
� � � � � � �

HIS chapter begins the discussion of object-oriented programming. A funda-

mental component of object-oriented programming is the specification,

implementation, and use of objects. In Chapter 2, we saw several examples of

objects, including strings and files, that are part of the mandatory Java library. We

also saw that these objects have an internal state that can be manipulated by

applying the dot operator to select a method. In Java, the state and functionality of

an object is given by defining a class. An object is then an instance of a class.

In this chapter, we will see:

• How Java uses the class to achieve encapsulation and information hiding

• How classes are implemented and automatically documented

• How classes are grouped into packages

� � 	
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Object-oriented programming emerged as the dominant paradigm of the mid-

1990’s. In this section we discuss some of the things that Java provides in the way

BOOK.mkr Page 95 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %+ ,

of object-oriented support and mention some of the principles of object-oriented

programming.

- . / 0 1 2 3 4 5 6 6 7 8 9 8 9 6 :
8 ; 4 8 ; 4 < 6 : 8 5 = > 8 = 5 6
4 7 ? : 8 4 8 6 @ A 4 > ; B C D

E 6 > 8 ? 6 F 9 7 6 : B G 6 5 4 D
8 9 B 7 : 8 ; 4 8 H 4 I 4 > D
> 6 : : B 5 H 4 7 9 G = J 4 8 6
8 ; 4 8 : 8 4 8 6 @

At the heart of object-oriented programming is the object. An object is a data

type that has structure and state. Each object defines operations that may access

or manipulate that state. As we have already seen, in Java an object is distin-

guished from a primitive type, but this is a particular feature of Java rather than

the object-oriented paradigm. In addition to performing general operations, we

can do the following:

• Create new objects, possibly with initialization.

• Copy or test for equality.

• Perform I/O on these objects.

K 7 B C E 6 > 8 9 : 4 7
L 2 M N O 1 P Q O 2 R S 8 : G 4 5 8 :

> 4 7 7 B 8 C 6
? 9 : : 6 > 8 6 ? C I 8 ; 6
T 6 7 6 5 4 J = : 6 5 : B F 8 ; 6
B C E 6 > 8 @

U Q V M W N L 2 O M Q X O Y O Q Z
H 4 [6 : 9 H G J 6 H 6 7 8 4 D
8 9 B 7 ? 6 8 4 9 J : \ 9 7 > J = ? D
9 7 T > B H G B 7 6 7 8 : B F
4 7 B C E 6 > 8 \ 9 7 4 > > 6 : D
: 9 C J 6 @

Also, we view the object as an atomic unit that the user ought not to dissect.

Most of us would not even think of fiddling around with the bits that represent a

floating-point number, and we would find it completely ridiculous to try to incre-

ment some floating-point object by altering its internal representation ourselves.

The atomicity principle is known as information hiding. The user does not

get direct access to the parts of the object or their implementations; they can be

accessed only indirectly by methods supplied with the object. We can view each

object as coming with the warning, “Do not open] no user-serviceable parts

inside.” In real li fe, most people who try to fix things that have such a warning

wind up doing more harm than good. In this respect, programming mimics the

real world. The grouping of data and the operations that apply to them to form an

BOOK.mkr Page 96 Wednesday, March 14, 2001 1:26 PM

^ _ & $ ` % � ! " # $ a b c d " ' $ " (e c b f c & g g d ' f h + i

aggregate, while hiding implementation details of the aggregate, is known as

encapsulation.

j Q 1 L k 3 P l L 2 O M Q 9 : 8 ; 6
T 5 B = G 9 7 T B F ? 4 8 4
4 7 ? 8 ; 6 B G 6 5 4 8 9 B 7 :
8 ; 4 8 4 G G J I
8 B 8 ; 6 H 8 B F B 5 H 4 7
4 T T 5 6 T 4 8 6 \ m ; 9 J 6
; 9 ? 9 7 T 8 ; 6 9 H G J 6 D
H 6 7 8 4 8 9 B 7 B F 8 ; 6
4 T T 5 6 T 4 8 6 @

An important goal of object-oriented programming is to support code reuse.

Just as engineers use components over and over in their designs, programmers

should be able to reuse objects rather than repeatedly reimplementing them.

When we have an implementation of the exact object that we need to use, reuse is

a simple matter. The challenge is to use an existing object when the object that is

needed is not an exact match but is merely very similar.

Object-oriented languages provide several mechanisms to support this goal.

One is the use of generic code. If the implementation is identical except for the

basic type of the object, there is no need to completely rewrite code: Instead, we

write the code generically so that it works for any type. For instance, the logic

used to sort an array of objects is independent of the types of objects being sorted,

so a generic algorithm could be used.

The inheritance mechanism allows us to extend the functionality of an object.

In other words, we can create new types with restricted (or extended) properties

of the original type. Inheritance goes a long way toward our goal of code reuse.

Another important object-oriented principle is polymorphism. A polymorphic

reference type can reference objects of several different types. When methods are

applied to the polymorphic type, the operation that is appropriate to the actual ref-

erenced object is automatically selected. In Java, this is implemented as part of

inheritance. Polymorphism allows us to implement classes that share common

logic. As is discussed in Chapter 4, this is il lustrated in the Java libraries. The use

BOOK.mkr Page 97 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %+ n

of inheritance to create these hierarchies distinguishes object-oriented program-

ming from the simpler object-based programming.

In Java, generic algorithms are implemented as part of inheritance. Chapter 4

discusses inheritance and polymorphism. In this chapter, we describe how Java

uses classes to achieve encapsulation and information hiding.

K 1 l L 3 3 9 7 o 4 < 4 > B 7 D
: 9 : 8 : B F V O 0 l Y 3 8 ; 4 8
: 8 B 5 6 ? 4 8 4 4 7 ?
N 0 2 X M Y 3 8 ; 4 8 4 5 6
4 G G J 9 6 ? 8 B 9 7 D
: 8 4 7 > 6 : B F 8 ; 6 > J 4 : : @

An object in Java is an instance of a class. A class is similar to a C structure

or Pascal/Ada record, except that there are two important enhancements. First,

members can be both functions and data, known as methods and fields, respec-

tively. Second, the visibil ity of these members can be restricted. Because methods

that manipulate the object’s state are members of the class, they are accessed by

the dot member operator, just like the fields. In object-oriented terminology, when

we make a call to a method we are passing a message to the object. Types dis-

cussed in Chapter 2, such as St r i ng, Ar r ayLi st , St r i ngTokeni zer , and

Fi l eReader , are all classes implemented in the Java library.

� � p q r � � s t � u v � � s t �
w = 7 > 8 9 B 7 4 J 9 8 I 9 : : = G D

G J 9 6 ? 4 : 4 ? ? 9 8 9 B 7 4 J
H 6 H C 6 5 : x 8 ; 6 : 6
N 0 2 X M Y 3 H 4 7 9 G = D
J 4 8 6 8 ; 6 B C E 6 > 8 y :
: 8 4 8 6 @

Recall that when you are designing the class, it is important to be able to hide

internal details from the class user. This is done in two ways. First, the class can

define functionality as class members, called methods. Some of these methods

describe how an instance of the structure is created and initialized, how equali ty

tests are performed, and how output is performed. Other methods would be spe-

cific to the particular structure. The idea is that the internal data fields that repre-

sent an object’s state should not be manipulated directly by the class user but

BOOK.mkr Page 98 Wednesday, March 14, 2001 1:26 PM

z { d g | * " } ~ & g | * " + +

instead should be manipulated only through use of the methods. This idea can be

strengthened by hiding members from the user. To do this, we can specify that

they be stored in a private section. The compiler will enforce the rule that mem-

bers in the private section are inaccessible by methods that are not in the class of

the object. Generally speaking, all data members should be private.

� = C J 9 > H 6 H C 6 5 : 4 5 6
< 9 : 9 C J 6 8 B 7 B 7 > J 4 : :
5 B = 8 9 7 6 : x G 5 9 < 4 8 6
H 6 H C 6 5 : 4 5 6 7 B 8 @

Figure 3.1 illustrates a class declaration for an I nt Cel l object.1 The decla-

ration consists of two parts: public and private. Public members represents the

portion that is visible to the user of the object. Since we expect to hide data, gen-

erally only methods and constants would be placed in the public section. In our

example, we have methods that read from and write to the I nt Cel l object. The

private section contains the data: this is invisible to the user of the object. The

st or edVal ue member must be accessed through the publicly visible routines

r ead and wr i t e; it cannot be accessed directly by mai n. Another way of view-

ing this is shown in Figure 3.2.

1. Public classes must be placed in files of the same name. Thus I nt Cel l must be in file IntCell.java. We will

discuss the meaning of publ i c at line 5 when we talk about packages.

BOOK.mkr Page 99 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � �
�

/ / I nt Cel l c l ass�
/ / i nt r ead() - - > R et ur ns t he s t or ed v al ue�
/ / voi d w r i t e(i nt x) - - > x i s s t or ed��
publ i c c l ass I nt Cel l�
{�
 / / P ubl i c m et hods�
 publ i c i nt r ead() { r et ur n s t or edVal ue; }�
 publ i c v oi d w r i t e(i nt x) { s t or edVal ue = x ; }� �� �
 / / P r i vat e i nt er nal d at a r epr esent at i on� �
 pr i vat e i nt s t or edVal ue;� �
}

� � � � � � � � � z # b g | * " $ " (" # * & c & $ d b ' b � & '
I ntCell

* & % %

� � � � � � � � �
IntC ell

g " g " c % �
read

& ' (
write

& c " & # # " % % d * " � � $
stor edValue

d % _ d ((" '

� 6 H C 6 5 : 8 ; 4 8 4 5 6
? 6 > J 4 5 6 ? G 5 9 < 4 8 6
4 5 6 7 B 8 < 9 : 9 C J 6 8 B
7 B 7 > J 4 : : 5 B = 8 9 7 6 : @

Figure 3.3 shows how I nt Cel l objects are used. Since r ead and wr i t e

are members of the I nt Cel l class, they are accessed by using the dot member

operator. The st or edVal ue member could also be accessed by using the dot

member operator, but since it is private, the access at line 14 would be illegal if it

were not commented out.

K V O 0 l Y 9 : 4 H 6 H C 6 5
8 ; 4 8 : 8 B 5 6 : ? 4 8 4 x 4
N 0 2 X M Y 9 : 4 H 6 H D
C 6 5 8 ; 4 8 G 6 5 F B 5 H :
4 7 4 > 8 9 B 7 @

Here is a summary of the terminology. The class defines members, which

may be either fields (data) or methods (functions). The methods can act on the

fields and may call other methods. The visibility modifier public means that

the member is accessible to anyone via the dot operator. The visibil ity modifier

read write storedValue

BOOK.mkr Page 100 Wednesday, March 14, 2001 1:26 PM

� & � & (b # � � �

private means that the member is accessible only by other methods of this

class. With no visibility modifier, we have package visible access, which is dis-

cussed in Section 3.6.4. There is also a fourth modifier known as protected,

which is discussed in Chapter 4.

