ;}

35

36 finally

37 {

38 try

39 {

40 if(f ileGut! =null)

41 fileQut.close() ;

42 if(f ileln! =null)

43 fileln.close() ;

44 }

45 catch(l OExceptione)

46 {e .printStackTrace() ;}

47 }

48 }

49 }

Figure 2.17 Program to double-space files

ﬁ%

é BOOK.mkr Page 87 Wednesday, March 14 2001 1:24 PM é

Summary

Formatted file output is smilar tofileinpu. Fi | eWiter,PrintWriter, FileWiteris

1

>

and println replace Fi | eReader, Buf f er edReader, and r eadLi ne, Ysedforfie oufput.

respectively. Figure 2.17 illustrates a program that double-spaces files that are
specified onthe command line (the resulting files are placed in afilewith a. ds
extension).

This description of Javal/O, while enoughto do basic formatted I/O, hides an

interesting object-oriented design that is discussed in more detail in Sedion 4.5.3.

Summary

This chapter examined referencetypes. A reference is avariable that stores either
the memory address where an oljed resides or the spedal reference nul | . Only
objects may be referenced; any objed can be referenced by severa referencevari-
ables. When two references are ammpared via==, theresult ist r ue if both refer-
ences refer to the same objed. Similarly, = makes a reference variable reference
another object. Only afew other operations are avail able. The most significant is
the dot operator, which all ows the seledion of an objed’s method a accessof its
internal data.

Because there ae only eight primitive types, virtualy everything o conse-
guence in Java is an objed and is accesed by a reference This includes
St ri ngs, arrays, exception objeds, data and file streams, and a string tokenizer.

The St ri ng is a special reference type because + and += can be used for
concaenation. Otherwise, a Stri ng is like awy other reference equal s is

required to test if the contents of two St ri ngsareidentical. An array isa ollec

ﬁ%

é BOOK.mkr Page 88 Wednesday, March 14 2001 1:24 PM é

Reference Types

tion o identicdly typed values. The aray isindexed starting at 0, and index range
cheding is guaranteed to be performed. Arrays can be expanded dynamicdly by
using new to allocate alarger amount of memory and then copying over individ-
ual elements.

Exceptions are used to signal exceptiona events. An exceptionis sgnaled by
thet hr owclause; it is propagated until handled by acat ch block that is associ-
ated with at r y block. Except for the run-time exceptions and errors, ead method
must signal the exceptions that it might propagate by usingat hr ows list.

StringTokeni zers are used to parse aStri ng into aher Stri ngs.
Typicdly, it is used in conjunction with other input routines. Input is handled by

Buf f er edReader, | nput St r eanReader, and Fi | eReader objeds.

>

The next chapter shows how to design rew types by defining aclass.

ﬁaﬁ Objects of the Game

aggregate A colledion of objects gored in one unit. (58)

array Storesa mlledion o identicdly typed oljeds. (58)

array indexing operator [] Provides accessto any element in the aray. (58)

ArrayLi st Storesa wllection of objedsin array-like format, with easy
expansion viathe add method. (67)

Buf f er edReader Used for line-at-a-time input. (80)

call by reference In many programming languages, means that the formal
parameter is areferenceto the acdua argument. Thisisthe natural effea

achieved in Java when cdl-by-value is used on referencetypes. (51)

ﬁ%

é BOOK.mkr Page 89 Wednesday, March 14 2001 1:24 PM é

Objects of the Game m

1

cat ch block Used to processan exception. (74)

checked exception Must be ather caught or explicitly all owed to propagate by
at hr ows clause. (76)

command-line argument Accessd by a parameter to mai n. (71)

construction For objeds, is performed via the new keyword. (47)

dot member operator (.) Allows accessto ead member of an objed. (46)

dynamic array expansion Allows us to make arrays larger if needed. (63)

equal s Used to test if the values gored in two oljeds are the same. (53)

Er r or An unrecoverable exception. (77)

exception Used to handle exception occurrences, such as errors. (72)

Fi | eReader Usedfor fileinput. (83)

Fil eWiter Usedfor file output. (87)

final | y clause Always exeauted prior to exitingat r y/cat ch
sequence. (75)

gar bage collection Automatic redaiming of unreferenced memory. (48)

immutable Objed whaose state anna change. Specificdly, the St ri ngsare
immutable. (54)

input and output (I/0) Achieved throughthe use of thej ava. i o
package. (79)

j ava. i o Padkage that isimported for nontrivia 1/O. (79)

| engt h field Used to determine the size of an array. (59)

| engt h method Used to determine the length of a string. (57)

| hs and r hs Standsfor left-hand side and right-hand side, respedively. (49)

ﬁ%

é BOOK.mkr Page 90 Wednesday, March 14 2001 1:24 PM é

m Reference Types

multidimensional array An array that isaccessed by morethan oneindex. (69)

new Used to construct an dbject. (47)

nul | reference The value of an objed referencethat does not refer to any
object. (42)