�
/ / E xer ci se t he I nt Cel l c l ass��
publ i c c l ass T est I nt Cel l�
{

�
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)�
 {�
 I nt Cel l m = n ew I nt Cel l () ;��
 m. wr i t e(5) ;� �
 Syst em. out . pr i nt l n(" Cel l c ont ent s: " + m . r ead()) ;� �� �
 / / T he n ext l i ne w oul d b e i l l egal i f u ncomment ed� �
 / / b ecause s t or edVal ue i s a p r i vat e m ember� �
 / / m. s t or edVal ue = 0 ;� �
 }� �
}

� � � � � � � � � z % d g | * " $ " % $ c b � $ d ' " $ b % _ b � _ b �
IntCell

b ! " # $ % & c "& # # " % % " (

� � � � � � � � � �
 ; 6 1 l L 3 3 3 k 0 1 O V O 1 L ¡

2 O M Q ? 6 : > 5 9 C 6 : m ; 4 8
> 4 7 C 6 ? B 7 6 8 B 4 7
B C E 6 > 8 @ ; 6 O N k l 0 ¡
N 0 Q 2 L 2 O M Q 5 6 G 5 6 D
: 6 7 8 : 8 ; 6 9 7 8 6 5 7 4 J : B F
; B m 8 ; 6 : G 6 > 9 F 9 > 4 D
8 9 B 7 : 4 5 6 H 6 8 @

When designing a class, the class specification represents the class design and

tell s us what can be done to an object. The implementation represents the inter-

nals of how this is accomplished. As far as the class user is concerned, these inter-

nal detai ls are not important. In many cases, the implementation represents

proprietary information that the class designer may not wish to share. However,

the specification must be shared; otherwise, the class is unusable.

BOOK.mkr Page 101 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ¢

In many languages, the simultaneous sharing of the specification and hiding

of the implementation is accomplished by placing the specification and imple-

mentation in separate source files. For instance, C++ has the class interface,

which is placed in a . h file and a class implementation, which is in a . cpp file.

In the . h file, the class interface restates the methods (by providing method head-

ers) that are implemented by the class.

 ; 6 / L £ L Y M 1 G 5 B D
T 5 4 H 4 = 8 B H 4 8 9 D
> 4 J J I T 6 7 6 5 4 8 6 :
? B > = H 6 7 8 4 8 9 B 7 F B 5
> J 4 : : 6 : @

Java takes a different approach. It is easy to see that a list of the methods in a

class, with signatures and return types, can be automatically documented from the

implementation. Java uses this idea: The program javadoc, which comes with all

Java systems, can be run to automatically generate documentation for classes.

The output of javadoc is a set of HTML files that can be viewed or printed with a

browser.

The Java implementation file can also add javadoc comments that begin with

the token starter / * * . Those comments are automatically added in a uniform and

consistent manner to the documentation produced by javadoc.

/ L £ L Y M 1 8 4 T :
9 7 > J = ? 6

@aut hor
\

@par am
\

@r et ur n
\ 4 7 ?

@t hr ows
@ ; 6 I 4 5 6

= : 6 ? 9 7 / L £ L Y M 1
> B H H 6 7 8 : @

There also are several special tags that can be included in the javadoc com-

ments. Some of these are @aut hor , @par am, @r et ur n, and @t hr ows . Figure

3.4 illustrates the use of the javadoc commenting features for the I nt Cel l class.

At line 3, the @aut hor tag is used. This tag must precede the class definition.

Line 10 illustrates the use of the @r et ur n tag and line 19, the @par am tag.

These tags must appear prior to a method declaration. The first token that follows

the @par am tag is the parameter name. The @t hr ows tag is not shown, but it

has the same syntax as @par am.

BOOK.mkr Page 102 Wednesday, March 14, 2001 1:26 PM

� & � & (b # � � ¤

Some of the output that results from running javadoc is shown in Figure 3.5

(on page 105). Run javadoc by supplying the name (including the . j ava exten-

sion) of the source file.

The output of javadoc is purely commentary, except for the method headers.

The compiler does not check that these comments are implemented. Nonetheless,

the importance of proper documentation of classes can never be overstated. java-

doc makes the task of generating well-formatted documentation easier.

�
/ * *�
 * A c l ass f or s i mul at i ng a n i nt eger m emor y c el l�
 * @ aut hor M ar k A . W ei ss�
 * /

�
�

publ i c c l ass I nt Cel l�
{�
 / * *�
 * G et t he s t or ed v al ue.� �
 * @ r et ur n t he s t or ed v al ue.� �
 * /� �
 publ i c i nt r ead()� �
 {� �
 r et ur n s t or edVal ue;� �
 }� �� �
 / * *� �
 * S t or e a v al ue.� �
 * @ par am x t he n umber t o s t or e.� �
 * /� �
 publ i c v oi d w r i t e(i nt x)� �
 {� �
 s t or edVal ue = x ;� �
 }� �

� �
 pr i vat e i nt s t or edVal ue;� �
}

� � � � � � � � ¥
IntC ell

(" # * & c & $ d b ' � d $ _ ¦ § ¨ § © ª « # b g g " ' $ %

BOOK.mkr Page 103 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ¬
� � ® � � � � ¯ � � � � �

Some methods are common to all classes. This section discusses mutators, acces-

sors, and three special methods: the constructors, t oSt r i ng, and equal s .

Also discussed is mai n.

° ± ² ± ³ ´ µ ¶ · ¸ ¹ º » ¸ µ ¹ ·
K 1 M Q 3 2 W P 1 2 M W 8 6 J J :
; B m 4 7 B C E 6 > 8 9 :
? 6 > J 4 5 6 ? 4 7 ? 9 7 9 8 9 4 J D
9 ¼ 6 ? @

As mentioned earlier, a basic property of objects is that they can be defined, pos-

sibly with initialization. In Java, the method that controls how an object is created

and initiali zed is the constructor. Because of overloading, an object may define

multiple constructors.

BOOK.mkr Page 104 Wednesday, March 14, 2001 1:26 PM

½ & % d # ¾ " $ _ b (% � � ¿

� � � � � � � � À ¦ § ¨ § © ª « b � $ | � $ � b c Á d f � c " Â Ã Ä Å | & c $ d & * b � $ | � $ Æ

BOOK.mkr Page 105 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ,
 ; 6 ? 6 F 4 = J 8 > B 7 D
: 8 5 = > 8 B 5 9 : 4 H 6 H D
C 6 5 D C I D H 6 H C 6 5 4 G D
G J 9 > 4 8 9 B 7 B F 4
? 6 F 4 = J 8 9 7 9 8 9 4 J 9 ¼ 4 8 9 B 7 @

If no constructor is provided, as in the case for the I nt Cel l class in Figure

3.1, a default constructor is generated that initializes each data member using the

normal defaults. This means that primitive fields are initialized to zero and refer-

ence fields are initialized to the null reference. (These defaults can be replaced by

inline field initialization, which is executed prior to execution of constructor bod-

ies.) Thus, in the case of I nt Cel l , the st or edVal ue component is 0.

To write a constructor, we provide a method that has the same name as the

class and no return type. In Figure 3.6, there are two constructors: one begins at

line 7 and the other at line 15. Using these constructors, we can construct Dat e

objects in either of the following ways:

 Date d 1 = n ew Dat e() ;
 Date d 2 = n ew Dat e(4 , 1 5, 2 002) ;

Note that once a constructor is written, a default zero-parameter constructor

is no longer generated. If you want one, you have to write it. Thus the constructor

at line 7 is required in order to allow construction of the object that d1 references.

° ± ² ± Ç È º ¸ É ¸ µ ¹ · É ¶ Ê Ë » » Ì · · µ ¹ ·

Class fields are typically declared private. Thus they cannot be directly accessed

by nonclass routines. Sometimes, however, we would like to examine the value of

a field. We may even want to change it.

BOOK.mkr Page 106 Wednesday, March 14, 2001 1:26 PM

½ & % d # ¾ " $ _ b (% � � i
K H 6 8 ; B ? 8 ; 4 8 6 Í D
4 H 9 7 6 : C = 8 ? B 6 :
7 B 8 > ; 4 7 T 6 8 ; 6
: 8 4 8 6 B F 4 7 B C E 6 > 8
9 : 4 7 L 1 1 0 3 3 M W @
K H 6 8 ; B ? 8 ; 4 8
> ; 4 7 T 6 : 8 ; 6 : 8 4 8 6 9 :
4 N P 2 L 2 M W @

One alternative to do this is to declare the fields public. This is typically a

poor choice, however, because it violates information-hiding principles. Instead,

we can provide methods to examine and change each field. A method that exam-

ines but does not change the state of an object is an accessor. A method that

changes the state is a mutator (because it mutates the state of the object).

Special cases of accessors and mutators examine only a single field. These

accessors typically have names beginning with get , such as get Mont h, while

these mutators typically have names beginning with set , such as set Mont h.

The advantage of using a mutator is that the mutator can ensure that changes

in the state of the object are consistent. Thus a mutator that changes the day field

in a Dat e object can make sure that only legal dates result.

° ± ² ± ° Î º ¸ Ï º ¸ É ¶ Ê
toString

 ; 6
t oSt ri ng

H 6 8 ; B ? > 4 7 C 6
G 5 B < 9 ? 6 ? @ S 8 5 6 8 = 5 7 :
4

St r i ng
C 4 : 6 ?

B 7 8 ; 6 B C E 6 > 8 : 8 4 8 6 @

Typically, we want to output the state of an object using pri nt . The way this is

done is by writing the class method t oSt r i ng. This method returns a St r i ng

suitable for output. As an example, Figure 3.6 shows a bare-bones implementa-

tion of the t oSt r i ng method for the Dat e class.

BOOK.mkr Page 107 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � n
�

/ / M i ni mal D at e c l ass t hat i l l ust r at es s ome J ava f eat ur es�
/ / N o e r r or c hecks o r j avadoc c omment s��
publ i c c l ass D at e

�
{�
 / / Z er o- par amet er c onst r uct or�
 publ i c D at e()�
 {�
 mont h = 1 ;� �
 day = 1 ;� �
 year = 2 002;� �
 }� �� �
 / / T hr ee- par amet er c onst r uc t or� �
 publ i c D at e(i nt t heMont h, i nt t heDay, i nt t heYear)� �
 {� �
 mont h = t heMont h;� �
 day = t heDay;� �
 year = t heYear ;� �
 }� �� �
 / / R et ur n t r ue i f t wo e qual v al ues� �
 publ i c b ool ean e qual s(O bj ect r hs)� �
 {� �
 i f (! (r hs i ns t anceof D at e))� �
 r et ur n f al se;� �
 Dat e r hDat e = (D at e) r hs;� �
 r et ur n r hDat e. mont h = = mont h & & r hDat e. day = = d ay & &� �
 r hDat e. year = = y ear ;� �
 }� �� �
 / / C onver si on t o S t r i ng� �
 publ i c S t r i ng t oSt r i ng()� �
 {� �
 r et ur n mont h + " / " + d ay + " / " + y ear ;� �
 }� �� �
 / / F i el ds� �
 pr i vat e i nt m ont h;� �
 pr i vat e i nt d ay;� �
 pr i vat e i nt y ear ;� �
}

� � � � � � � � Ð z g d ' d g & *
Date

* & % % $ _ & $ d * * � % $ c & $ " % # b ' % $ c � # $ b c % & ' ($ _ "
equa l s

& ' (
toString

g " $ _ b (%

BOOK.mkr Page 108 Wednesday, March 14, 2001 1:26 PM

½ & % d # ¾ " $ _ b (% � � +
° ± ² ± ²

equals

 ; 6
equals

H 6 8 ; B ? > 4 7 C 6
G 5 B < 9 ? 6 ? 8 B 8 6 : 8 9 F
8 m B 5 6 F 6 5 6 7 > 6 : 4 5 6
5 6 F 6 5 5 9 7 T 8 B 8 ; 6
: 4 H 6 < 4 J = 6 @

The equal s method is used to test if two objects represent the same value. The

signature is always

 publ i c b ool ean equal s(O bj ect r hs)

Notice that the parameter is of reference type Obj ect , rather than the class type

(the reason for this is discussed in Chapter 4). Typically, the equal s method for

class Cla ssName is implemented to return tru e only if r hs is an instance of

Cl ass Name, and after the conversion to Cl assName, all the primitive fields

are equal (via ==) and all the reference fields are equal (via member-by-member

application of equal s).

 ; 6 G 4 5 4 H 6 8 6 5 8 B
equal s

9 : B F 8 I G 6
Obj ect

@

An example of how equal s is implemented is provided in Figure 3.6 for the

Dat e class. The i ns t anceof operator is discussed in Section 3.5.3.

° ± ² ± Ñ
main

When the java command is issued to start the interpreter, the mai n method in the

class file referenced by the java command is called. Thus each class can have its

own main function, without problem. This makes it easy to test the basic func-

tionality of individual classes. However, although functionalit y can be tested,

placing main in the class gives main more visibilit y than would be allowed in

general. Thus call s from main to nonpubli c methods will succeed in the test,

even though they will be illegal in a more general setting.

BOOK.mkr Page 109 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � �
° ± ² ± Ò · ¸ É ¸ Ó » Ô Ó Ì Õ Ê · É ¶ Ê È Ì ¸ Ö µ Ê ·

K 3 2 L 2 O 1 N 0 2 X M Y 9 : 4
H 6 8 ; B ? 8 ; 4 8 ? B 6 :
7 B 8 7 6 6 ? 4 > B 7 8 5 B J D
J 9 7 T B C E 6 > 8 @

A static method is a method that does not need a controlli ng object, and thus is

typicall y called by supplying a class name instead of the controlling object. The

most common static method is main . Other static methods are found in the

I nt eger and Mat h classes. Examples are the methods I nt eger . par seI nt ,

Math.si n, and Mat h.max . Access to a static method uses the same visibil ity

rules as do static fields. These methods mimic global functions found in non-

object-oriented languages.

Recall from Chapter 1 that some fields of the class use the modifier st at i c .

Specifically, in conjunction with the keyword f i nal , we have constants. With-

out the word f i nal , we have static fields, which have another meaning, and

another use of static methods, both of which are discussed in Section 3.5.5.

BOOK.mkr Page 110 Wednesday, March 14, 2001 1:26 PM

z ((d $ d b ' & *) b ' % $ c � # $ % � � �
� � × q � � � � � � � t Ø � � � � Ù � �

this
9 : 4 5 6 F 6 5 D

6 7 > 6 8 B 8 ; 6 > = 5 5 6 7 8
B C E 6 > 8 @ S 8 > 4 7 C 6
= : 6 ? 8 B : 6 7 ? 8 ; 6
> = 5 5 6 7 8 B C E 6 > 8 \ 4 : 4
= 7 9 8 \
8 B : B H 6 B 8 ; 6 5
H 6 8 ; B ? @

Three additional keywords are t hi s , i ns t anceof , and s t at i c . t hi s has

several uses in Java; two are discussed in this section. instan ceof also has

several general uses; it is used here to ensure that a type-conversion can succeed.

Likewise, sta t ic has several uses. We have already discussed static methods.

This section covers the static field and static initializer.

° ± Ñ ± ³ Ú Ö Ì
this Û Ì Ü Ì ¹ Ì ¶ » Ì

The first use of this is as a reference to the current object. Think of the this

reference as a homing device that, at any instant in time, tells you where you are.

An important use of the t hi s reference is in handling the special case of self-

assignment. An example of this is a program that copies one file to another. A

normal algorithm begins by truncating the target file to zero length. If no check is

performed to make sure the source and target file are indeed different, then the

source file will be truncated — hardly a desirable feature. When dealing with two

objects, one of which is written and one of which is read, we first should check

for this special case, which is known as aliasing.

Ý l O L 3 O Q Z 9 : 4 : G 6 > 9 4 J
> 4 : 6 8 ; 4 8 B > > = 5 :
m ; 6 7 8 ; 6 : 4 H 6 B C D

E 6 > 8 4 G G 6 4 5 : 9 7
H B 5 6 8 ; 4 7 B 7 6 5 B J 6 @

For a second example, suppose we have a class Account that has a method

f i nal Tr ansf er . This method moves all the money from one account into

another. In principle, this is an easy routine to write:

BOOK.mkr Page 111 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ¢

 / / Tr ansf er a ll m oney f r om r hs t o c ur re nt a ccount
 publ i c v oi d f in al Tr ansf er(A ccount r hs)
 {
 dol l ar s + = r hs. dol l ars ;
 r hs. dol l ars = 0 ;
 }

However, consider the result:

 Account a cc ount 1;
 Account a cc ount 2;
 . . .
 account 2 = account 1;
 account 1. fi nal Tr ansf er (a ccount 2);

Since we are transferring money between the same account, there should be no

change in the account. However, the last statement in f i nal Tr ansf er assures

that the account wil l be empty. One way to avoid this is to use an alias test:

 / / Tr ansf er a ll m oney f r om r hs t o c ur re nt a ccount
 publ i c v oi d f in al Tr ansf er(A ccount r hs)
 {
 i f (t hi s == r hs) / / A l i as t est
 r et ur n;
 dol l ar s + = r hs. dol l ars ;
 r hs. dol l ars = 0 ;
 }

° ± Ñ ± Ç Ú Ö Ì
this Þ Ö µ ¹ ¸ Ö É ¶ Ê Ü µ ¹ ´ µ ¶ · ¸ ¹ º » ¸ µ ¹ ·

t hi s
> 4 7 C 6 = : 6 ?

8 B H 4 [6 4 > 4 J J 8 B
4 7 B 8 ; 6 5 > B 7 : 8 5 = > D
8 B 5 9 7 8 ; 6 : 4 H 6
> J 4 : : @

Many classes have multiple constructors that behave similarly. We can use t hi s

inside a constructor to call one of the other class constructors. An alternative to

the zero-parameter Dat e constructor in Figure 3.6 would be

 publ i c D at e()
 {
 t hi s(1 , 1, 2 002) ; // C al l t he 3 -p ar am c onstr uct or
 }

BOOK.mkr Page 112 Wednesday, March 14, 2001 1:26 PM

z ((d $ d b ' & *) b ' % $ c � # $ % � � ¤

More complicated uses are possible, but the call to t hi s must be the first

statement in the constructor; thereafter more statements may follow.

° ± Ñ ± ° Ú Ö Ì
instanceof

Î Ï Ì ¹ É ¸ µ ¹
 ; 6

i nst anceof

B G 6 5 4 8 B 5 9 : = : 6 ? 8 B
8 6 : 8 9 F 4 7 6 Í G 5 6 : : 9 B 7
9 : 4 7 9 7 : 8 4 7 > 6 B F
: B H 6 > J 4 : : @

The i nst anceof operator performs a run-time test. The result of

 exp i nst anceof C l assName

is t rue if exp is an instance of Cla ssName, and fa l se otherwise. If exp is

nul l , the result is always f al se. The i ns t anceof operator is typically used

prior to performing a type conversion and is t r ue if the type conversion can suc-

ceed.

° ± Ñ ± ² ß ¶ · ¸ É ¶ » Ì È Ì à á Ì ¹ · â · ± Þ ¸ É ¸ Ó » È Ì à á Ì ¹ ·
U Q 3 2 L Q 1 0 N 0 N . 0 W 3

4 5 6 F 9 6 J ? : B 5 H 6 8 ; D
B ? : ? 6 > J 4 5 6 ? m 9 8 ; D
B = 8 8 ; 6

sta t i c

H B ? 9 F 9 6 5 @

Fields and methods declared with the keyword s t at i c are static members. If

they are declared without the keyword st at i c , we will refer to them as instance

members. The next subsection explains the distinction between instance and static

members.

° ± Ñ ± Ñ Þ ¸ É ¸ Ó » Ô Ó Ì Õ Ê · É ¶ Ê È Ì ¸ Ö µ Ê ·
ã 2 L 2 O 1 V O 0 l Y 3 4 5 6
6 : : 6 7 8 9 4 J J I T J B C 4 J
< 4 5 9 4 C J 6 : m 9 8 ; > J 4 : :
: > B G 6 @

Static fields are used when we have a variable that all the members of some class

need to share. Typicall y, this is a symbolic constant, but it need not be. When a

class variable is declared static , only one instance of the variable is ever cre-

BOOK.mkr Page 113 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ¬

ated. It is not part of any instance of the class. Instead, it behaves like a single glo-

bal variable but with the scope of the class. In other words, in the declaration

 publ i c c l ass Sa mpl e
 {
 pr i vat e i nt x ;
 pr i vat e s ta t i c i nt y ;
 }

each Sampl e object stores its own x , but there is only one shared y.

A common use of a static field is as a constant. For instance, the class

I nt eger defines the field MAX_VALUE as

 publ i c s t at i c f i nal i nt MA X_VALUE = 2 147483647;

If this constant was not a static field, then each instance of an In t eger would

have a data field named MAX_VALUE, thus wasting space and initialization time.

Instead, there is only a single variable named MAX_VALUE. It can be accessed by

any of the I nt eger methods by using the identifier MAX_VALUE. It can also be

accessed via an I nt eger object obj using obj . MAX_VALUE, as would any

field. Note that this is allowed only because MAX_VALUE is publi c. Final ly,

MAX_VALUE can be accessed by usi ng the cl ass name as I n te -

ger . MAX_VALUE (again allowable because it is public). This would not be

allowed for a nonstatic field. The last form is preferable, because it communicates

to the reader that the field is indeed a static field. Another example of a static field

is the constant Mat h. PI .

Even without the f i nal quali fier, static fields are stil l useful. Figure 3.7

il lustrates a typical example. Here we want to construct Ti cket objects, giving

BOOK.mkr Page 114 Wednesday, March 14, 2001 1:26 PM

z ((d $ d b ' & *) b ' % $ c � # $ % � � ¿

each ticket a unique serial number. In order to do this, we have to have some way

of keeping track of all the previously used serial numbers; this is clearly shared

data, and not part of any one Ti cket object.

K 3 2 L 2 O 1 V O 0 l Y 9 :
: ; 4 5 6 ? C I 4 J J ä G B : : 9 D
C J I ¼ 6 5 B å 9 7 : 8 4 7 > 6 :
B F 8 ; 6 > J 4 : : @

Each Tic ket object wil l have its instance member ser i al Number ; this is

instance data because each instance of Ti cket has its own ser i al Number

field. All Ti cket objects will share the variable t i cket Count , which denotes

the number of Ti cket objects that have been created. This variable is part of the

class, rather than object-specific, so it is declared st at i c . There is only one

t i cket Count , whether there is 1 Ti cket , 10 Ti cket s, or even no Ti cket

objects. The last point — that the static data exists even before any instances of

the class are created — is important, because it means the static data cannot be

initialized in constructors. One way of doing the initialization is inline, when the

field is declared. More complex initialization is described in Section 3.5.6.