Nul | Poi nt er Except i on Generated when attempting to apply a method
toanul | reference (47)

object A nonprimitive entity. (45)

reference type Any type that is not a primitive type. (45)

run-time exception Does not have to be handled. Examplesinclude
Arithneti cExceptionandNul | Poi nter Excepti on. (75)

Stri ng A speda objed used to store a wlledion of charaders. (54)

>

string concatenation Performed with + and += operators. (55)

StringTokeni zer Usedto extrad delimited St ri ngsfromasinge
String. Foundinthej ava. uti| padkage. (83)

System i n, Syst em out ,andSyst em err The predefined 1/O
streams. (80)

t hr ow clause Used to throw an exception. (77)

t hr ows clause Indicates that a method might propagate an exception. (78)

t oSt ri ng method Converts a primitive type or objed toa St ri ng. (57)

t ry block Encloses code that might generate an exception. (73)

é BOOK.mkr Page 91 Wednesday, March 14 2001 1:24 PM é

On the Internet n

1

>

Common Errors

1. For referencetypes and arrays, = does not make acopy of objed values.
Instea, it copies addresss.

2. For referencetypes and strings, equal s should be used insteal of == to
test if two objeds have identicd states.

3. Off-by-oneerrors are ammmon in al languages.

4. Referencetypesareinitializedto nul | by default. No ojed is con-
structed withou cdling new. An “uninitialized reference variable” or
Nul | Poi nt er Except i on indicates that you forgot to allocate the
object.

5. InJava, arrays areindexed from O to N- 1, where Nisthe array size How-
ever, range dhedking is performed, so an out-of-bounds array accessis
detected at run-time.

6. Two-dimensional arraysareindexedasAli J[j],notAli,j].

7. Chedked exceptions must either be caight or explicitly alowed to propa-
gatewith at hr ows clause.

8. Use"" andnat'' for outputting ablank.

On the Internet
Following are the avail able files for this chapter. Everything is self-contained, and

nothing is used later in the text.

- 4~

é BOOK.mkr Page 92 Wednesday, March 14 2001 1:24 PM

Reference Types

RandomNumbersjava Containsthe code for the examplein Figure 2.4.

ReadStrings.java Contains the code for the example in Figures 2.6

and 2.7.

ReadStringsWithArrayList.java Containsthe codefor the examplein Figure

2.8.
MatrixDemo.java Contains the code for the example in Figure 2.9.
Echo.java Contains the code for the example in Figure 2.10.
DivideByTwo.java Contains the code for the examplein Figure 2.11
MaxTest.java Contains the code for the example in Figure 2.15.
ListFilesjava Contains the code for the example in Figure 2.16.
DoubleSpacejava Contains the code for the example in Figure 2.17.

@ Exercises

2.1

2.2.

2.3.

24.

2.5.

2.6.

In Short

List the major differences between reference types and primitive types.
List five operations that can be gplied to areferencetype.

What are the differences between an array and Ar r ayLi st ?
Describe how exceptions work in Java.

List the basic operations that can be performed on strings.

In Theory
If x and y have the values of 5 and 7, respedively, what is output by the

following:

ﬁ%

é BOOK.mkr Page 93 Wednesday, March 14 2001 1:24 PM é

Exercises

1

Systemo ut.println(x+""+ y)
Systemo ut.println(x+""+ y)

In Practice

2.7. A checksum is the 32-hit integer that is the sum of the Unicode charaders
in afile (we dlow silent overflow, but silent overflow is unlikely if al the
charaders are ASCII). Two identicd files have the same checksum. Write
a program to compute the checksum of afile that is supplied as a com-
mand-line agument.

2.8. Modify the program in Figure 2.16 so that if no command-line aguments
are given, then the standard input is used.

2.9. Write a method that returns true if String strl is a prefix of
String str2. Do na use any of the genera string searching routines

except char At .

Programming Projects

2.10. Write aprogram that outputs the number of charaders, words, and linesin
the fil es that are supplied as command-line arguments.

2.11. In Java, floating pant divide-by-zero is legal and dces not result in an
exception (instead, it gives arepresentation of infinity, negative infinity, or
aspedal not-a-number symbal).

a. Veify the a&ove description by performing some floating pant divi-

sions.

é BOOK.mkr Page 94 Wednesday, March 14 2001 1:24 PM é

m Reference Types

b. Write astatic di vi de method that takes two parameters, and returns
their qudient. If the dividend is 0.0, throw an
Arit hnmeti cExcepti on. Isathrows clause needed?

c. Write a main program that cdls di vide and caches the
Arithmeti cExcepti on. Inwhich method should the cach clause
be placal?

2.12. Implement atext file apy program. Include atest to make sure that the
source and destination files are different.
2.13. Eadlineof afile mntains a name (as a string) and an age (as an integer).

a. Write aprogram that outputs the oldest person; in case of ties, output
any person.

b. Write aprogram that outputs the oldest person; in case of ties, output
al oldest people (Hint: maintain the aurrent group o oldest peoplein

anArrayli st).

References

More information can be found in the references at the end of Chapter 1.