BOOK.mkr Page 115 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � ,
�

c l ass T i cket�
{�
 publ i c T i cket ()�
 {

�
 Syst em. out . pr i nt l n(" Cal l i ng c onst r uc t or ") ;�
 ser i al Number = + +t i cket Count ;�
 }�
 �
 publ i c i nt g et Ser i al ()� �
 {� �
 r et ur n s er i al Number ;� �
 }� �
 � �
 publ i c S t r i ng t oSt r i ng()� �
 {� �
 r et ur n " Ti cket # " + g et Ser i al () ;� �
 }� �
 � �
 publ i c s t at i c i nt g et Ti cket Count ()� �
 {� �
 r et ur n t i cket Count ;� �
 }� �
 � �
 pr i vat e i nt s er i al Number ;� �
 pr i vat e s t at i c i nt t i cket Count = 0 ;� �
}� �� �
c l ass T est Ti cket� �
{� �
 publ i c s t at i c v oi d mai n(S t r i ng[] a r gs)� �
 { � �
 Ti cket t 1;� �
 Ti cket t 2;� �
 � �
 Syst em. out . pr i nt l n(" Ti cket c ount i s " + � �
 T i cket . get Ti cket Count ()) ; � �
 t 1 = n ew T i cket () ;� �
 t 2 = n ew T i cket () ;� �
 � �
 Syst em. out . pr i nt l n(" Ti cket c ount i s " +� �
 T i cket . get Ti cket Count ()) ;� �
 � �
 Syst em. out . pr i nt l n(t 1. get Ser i al ()) ;� �
 Syst em. out . pr i nt l n(t 2. get Ser i al ()) ;� �
 }� �
}

� � � � � � � � æ ç d # è " $ # * & % % � & ' " ~ & g | * " b � % $ & $ d # � d " * (% & ' (g " $ _ b (%

BOOK.mkr Page 116 Wednesday, March 14, 2001 1:26 PM

z ((d $ d b ' & *) b ' % $ c � # $ % � � i

In Figure 3.7, we can now see that construction of Ti cket objects is done

by using t ic ket Count as the serial number, and incrementing

t i cket Count . We also provide a static method, get Ti cket Count , that

returns the number of tickets. Because it is static, it can be invoked without pro-

viding an object reference, as shown on lines 36 and 41. The call on line 41 could

have been made using either t 1 or t 2, though many argue that invoking a static

method using an object reference is poor style, and we would never do so in this

text. However, it is significant that the call on line 36 clearly could not be made

through an object reference, since at this point there are no valid Ti cket objects.

This is why it is important for get Ti cket Count to be declared as a static

method; if it was declared as an instance method, it could only be called through

an object reference.

K
st at i c

H 6 8 ; B ?
8 ; 4 8 ; 4 : 7 B 9 H G J 9 > 9 8
t hi s

5 6 F 6 5 6 7 > 6 \
4 7 ? > 4 7 C 6 9 7 D
< B [6 ? m 9 8 ; B = 8 4 7
B C E 6 > 8 5 6 F 6 5 6 7 > 6 @

When a method is declared as a static method, there is no implicit t hi s ref-

erence. As such, it cannot access instance data or call instance methods, without

providing an object reference. In other words, from inside get Ti cket Count ,

unquali fied access of ser i al Number would imply t hi s . ser i alN umber ,

but since there is no t hi s , the compiler will issue an error message. Thus, a non-

static field, which is part of each instance of the class, can be accessed by a static

class method only if a controlling object is provided.

BOOK.mkr Page 117 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� � n
° ± Ñ ± Ò Þ ¸ É ¸ Ó » ß ¶ Ó ¸ Ó É Õ Ó é Ì ¹ ·

K 3 2 L 2 O 1 O Q O 2 O L l O ê 0 W 9 : 4
C J B > [B F > B ? 6 8 ; 4 8
9 : = : 6 ? 8 B 9 7 9 8 9 4 J 9 ¼ 6
: 8 4 8 9 > F 9 6 J ? : @

Static fields are initialized when the class is loaded. Occasionally, we need a com-

plex initi ali zation. For instance, suppose we need a static array that stores the

square roots of the first 100 integers. It would be best to have these values com-

puted automatically. One possibil ity is to provide a static method and require the

programmer to call it prior to using the array.

An alternative is the static initializer. An example is shown in Figure 3.8.

There, the static initializer extends from lines 5 to 9. The simplest use of the static

initializer places initialization code for the static fields in a block that is preceded

by the keyword st at i c . The static initializer must follow the declaration of the

static member.

�
publ i c c l ass S quar es�
{�
 pr i vat e s t at i c d oubl e s quar eRoot s [] = n ew d oubl e[1 00] ;��
 s t at i c�
 {�
 f or (i nt i = 0 ; i < s quar eRoot s . l engt h; i ++)�
 squar eRoot s [i] = M at h. sqr t ((d oubl e) i) ;�
 }� �
 / / R est o f c l ass� �
}

� � � � � � � � ë } ~ & g | * " b � & % $ & $ d # d ' d $ d & * d ì " c

BOOK.mkr Page 118 Wednesday, March 14, 2001 1:26 PM

z ((d $ d b ' & *) b ' % $ c � # $ % � � +
�

/ * *�
 * T he S t r i ngAr r ayLi s t i mpl ement s a g r owabl e a r r ay o f S t r i ng.�
 * I nser t i ons a r e a l ways d one a t t he e nd.�
 * /

�
publ i c c l ass S t r i ngAr r ayLi s t�
{�
 / * *�
 * R et ur ns t he n umber o f i t ems i n t hi s c ol l ec t i on.�
 * @ r et ur n t he n umber o f i t ems i n t hi s c ol l ec t i on.� �
 * /� �
 publ i c i nt s i ze()� �
 {� �
 r et ur n t heSi ze;� �
 }� �
 � �
 / * *� �
 * R et ur ns t he i t em a t p osi t i on i dx .� �
 * @ par am i dx t he i ndex t o s ear ch i n.� �
 * @ t hr ows A r r ayI ndexOut Of BoundsExcept i on i f i ndex i s b ad.� �
 * /� �
 publ i c S t r i ng g et (i nt i dx)� �
 {� �
 i f (i dx < 0 | | i dx > = s i ze())� �
 t hr ow n ew A r r ayI ndexOut Of BoundsExcept i on() ;� �
 r et ur n t heI t ems[i dx] ; � �
 }� �
 � �
 / * *� �
 * A dds a n i t em t o t hi s c ol l ect i on, a t t he e nd.� �
 * @ par am x a ny o bj ec t .� �
 * @ r et ur n t r ue (as p er j ava. ut i l . Ar r ayLi st) .� �
 * /� �
 publ i c b ool ean a dd(S t r i ng x)� �
 {� �
 i f (t heI t ems. l engt h = = s i ze())� �
 {� �
 St r i ng [] o l d = t heI t ems;� �
 t heI t ems = n ew S t r i ng[t heI t ems. l engt h * 2 + 1] ;� �
 f or (i nt i = 0 ; i < s i ze() ; i ++)� �
 t heI t ems[i] = o l d[i] ;� �
 }� �
 � �
 t heI t ems[t heSi ze++] = x ; � �
 r et ur n t r ue; � �
 }� �
 � �
 pr i vat e s t at i c f i nal i nt I NI T_CAPACI TY = 1 0;� �� �
 pr i vat e i nt t heSi ze = 0 ;

� �
 pr i vat e S t r i ng [] t heI t ems = n ew S t r i ng[I NI T_CAPACI TY] ;

� �
}

� � � � � � � � í { d g | * d � d " (
St ringArrayList

� � d $ _
add

�
get

� & ' (
si ze

Ã

BOOK.mkr Page 119 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¢ �
� � î � � � ï � � � �

K k L 1 ð L Z 0 9 : = : 6 ?
8 B B 5 T 4 7 9 ¼ 6 4 > B J D
J 6 > 8 9 B 7 B F > J 4 : : 6 : @

Packages are used to organize similar classes. Each package consists of a set of

classes. Two classes in the same package have slightly fewer visibili ty restrictions

among themselves than they would if they were in different packages.

Java provides several predefined packages, including j ava. appl et ,

j ava. awt , j ava. i o, j ava. l ang, and j ava. ut i l . The j ava. l ang

package includes the classes I nt eger , Mat h, St r i ng, and Syst em, among

others. Some of the classes in the j ava. ut i l package are Dat e, Random, and

St r i ngTokeni zer . j ava.i o is used for I/O and includes the various stream

classes seen in Section 2.6.

Class C in package p is specified as p. C. For instance, we can have a Dat e

object constructed with the current time and date as an initial state using

 j ava . ut i l . Dat e t oday = n ew j ava. ut i l . Dat e() ;

Note that by including a package name, we avoid conflicts with identically named

classes in other packages (such as our own Dat e class). Also, observe the typical

naming convention: class names are capitalized and package names are not.

° ± Ò ± ³ Ú Ö Ì
import ñ Ó ¹ Ì » ¸ Ó â Ì

 ; 6
import

Y O W 0 1 ¡
2 O £ 0 9 : = : 6 ? 8 B G 5 B D

< 9 ? 6 4 : ; B 5 8 ; 4 7 ? F B 5
4 F = J J I ò = 4 J 9 F 9 6 ?
> J 4 : : 7 4 H 6 @

Using a full package and class name can be burdensome. To avoid this, use the

import directive. There are two forms of the i mpor t directive:

i mpor t packageName. Cl assName;
i mpor t packageName. * ;

BOOK.mkr Page 120 Wednesday, March 14, 2001 1:26 PM

e & # è & f " % � ¢ �

In the first form, Cl as sName may be used as a shorthand for a full y quali fied

class name. In the second, all classes in a package may be abbreviated with the

corresponding class name.

For example, with these i mpor t directives,

i mpor t j ava. ut i l . Dat e;
i mpor t j ava. i o. * ;

we may use

 Date t oday = ne w Dat e() ;
 Fi le Reader t heFi l e = n ew Fi l eReader (name) ;

ó 4 5 6 J 6 : : = : 6 B F 8 ; 6
i mpor t

? 9 5 6 > 8 9 < 6
> 4 7 9 7 8 5 B ? = > 6 7 4 H D
9 7 T > B 7 F J 9 > 8 : @

Using the i mpor t directive saves typing. And since the most typing is saved

by using the second form, you wil l see that form used often. There are two disad-

vantages to i mpor t directives. First, the shorthand makes it hard to tell, by read-

ing the code, which class is being used when there are a host of i mpor t

directives. Also, the second form may allow shorthands for unintended classes

and introduce naming conflicts that wil l need to be resolved by fully qualified

class names.

Suppose we use

i mpor t j ava. ut i l . *; / / L i bra r y p ackage
i mpor t wei ss. ut i l .* ; / / U ser- def i ned p ackage

with the intention of importing the java . util. Rando m class and a package

that we have writ ten ourselves. Then, i f we have our own Random class in

we i ss . u t i l , the i mpo r t di rect i ve wil l generate a conf l i ct wi th

wei ss.util . Random and will need to be full y qualified. Furthermore, if we

BOOK.mkr Page 121 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¢ ¢

are using a class in one of these packages, by reading the code we will not know

whether it originated from the library package or our own package. We would

have avoided these problems if we had used the first form:

i mpor t j ava. ut i l . Random;

and for this reason, we use the first form only in the text, and avoid “wild card”

import directives.

j ava. l ang. *

9 : 4 = 8 B H 4 8 9 > 4 J J I
9 H G B 5 8 6 ? @

The i mpor t directives must appear prior to the beginning of a class declara-

tion. We saw an example of this in Figure 2.16. Also, the entire package

j ava. l ang is automatically imported. This is why we may use shorthands such

as Mat h.max , I nt eger . par seI nt , Syst em. out , and so on.

° ± Ò ± Ç Ú Ö Ì
package Þ ¸ É ¸ Ì à Ì ¶ ¸

 ; 6
package

3 2 L 2 0 N 0 Q 2 9 7 ? 9 D
> 4 8 6 : 8 ; 4 8 4 > J 4 : : 9 :
G 4 5 8 B F 4 G 4 > [4 T 6 @

S 8 H = : 8 G 5 6 > 6 ? 6 8 ; 6
> J 4 : : ? 6 F 9 7 9 8 9 B 7 @

To indicate that a class is part of a package, we must do two things. First, we must

include the package statement as the first line, prior to the class definition. Sec-

ond, we must place the code in an appropriate subdirectory.

In this text, we use the two packages shown in Figure 3.10. Other programs,

including test programs and the application programs in Part III of the text, are

stand-alone classes and not part of a package.

An example of how the package statement is used is shown in Figure 3.11.

Here, we have the static method l ongPause that simply sleeps for a bil lion mil-

liseconds (approximately two weeks). This method is useful because when some

integrated environments run console applications from inside their environments,

BOOK.mkr Page 122 Wednesday, March 14, 2001 1:26 PM

e & # è & f " % � ¢ ¤

they close the output console as soon as the program terminates. This can make

it hard to see the output. l ongPause keeps the console from closing in this

situation.

�
package w ei ss . nonst andar d;��
publ i c c l ass E x i t i ng�
{

�
 / / S uspend c ur r ent p r ogr am f or a l ong t i me�
 publ i c s t at i c v oi d l ongPause()�
 {�
 t r y�
 { T hr ead. sl eep(1 000000000) ; }� �
 cat ch(I nt er r upt edExcept i on e) { }� �
 }� �
}

� � � � � � � � � � z # * & % %
Exiting

� d $ _ & % d ' f * " % $ & $ d # g " $ _ b (� � _ d # _ d % | & c $ b �$ _ " | & # è & f "
weiss.nonst andard

Package Use

wei ss.u t i l ô õ ö ÷ ø ù ú ö ø ö û ü ý ü ÷ þ û þ ÿ ý � � � � ö ü þ ÿ ü � ö j ava. ut i lù ý � � ý � ö � þ û ü ý ÷ û ÷ û � � ý õ ÷ þ � � � ý ü ý � ü õ � � ü � õ ö � 	
wei ss.n onst andar d
 ý õ ÷ þ � � � ý ü ý � ü õ � � ü � õ ö � � ÷ û ý � ÷ ø ù ú ÷ ÿ ÷ ö � ÿ þ õ ø � � � ÷ û �û þ û � ü ý û � ý õ � � þ û � ö û ü ÷ þ û � ü � ý ü ý õ ö � ÷ ÿ ÿ ö õ ö û ü ÿ õ þ ø

j ava. ut i l 	
� � � � � � � � � � e & # è & f " % (" � d ' " (d ' $ _ d % $ " ~ $

BOOK.mkr Page 123 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¢ ¬
° ± Ò ± ° Ú Ö Ì

CLASSPATH ¶ â Ó ¹ µ ¶ à Ì ¶ ¸ � É ¹ Ó É á Õ Ì
 ; 6

CLASSPATH

< 4 5 9 4 C J 6 : G 6 > 9 F 9 6 :
F 9 J 6 : 4 7 ? ? 9 5 6 > 8 B 5 9 6 :
8 ; 4 8 : ; B = J ? C 6
: 6 4 5 > ; 6 ? 8 B F 9 7 ?
> J 4 : : 6 : @

Packages are searched for in locations that are named in the CLASSPATH vari-

able. What does this mean? Here are possible settings for CLASSPATH, first for a

Windows 95 system and second for a Unix system:

SET C LASSPATH=. ; C:\ bookcode\
set env CLASSPATH .: $HOME/ bookc ode/

In both cases, the CLASSPATH variable lists directories (or jar files2) that

contain the package’s class files. For instance, if your CLASSPATH is corrupted,

you wil l not be able to run even the most trivial program because the current

directory wil l not be found.

K > J 4 : : 9 7 G 4 > [4 T 6
p

H = : 8 C 6 9 7 4
? 9 5 6 > 8 B 5 I

p
8 ; 4 8

m 9 J J C 6 F B = 7 ? C I
: 6 4 5 > ; 9 7 T 8 ; 5 B = T ;
8 ; 6

CLASSPATH

J 9 : 8 @

A class in package p must be in a directory p that will be found by searching

through the CLASSPATH list; each . in the package name represents a subdirec-

tory. Starting with Java 1.2, the current directory (directory .) is always scanned

if CLASSPATH is not set at all, so if you are working from a single main direc-

tory, you can simply create subdirectories in it and not set CLASSPATH. Most

likely, however, you’ ll want to create a separate Java subdirectory and then create

package subdirectories in there. You would then augment the CLASSPATH vari-

able to include . and the Java subdirectory. This was done in the previous Unix

declaration when we added $HOME/ bookcode/ to the CLASSPATH. Inside the

bookcode directory, you create a subdirectory named wei ss , and in that subdi-

2. A jar file is basically a compressed archive (like a zip file) with extra files containing Java specific information.

The jar tool, supplied with the JDK can be used to create and expand jar files.

BOOK.mkr Page 124 Wednesday, March 14, 2001 1:26 PM

e & # è & f " % � ¢ ¿

rectory, ut i l and nonst andar d. In the nonst andar d subdirectory, you

place the code for the Exi t i ng class.

An application, written in any directory at all, can then use the l ongPause

method either by issuing

 wei ss. nonst andar d. Exit i ng. l ongPause() ;

or, simply using Exi t i ng. l ongPause, if an appropriate i mpor t directive is

provided.

° ± Ò ± ² � É » � É � Ì � Ó · Ó á Ó Õ Ó ¸ � Û º Õ Ì ·
w 9 6 J ? : m 9 8 ; 7 B < 9 : 9 C 9 J D

9 8 I H B ? 9 F 9 6 5 : 4 5 6
k L 1 ð L Z 0 £ O 3 O . O l 0 \
H 6 4 7 9 7 T 8 ; 4 8 8 ; 6 I
4 5 6 < 9 : 9 C J 6 B 7 J I 8 B
B 8 ; 6 5 > J 4 : : 6 : 9 7 8 ; 6
: 4 H 6 G 4 > [4 T 6 @

� B 7 D G = C J 9 > > J 4 : : 6 :
4 5 6 < 9 : 9 C J 6 B 7 J I 8 B
B 8 ; 6 5 > J 4 : : 6 : 9 7 8 ; 6
: 4 H 6 G 4 > [4 T 6 @

Packages have several important visibili ty rules. First, if no visibility modifier is

specified for a field, then the field is package visible. This means that it is visible

only to other classes in the same package. This is more visible than private (which

is invisible even to other classes in the same package) but less visible than public

(which is visible to nonpackage classes, too).

Second, only public classes of a package may be used outside the package.

That is why we have often used the publ i c qualifier prior to c l ass . Classes

may not be declared pr i vat e.3 Package visible access extends to classes, too. If

a class is not declared publ i c , then it may be accessed by other classes in the

same package only; this is a package visible class. In Part IV, we will see that

package visible classes can be used without violating information-hiding princi-

3. This applies to top-level classes shown so far; later we will see nested and inner classes, which may be declared

private.

BOOK.mkr Page 125 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¢ ,

ples. Thus there are some cases in which package visible classes can be very use-

ful.

All classes that are not part of a package but are reachable through the

CLASSPATH variable are considered part of the same default package. As a

result, package visible applies between all of them. This is why visibili ty is not

affected if the publ i c modifier is omitted from nonpackage classes. However,

this is poor use of package visible member access. We use it only to place several

classes in one file, because that tends to make examining and printing the exam-

ples easier. Since a public class must be in a file of the same name, there can be

only one public class per file.

� � � q � � � � � � � � � � � � Ø � � s � � � � � � � � � �
K Y 0 3 O Z Q k L 2 2 0 W Q
? 6 : > 5 9 C 6 : 4 G 5 B C D
J 6 H 8 ; 4 8 B > > = 5 :
B < 6 5 4 7 ? B < 6 5 9 7
: B F 8 m 4 5 6 6 7 T 9 7 6 6 5 D
9 7 T \ 4 7 ? 8 ; 6 7 ? 6 D
: > 5 9 C 6 : 8 ; 6 : B J = 8 9 B 7
9 7 4 : = F F 9 > 9 6 7 8 J I T 6 D
7 6 5 9 > H 4 7 7 6 5 4 : 8 B
C 6 4 G G J 9 > 4 C J 6 9 7 4
m 9 ? 6 < 4 5 9 6 8 I B F > B 7 D
8 6 Í 8 : @

Although software design and programming are often difficult challenges, many

experienced software engineers will argue that software engineering really has

only a relatively small set of basic problems. Perhaps this is an understatement,

but it is true that many basic problems are seen over and over in software projects.

Software engineers who are famili ar with these problems, and in particular, the

efforts of other programmers in solving these problems, have the advantage of not

needing to “ reinvent the wheel.”

The idea of a design pattern is to document a problem and its solution so that

others can take advantage of the collective experience of the entire software engi-

neering community. Writing a pattern is much like writing a recipe for a cook-

BOOK.mkr Page 126 Wednesday, March 14, 2001 1:26 PM

z � " % d f ' e & $ $ " c ' �) b g | b % d $ " Å e & d c Æ � ¢ i

book; many common patterns have been written and rather than expending energy

reinventing the wheel, these patterns can be used to write better programs. Thus a

design pattern describes a problem that occurs over and over in software engi-

neering, and then describes the solution in a suff iciently generic manner as to be

applicable in a wide variety of contexts.

Throughout the text we will discuss several problems that often arise in a

design, and a typical solution that is employed to solve the problem. We start with

the following simple problem.

K > B H H B 7 ? 6 : 9 T 7
G 4 8 8 6 5 7 9 : 8 B 5 6 8 = 5 7
8 m B B C E 6 > 8 : 4 : 4
k L O W @

In most languages, a function can return only a single object. What do we do

if we need to return two or more things? The easiest way to do this is to combine

the objects into a single object using either an array or a class. The most common

situation in which multiple objects need to be returned is the case of two objects.

So a common design pattern is to return the two objects as a pair. This is the

Composite pattern.

� 4 9 5 : 4 5 6 = : 6 F = J F B 5
9 H G J 6 H 6 7 8 9 7 T [6 I D
< 4 J = 6 G 4 9 5 : 9 7 H 4 G :
4 7 ? ? 9 > 8 9 B 7 4 5 9 6 : @

In addition to the situation described above, pairs are useful for implementing

maps and dictionaries. In both these abstractions, we maintain key-value pairs:

the pairs are added into the map or dictionary, and then we search for a key,

returning its value. One common way to implement a map as to use a set. In a set,

we have a collection of items, and search for a match. If the items are pairs, and

the match criterion is based exclusively on the key component of the pair, then it

is easy to write an adapter class that constructs a map on the basis of a set. We

will see this idea explored in more detail in Chapter 19.

BOOK.mkr Page 127 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¢ n

Þ º à à É ¹ �

This chapter described the Java class and package constructs. The class is the Java

mechanism that is used to create new reference types; the package is used to

group related classes. For each class, we can

• define the construction of objects,

• provide for information hiding and atomicity, and

• define methods to manipulate the objects.

The class consists of two parts: the specification and the implementation. The

specification tells the user of the class what the class does; the implementation

does it. The implementation frequently contains proprietary code and in some

cases is distributed only as a . c l ass file. The specification, however, is public

knowledge. In Java, a specification that lists the class methods can be generated

from the implementation by using javadoc.

Information hiding can be enforced by using the pr i vat e directive. Initial-

ization of objects is controlled by the constructors, and the components of the

object can be examined and changed by accessor and mutator methods, respec-

tively. Figure 3.9 il lustrates many of these concepts, as applied to simplified ver-

sion of Ar r ayLi s t . This class, St r i ngAr r ayLi s t , supports add, get , and

si ze. A more complete version that includes set , r emove, and cl ear , is in

the online code.

BOOK.mkr Page 128 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % b � $ _ " � & g " � ¢ +

The features discussed in this chapter implement the fundamental aspects of

object-based programming. The next chapter discusses inheritance, which is cen-

tral to object-oriented programming.

Î á � Ì » ¸ · µ Ü ¸ Ö Ì � É à Ì

accessor A method that examines an object but does not change its state. (107)

aliasing A special case that occurs when the same object appears in more than

one role. (111)

atomic unit In reference to an object, its parts cannot be dissected by the gen-

eral users of the object. (96)

class Consists of fields and methods that are applied to instances of the

class. (98)

class specification Describes the functionali ty, but not the implementation.

(101)

CLASSPATH variable Specifies directories and files that should be searched

to find classes. (124)

Composite The pattern in which we store two or more objects in one entity.

(127)

constructor Tells how an object is declared and initialized. The default con-

structor is a member-by-member default initialization, with primitive

fields initialized to zero and reference fields initialized to nul l . (104)

BOOK.mkr Page 129 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¤ �

design pattern Describes a problem that occurs over and over in software

engineering, and then describes the solution in a sufficiently generic man-

ner as to be applicable in a wide variety of contexts. (126)

encapsulation The grouping of data and the operations that apply to them to

form an aggregate while hiding the implementation of the aggregate. (97)

equals method Can be implemented to test if two objects represent the same

value. The formal parameter is always of type Obj ect . (109)

field A class member that stores data. (100)

implementation Represents the internals of how the specifications are met. As

far as the class user is concerned, the implementation is not important.

(101)

import directive Used to provide a shorthand for a fully quali fied class

name. (120)

information hiding Makes implementation details, including components of

an object, inaccessible. (96)

instance members Members declared without the static modifier. (113)

instanceof operator Tests if an expression is an instance of a class. (113)

javadoc Automatically generates documentation for classes. (102)

javadoc tag Includes @aut hor , @par am, @r et ur n, and @except i on.

Used inside of javadoc comments. (102)

method A function supplied as a member that, if not static, operates on an

instance of the class. (98)

mutator A method that changes the state of the object. (107)

BOOK.mkr Page 130 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % b � $ _ " � & g " � ¤ �

object An entity that has structure and state and defines operations that may

access or manipulate that state. An instance of a class. (96)

object-based programming Uses the encapsulation and information hiding

features of objects but does not use inheritance. (97)

object-oriented programming Distinguished from object-based program-

ming by the use of inheritance to form hierarchies of classes. (97)

package Used to organize a collection of classes. (120)

package statement Indicates that a class is a member of a package. Must pre-

cede the class definition. (122)

package visible access Members that have no visibil ity modifiers are only

accessible to methods in classes in the same package. (125)

package visible class A class that is not public and is accessible only to other

classes in the same package. (125)

Pair The composite pattern with two objects. (127)

private A member that is not visible to nonclass methods. (100)

public A member that is visible to nonclass methods. (100)

static field A field that is shared by all instances of a class. (117)

static initializer A block of code that is used to initialize static fields. (118)

static method A method that has no implicit t hi s reference and thus can be

invoked without a controlling object reference. (117)

this constructor call Used to make a call to another constructor in the same

class. (112)

BOOK.mkr Page 131 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¤ ¢

this reference A reference to the current object. It can be used to send the

current object, as a unit, to some other method. (111)

toString method Returns a St r i ng based on the object state. (107)

´ µ à à µ ¶ ¹ ¹ µ ¹ ·

1. Private members cannot be accessed outside of the class. Remember that,

by default, class members are package visible: They are visible only

within the package.

2. Use publ i c c l ass instead of cl ass unless you are writing a throw-

away helper class.

3. The formal parameter to equal s must be of type Obj ect . Otherwise,

although the program will compile, there are cases in which a default

equal s (that always returns f al se) will be used instead.

4. Static methods cannot access nonstatic members without a controll ing

object.

5. Classes that are part of a package must be placed in an identically named

directory that is reachable from the CLASSPATH.

6. t hi s is a final reference and may not be altered.

Î ¶ ¸ Ö Ì ß ¶ ¸ Ì ¹ ¶ Ì ¸

Following are the files that are available:

BOOK.mkr Page 132 Wednesday, March 14, 2001 1:26 PM

} ~ " c # d % " % � ¤ ¤

TestIntCell.java Contains a mai n that tests I nt Cel l , shown in

Figure 3.3.

IntCell.java Contains the I nt Cel l class, shown in Figure 3.4.

The output of javadoc can also be found as

IntCell.html.

Date.java Contains the Dat e class, shown in Figure 3.6.

Exiting.java Contains the l ongPause method, shown in Figure

3.11. Found in package wei ss. ut i l .

Ticket.java Contains the Ti cket static member example in

Figure 3.7.

Squares.java Contains the static initializer sample code in Figure

3.8.

StringArrayList.java Contains a more complete version of

St r i ngAr r ayLi s t code in Figure 3.9.

ReadStringsWithStringArrayList.java Contains a test program for

St r i ngAr r ayLi s t .

 � Ì ¹ » Ó · Ì ·
� � ! " # $

3.1. What is information hiding? What is encapsulation? How does Java sup-

port these concepts?

3.2. Explain the public and private sections of the class.

3.3. Describe the role of the constructor.

BOOK.mkr Page 133 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¤ ¬

3.4. If a class provides no constructor, what is the result?

3.5. Explain the uses of t hi s in Java.

3.6. What is package visible access?

3.7. For a class Cl assName, how is output performed?

3.8. Give the two types of import directive forms that allow l ongPause to be

used without providing the wei ss. ut i l package name.

3.9. What is a design pattern?

3.10. For the code in Figure 3.12, which resides entirely in one file,

a. Line 17 is il legal, even though line 18 is legal. Explain why.

b. Which of lines 20 to 24 are legal and which are not? Explain why.

BOOK.mkr Page 134 Wednesday, March 14, 2001 1:26 PM

} ~ " c # d % " % � ¤ ¿
�

c l ass P er son�
{�
 publ i c s t at i c f i nal i nt N O_SSN = - 1;�

�
 pr i vat e i nt S SN = 0 ;�
 St r i ng n ame = n ul l ;�
}��
c l ass T est Per son� �
{� �
 pr i vat e P er son p = n ew Per son() ;� �
 � �
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)� �
 {� �
 Per son q = n ew Per son() ;� �� �
 Syst em. out . pr i nt l n(p) ; / / i l l egal� �
 Syst em. out . pr i nt l n(q) ; / / l egal� �� �
 Syst em. out . pr i nt l n(q . NO_SSN) ; / / ?� �
 Syst em. out . pr i nt l n(q . SSN) ; / / ?� �
 Syst em. out . pr i nt l n(q . name) ; / / ?� �
 Syst em. out . pr i nt l n(P er son. NO_SSN) ; / / ?� �
 Syst em. out . pr i nt l n(P er son. SSN) ; / / ?� �
 }� �
}

� � � � � � � � � �) b (" � b c } ~ " c # d % " Â Ã % &

� � ' ! (" #)
3.11. Aclass provides a single private constructor. Why would this be useful?

3.12. Suppose that the mai n method in Figure 3.3 was part of the I nt Cel l

class.

a. Would the program still work?

b. Could the commented-out line in mai n be uncommented without gen-

erating an error?

� � * # + , $ - , (
3.13. A combination lock has the following basic properties: the combination (a

sequence of three numbers) is hidden; the lock can be opened by providing

BOOK.mkr Page 135 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¤ ,

the combination; and the combination can be changed, but only by some-

one who knows the current combination. Design a class with public meth-

ods open and changeCombo and private data fields that store the

combination. The combination should be set in the constructor. Disable

copying of combination locks.

3.14. Wild card import directives are dangerous because ambiguities and other

surprises can be introduced. Recall that both j ava. awt . Li s t and

j ava. ut i l . Li st are classes. Starting with the code in Figure 3.13:

a. Compile the code; you should get an ambiguity.

b. Add an import directive to explicitly use j ava. awt . Li s t . The code

should now compile and run.

c. Uncomment the local Li st class; and remove the import directive you

just added. The code should compile and run.

d. Recomment the local Li s t , reverting back to the situation at the start.

Recompile to see the surprising result. What happens if you add the

explicit import directive from step (b)?

BOOK.mkr Page 136 Wednesday, March 14, 2001 1:26 PM

} ~ " c # d % " % � ¤ i
�

i mpor t j ava. ut i l . * ;�
i mpor t j ava. awt . * ;��
c l ass L i s t / / C OMMENT OUT T HI S C LASS T O START E XPERI MENT

�
{�
 publ i c S t r i ng t oSt r i ng() { r et ur n " My L i st ! ! " ; }�
}��
c l ass Wi l dCar dI sBad� �
{� �
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)� �
 {� �
 Syst em. out . pr i nt l n(n ew L i s t ()) ;� �
 }� �
}

� � � � � � � � � �) b (" � b c } ~ " c # d % " Â Ã % Ä d * * � % $ c & $ " % � _ . � d * (# & c (d g | b c $ % & c " & (

* # " / # + 0 0 - � / * # " 1 (, $ 2
3.15. Write a class that supports rational numbers. The fields should be two

l ong variables, one each that stores the numerator and denominator.

Store the rational number in reduced form, with the denominator always

nonnegative. Provide a reasonable set of constructors; the methods add,

subt r act , mul t i pl y, and di vi de; as well as t oSt r i ng, equal s ,

and compar eTo (that behaves like the one in the St r i ng class). Make

sure that t oSt r i ng correctly handles the case in which the denominator

is zero.

3.16. Implement a simple Dat e class. You should be able to represent any date

from January 1, 1800, to December 31, 2500; subtract two dates; incre-

ment a date by a number of days; and compare two dates using both

equal s and compar eTo. A Dat e is represented internally as the num-

ber of days since some starting time, which, here, is the start of 1800. This

makes all methods except for construction and t oSt r i ng trivial.

BOOK.mkr Page 137 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¤ n

The rule for leap years is a year is a leap year if it is divisible by 4 and
not divisible by 100 unless it is also divisible by 400. Thus 1800, 1900,
and 2100 are not leap years, but 2000 is. The constructor must check the
validity of the date, as must t oSt r i ng. The Dat e could be bad if an
increment or subtraction operator caused it to go out of range.

Once you have decided on the specifications, you can do an imple-
mentation. The diff icult part is converting between the internal and exter-
nal representations of a date. What follows is a possible algorithm.

Set up two arrays that are static fields. The first array, daysTi l l -
Fi r s t Of Mont h, wil l contain the number of days until the first of each
month in a nonleap year. Thus it contains 0, 31, 59, 90, and so on. The sec-
ond array, daysTi l l Jan1, will contain the number of days until the
first of each year, starting with f i r st Year . Thus it contains 0, 365, 730,
1095, 1460, 1826, and so on because 1800 is not a leap year, but 1804 is.
You should have your program initialize this array once using a static ini-
tializer. You can then use the array to convert from the internal representa-
tion to the external representation.

3.17. Implement a Compl ex number class. Recall that a complex number con-

sists of a real part and an imaginary part. Support the same operations as

the Rat i onal class, when meaningful (for instance, compar eTo is not

meaningful). Add accessor methods to extract the real and imaginary

parts.

3.18. Implement a complete I nt Type class that supports a reasonable set of con-

structors, add, subt r act , mul t i pl y, di v i de, equal s , compar eTo,

and t oSt r i ng. Maintain an I nt Type as a suff iciently large array. For this

class, the diff icult operation is division, followed closely by multiplication.

BOOK.mkr Page 138 Wednesday, March 14, 2001 1:26 PM

3 " � " c " ' # " % � ¤ +

Û Ì Ü Ì ¹ Ì ¶ » Ì ·

More information only classes can be found in the references at the end of Chap-

ter 1. The classic reference on design patterns is [1]. This book describes 23 stan-

dard patterns, some of which we will discuss later.

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Mass, 1995.

BOOK.mkr Page 139 Wednesday, March 14, 2001 1:26 PM

� ! " # $ % & ' () * & % % " %� ¬ �

BOOK.mkr Page 140 Wednesday, March 14, 2001 1:26 PM

� � � � � � �

S mentioned in Chapter 3, an important goal of object-oriented program-

ming is code reuse. Just as engineers use components over and over in

their designs, programmers should be able to reuse objects rather than repeatedly

reimplement them. In an object-oriented programming language, the fundamental

mechanism for code reuse is inheritance. Inheritance al lows us to extend the

functionality of an object. In other words, we can create new types with restricted

(or extended) properties of the original type, in effect forming a hierarchy of

classes.

Inheritance is more than simply code reuse, however. By using inheritance

correctly, it enables the programmer to more easily maintain and update code,

both of which are essential in large commerical applications. Understanding of

the use of inheritance is essential in order to write significant Java programs, and

it is also used by Java to implement generic methods and classes.

In this chapter, we will see:

• General principles of inheritance, including polymorphism

• How inheritance is implemented in Java

• How a collection of classes can be derived from a single abstract class

BOOK.mkr Page 141 Wednesday, March 14, 2001 1:26 PM

` ' _ " c d $ & ' # "� ¬ ¢

• The interface, which is a special kind of a class

• How Java implements generic programming using inheritance

 � 	
 � � � � � � � � � � � � � � �
S 7 4 7 U ã ¡ Ý W 0 l L 2 O M Q ¡

3 X O k \ m 6 : 4 I 8 ; 6 ? 6 D
5 9 < 6 ? > J 4 : : O 3 L ä < 4 5 9 D
4 8 9 B 7 B F 8 ; 6 å C 4 : 6
> J 4 : : @

Inheritance is the fundamental object-oriented principle that is used to reuse code

among related classes. Inheritance models the IS-A relationship. In an IS-A rela-

tionship, we say the derived class is a (variation of the) base class. For example, a

Circle IS-A Shape and a Car IS-A Vehicle. However, an Ellipse IS-NOT-A Circle.

Inheritance relationships form hierarchies. For instance, we can extend Car to

other classes, since a ForeignCar IS-A Car (and pays tariffs) and a DomesticCar

IS-A Car (and does not pay tariffs), and so on.

BOOK.mkr Page 142 Wednesday, March 14, 2001 1:26 PM

^ _ & $ ` % ` ' _ " c d $ & ' # " h � ¬ ¤
�

c l ass P er son�
{�
 publ i c P er son(S t r i ng n , i nt a g, S t r i ng a d, S t r i ng p)�
 { n ame = n ; a ge = a g; a ddr ess = a d; p hone = p ; }

�
 �
 publ i c S t r i ng t oSt r i ng()�
 { r et ur n g et Name() + " " + g et Age() + " "�
 + g et PhoneNumber () ; }�
 � �
 publ i c S t r i ng g et Name()� �
 { r et ur n n ame; }� �
 � �
 publ i c i nt g et Age()� �
 { r et ur n a ge; }� �
 � �
 publ i c S t r i ng g et Addr ess()� �
 { r et ur n a ddr ess; }� �
 � �
 publ i c S t r i ng g et PhoneNumber ()� �
 { r et ur n p hone; }� �
 � �
 publ i c v oi d s et Addr ess(S t r i ng n ewAddr ess)� �
 { a ddr ess = n ewAddr ess; }� �
 � �
 publ i c v oi d s et PhoneNumber (S t r i ng n ewPhone)� �
 { p hone = n ewPhone; }� �
 � �
 pr i vat e S t r i ng n ame;� �
 pr i vat e i nt a ge;� �
 pr i vat e S t r i ng a ddr ess;� �
 pr i vat e S t r i ng p hone;� �
}

� � � � � � ¥ � �
Pers on

* & % % � % $ b c " % ' & g " � & f " � & ((c " % % � & ' (| _ b ' " ' � g " c

S 7 4 4 Ý ã ¡ Ý W 0 l L 2 O M Q ¡
3 X O k \ m 6 : 4 I 8 ; 6 ? 6 D
5 9 < 6 ? > J 4 : : X L 3 L ä 9 7 D
: 8 4 7 > 6 B F 8 ; 6 å C 4 : 6
> J 4 : : @ 5 M N k M 3 O 2 O M Q
9 : = : 6 ? 8 B H B ? 6 J

6 K 7 D K 5 6 J 4 8 9 B 7 : ; 9 G : @

Another type of relationship is a HAS-A (or IS-COMPOSED-OF) relation-

ship. This type of relationship does not possess the properties that would be natu-

ral in an inheritance hierarchy. An example of a HAS-A relationship is that a car

HAS-A steering wheel. HAS-A relationships should not be modeled by inheri-

tance. Instead, they should use the technique of composition, in which the compo-

nents are simply made private data fields.

BOOK.mkr Page 143 Wednesday, March 14, 2001 1:26 PM

` ' _ " c d $ & ' # "� ¬ ¬

As we will see in forthcoming chapters, the Java language itself makes exten-

sive use of inheritance in implementing its class libraries.

² ± ³ ± ³ ´ ¹ Ì É ¸ Ó ¶ � 8 Ì 9 ´ Õ É · · Ì ·

Our inheritance discussion will center around an example. Figure 4.1 shows a

typical class. The Person class is used to store information about a person; in

our case we have private data that includes the name, age, address, and phone

number, along with some public methods that can access and perhaps change this

information. We can imagine that in reality, this class is significantly more com-

plex, storing perhaps 30 data fields with 100 methods.

BOOK.mkr Page 144 Wednesday, March 14, 2001 1:26 PM

^ _ & $ ` % ` ' _ " c d $ & ' # " h � ¬ ¿
�

c l ass S t udent�
{�
 publ i c S t udent (S t r i ng n , i nt a g, S t r i ng a d, S t r i ng p ,�
 doubl e g)

�
 { n ame = n ; a ge = a g; a ddr ess = a d; p hone = p ; g pa = g ; }�
 �
 publ i c S t r i ng t oSt r i ng()�
 { r et ur n g et Name() + " " + g et Age() + " "�
 + g et PhoneNumber () + " " + g et GPA() ; }� �
 � �
 publ i c S t r i ng g et Name()� �
 { r et ur n n ame; }� �
 � �
 publ i c i nt g et Age()� �
 { r et ur n a ge; }� �
 � �
 publ i c S t r i ng g et Addr ess()� �
 { r et ur n a ddr ess; }� �
 � �
 publ i c S t r i ng g et PhoneNumber ()� �
 { r et ur n p hone; }� �
 � �
 publ i c v oi d s et Addr ess(S t r i ng n ewAddr ess)� �
 { a ddr ess = n ewAddr ess; }� �
 � �
 publ i c v oi d s et PhoneNumber (S t r i ng n ewPhone)� �
 { p hone = n ewPhone; }� �� �
 publ i c d oubl e g et GPA()� �
 { r et ur n g pa; }� �� �
 pr i vat e S t r i ng n ame;� �
 pr i vat e i nt a ge;� �
 pr i vat e S t r i ng a ddr ess;� �
 pr i vat e S t r i ng p hone;� �
 pr i vat e d oubl e g pa� �
}

� � � � � � ¥ � �
Stud ent

* & % % � % $ b c " % ' & g " � & f " � & ((c " % % � | _ b ' " ' � g " c � f | &� d & # b | . a & ' (a | & % $ "

BOOK.mkr Page 145 Wednesday, March 14, 2001 1:26 PM

` ' _ " c d $ & ' # "� ¬ ,
�

c l ass S t udent e xt ends P er son�
{�
 publ i c S t udent (S t r i ng n , i nt a g, S t r i ng a d, S t r i ng p ,�
 doubl e g)

�
 {�
 / * O OPS! N eed s ome s ynt ax; s ee S ect i on 4 . 1. 6 * /�
 g pa = g ; }�
 �
 publ i c S t r i ng t oSt r i ng()� �
 { r et ur n g et Name() + " " + g et Age() + " "� �
 + g et PhoneNumber () + " " + g et GPA() ; }� �
 � �
 publ i c d oubl e g et GPA()� �
 { r et ur n g pa; }� �
 � �
 pr i vat e d oubl e g pa;� �
}

� � � � � � ¥ � � ` ' _ " c d $ & ' # " � % " ($ b # c " & $ "
Student

* & % %

Now suppose we want to have a St udent class, or an Empl oyee class, or

both. Imagine that a St udent is similar to a Per son, with the addition of only

a few extra data members and methods. In our simple example, imagine that the

difference is that a St udent adds a gpa field and a get GPA accessor. Simi-

larly, imagine that the Empl oyee has all of the same components as a Per son,

but also has a sal ar y field and methods to manipulate the salary.

One option in designing these classes is the classic copy-and-paste: we copy

the Per son class, change the name of the class and constructors, and then add

the new stuff. This strategy is illustrated in Figure 4.2.

Copy-and-paste is a weak design option, wrought with significant liabil ities.

First, there is the problem that if you copy garbage, you wind up with more gar-

bage. This makes it very hard to fix programming errors that are detected, espe-

cially when they are detected late.

BOOK.mkr Page 146 Wednesday, March 14, 2001 1:26 PM

^ _ & $ ` % ` ' _ " c d $ & ' # " h � ¬ i

Second, is the related issue of maintainence and versioning. Suppose we

decide in the second version that it is better to store names in last name, first name

format, rather than as a single field. Or perhaps it is better to store addresses using

a special Addr ess class. In order to maintain consistency, these should be done

for all classes. Using copy-and-paste, these design changes have to be done in

numerous places.

Third, and more subtle, is the fact that using copy-and-paste, Per son,

St udent , and Empl oyee are three separate entities with zero relationship

between each other, in spite of their similarities. So, for instance, if we have a rou-

tine that accepted a Per son as a parameter, we could not send in a St udent .

We would thus have to copy and paste all of those routines to make them work for

these new types.

� � � � � � ¥ � ¥ ¾ " g b c . * & . b � $ � d $ _ d ' _ " c d $ & ' # " Ã : d f _ $ % _ & (d ' f d ' (d # & $ " % � d " * (%$ _ & $ & c " | c d � & $ " � & ' (& # # " % % d * " b ' * . . g " $ _ b (% b � $ _ " # * & % % Ã� & c è % _ & (d ' f d '
Stud ent

* & % % d ' (d # & $ " % � d " * (% $ _ & $ & c " ' b $& # # " % % d * " d ' $ _ "
Student

* & % % � � $ & c " ' b ' " $ _ " * " % % | c " % " ' $ Ã

name age
address pho nePerson Class

Student Class
name age
address pho ne

gpa

BOOK.mkr Page 147 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D E F

Inheritance solves all three of these problems. Using inheritance, we would

say that a St udent IS-A Per son. We would then specify the changes that a

St udent has relative to Per son. There are only three types of changes that are

allowed:

1. St udent can add new fields (e.g. gpa).
2. St udent can add new methods (e.g. get GPA).
3. St udent can override existing methods (e.g. t oSt r i ng).

Two changes are specifically not allowed, because they would violate the

notion of an IS-A relationship:

1. St udent cannot remove fields.
2. St udent cannot remove methods.

Finally, the new class must specify its own constructors; this is likely to

involve some syntax that we wil l discuss in Section 4.1.6.

Figure 4.3 shows the St udent class. The data layout for the Per son and

St udent classes is shown in Figure 4.4. It illustrates that the memory footprint

of any St udent object includes all fields that would be contained in a Per son

object. However, because those fields are declared private by Per son, they are

not accessible by St udent class methods. That is why the constructor is prob-

lematic at this point: we cannot touch the data fields in any St udent method,

and instead can only manipulate the inherited private fields by using public

Per son methods. Of course, we could make the inherited fields public, but that

would generally be a terrible design decision. It would embolden the implemen-

tors of the St udent and Empl oyee classes to access the inherited fields

directly. If that was done, and modifications such as a change in the Per son’s

BOOK.mkr Page 148 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D E J

data representation of the name or address were made to the Per son class, we

would now have to track down all of the dependencies, which would bring us

back to the copy-and-paste liabilities.

K L M N O P Q R L S N T U U V W X
Y X Z V [\] ^ _ \ ` U T X X \ X
a] V b T c R d N S e R d d
W ^ Z f V Y Z [^ X Z Y] g ^ h i
Z f \ ^ b j U \ b \ h Z T k
Z ^ V h V a Z f \ g T X \
` U T X X l

As we can see, except for the constructors, the code is relatively simple. We

have added one data field, added one new method, and overridden an existing

method. Internally, we have memory for all of the inherited fields, and we also

have implementations of all original methods that have not been overridden. The

amount of new code we have to write for St udent would be roughly the same,

regardless of how small or large the Per son class was, and we have the benefit

of direct code reuse and easy maintainence. Observe also, that we have done so

without disturbing the implementation of the existing class.

m
public class D er i ved extends B asen
{ o
 / / A ny m ember s t hat a r e n ot l i s t ed a r e i nher i t ed u nchangedp
 / / e xcept f or c onst r uct orqr
 / / p ubl i c m ember ss
 / / C onst r uc t or (s) i f d ef aul t i s n ot a ccept abl et
 / / B ase m et hods w hose d ef i ni t i ons a r e t o c hange i n D er i vedu
 / / A ddi t i onal p ubl i c m et hodsm vm m
 / / p r i vat e memberm n
 / / A ddi t i onal d at a f i el ds (gener al l y p r i vat e)m o
 / / A ddi t i onal p r i vat e m et hodsm p
}

w x y z { | } ~ � � > < > ? B � � B � � � A � � � � � � @ C @ < = > ? @ A B < C >

BOOK.mkr Page 149 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D � �
� f \

extends

S e R � d N ^ X Y X \ [Z V
[\ ` U T] \ Z f T Z T ` U T X X
^ X [\] ^ _ \ [a] V b T h k
V Z f \] ` U T X X l

Let us summarize the synax so far. A derived class inherits all the properties

of a base class. It can then add data members, override methods, and add new

methods. Each derived class is a completely new class. A typical layout for inher-

itance is shown in Figure 4.5 and uses an extends clause. An ext ends clause

declares that a class is derived from another class. A derived class extends a base

class. Here is a brief description of a derived class:

� [\] ^ _ \ [` U T X X
^ h f \] ^ Z X T U U [T Z T
b \ b g \] X a] V b Z f \
g T X \ ` U T X X T h [b T �
T [[b V] \ [T Z T
b \ b g \] X l

• Generally all data is private, so we add additional data fields in the derived

class by specifying them in the private section.

• Any base class methods that are not specified in the derived class are

inherited unchanged, with the exception of the constructor. The special

case of the constructor is discussed in Section 4.1.6.

• Any base class method that is defined in the derived class’ public section

is overridden. The new definition will be applied to objects of the derived

class.

� f \ [\] ^ _ \ [` U T X X
^ h f \] ^ Z X T U U b \ Z f V [X
a] V b Z f \ g T X \ ` U T X X l

� Z b T � T ` ` \ j Z V]] \ k
[\ a ^ h \ Z f \ b l � Z T U X V
` T h [\ a ^ h \ h \ W
b \ Z f V [X l

• Public base class methods may not be redefined in the private section of

the derived class, because that would be tantamount to removing methods

and would violate the IS-A relationship.

• Additional methods can be added in the derived class.

BOOK.mkr Page 150 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D � D
� �

The direct code reuse described in the preceding paragraph is a significant gain.

However, the more significant gain is indirect code reuse. This gain comes from

the fact that a St udent IS-A Per son and an Empl oyee IS-A Per son.

� T ` f N O P ¡ N S e R d d
^ X T ` V b j U \ Z \ U � h \ W
` U T X X Z f T Z h V h \ Z f \ k
U \ X X f T X X V b \ ` V b k
j T Z ^ g ^ U ^ Z � W ^ Z f Z f \
` U T X X a] V b W f ^ ` f ^ Z
W T X [\] ^ _ \ [l

Because a St udent IS-A Per son, a St udent object can be accessed by a

Per son reference. The following code is thus legal:

 St udent s = n ew S t udent (" Joe" , 26, " 1 M ai n St " ,
 " 202- 555- 1212" , 4. 0) ;
 Per son p = s;
 Syst em. out. pr i nt l n("A ge i s " + p. age()) ;

This is legal because the static-type (i.e. compile-time type) of p is Per son.

Thus p may reference any object that IS-A Per son, and any method that we

invoke through the p reference is guaranteed to make sense, since once a method

is defined for Per son, it cannot be removed by a derived class.

You might ask why this is a big deal. The reason is that this applies not only

to assignment, but also to parameter passing. A method whose formal parameter

is a Per son can receive anything that IS-A Per son, including St udent and

Empl oyee.

So consider the following code written in any class:

 publ i c s t at i c bool ean i sOl der (P er son p 1, P er son p2)
 {
 r et ur n p 1.g et Age() > p2. get Age() ;
 }

Consider the following declarations, in which constructor arguments are

missing to save space:

BOOK.mkr Page 151 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D � ¢

 Per son p = n ew P er son(. . .) ;
 St udent s = n ew S t udent (. . .) ;
 Empl oyee e = n ew E mplo yee(. . .) ;

The single i sOl der routine can be used for all of the following calls:

i sOl der (p, p) , i sOl der (s, s) , i sOl der (e, e) , i sOl der (p, e) ,

i sOl der (p, s) , i sOl der (s, p) , i sOl der (s , e) , i sOl der (e, p) ,

i sOl der (e, s) .

All in all, we now have leveraged one non-class routine to work for nine dif-

ferent cases. In fact there is no limit to the amount of reuse this gets us. As soon

as we use inheritance to add a fourth class into the hierarchy, we now have 4 times

4, or 16 different methods, without changing i sOl der at all! The reuse is even

more significant if a method were to take three Per son references as parameters.

And imagine the huge code reuse if a method takes an array of Per son refer-

ences.

Thus, for many people, the type compatabili ty of derived classes with their

base classes is the most important thing about inheritance because it leads to mas-

sive indirect code reuse. And as i sOl der illustrates, it also makes it very easy to

add in new types that automatically work with existing methods.

� � � � £ ¤ � ¥ � � � ¦ § � ¥ ¨ � ¥ © � ¥ ¨ ª � � � � � « � ¬ � �

There is the issue of overriding methods: if the type of the reference and the class

of the object being referenced (in the example above, these are Per son and

Stude nt , respectively) disagree, and they have different implementations,

whose implementation is to be used?

BOOK.mkr Page 152 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D � ®

As an example, consider the following fragment:

 St udent s = n ew S t udent (" Joe" , 26, " 1 M ai n St " ,
 " 202- 555- 1212" , 4. 0) ;
 Empl oyee e = n ew E mplo yee(" Boss" , 4 2, " 4 Main S t . " ,
 " 203- 555-1 212" , 1 00000. 0) ;
 Per son p = nul l ;
 i f (g et TodaysDay() . equal s(" Tuesday"))
 p = s ;
 el se
 p = e ;
 Syst em. out. pr i nt l n("P er son i s " + p . t oSt r i ng()) ;

� ¯ ° e ± ² ° O ¯ M P S _ T] ^ k
T g U \ ` T h] \ a \] \ h ` \
V g ³ \ ` Z X V a X \ _ \] T U
[^ a a \] \ h Z Z � j \ X l
´ f \ h V j \] T Z ^ V h X
T] \ T j j U ^ \ [Z V Z f \
j V U � b V] j f ^ ` _ T] ^ k
T g U \ µ Z f \ V j \] T Z ^ V h
T j j] V j] ^ T Z \ Z V Z f \
] \ a \] \ h ` \ [V g ³ \ ` Z
^ X T Y Z V b T Z ^ ` T U U �
X \ U \ ` Z \ [l

Here the static type of p is Per son. When we run the program, the dynamic

type (i.e. the type of the object actually being referenced) will be either St udent

or Empl oyee. It is impossible to deduce the dynamic type until the program

runs. Naturally, however, we would want the dynamic type to be used, and that is

what happens in Java. When this code fragment is run, the method that is used

will be the one appropriate for the dynamic type of the controlling object refer-

ence.

This is an important object-oriented principle known as polymorphism. A ref-

erence variable that is polymorphic can reference objects of several different

types. When operations are applied to the reference, the operation that is appropri-

ate to the actual referenced object is automatically selected. All reference types are

polymorphic in Java. This is also known as dynamic binding or late binding.

A derived class is type compatible with its base class, meaning that a refer-

ence variable of the base class type may reference an object of the derived class,

but not vice versa. Sibling classes (that is, classes derived from a common class)

are not type compatible.

BOOK.mkr Page 153 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D � E

w x y z { | } ~ ¶ · = >
Perso n

= @ > ? B ? C = �

� � � � � ¸ ¥ ¬ � « � � � ¥ ¦ � ¹ � � « � « ¦ ¬ � �
� a º � » k � ¼ µ Z f \ h º ^ X T

d � c S e R d d V a ¼ T h [¼
^ X T d � ¯ N O S e R d d V a º l
� f \ X \] \ U T Z ^ V h X f ^ j X
T] \ Z] T h X ^ Z ^ _ \ l

As mentioned earlier, the use of inheritance typically generates a hierarchy of

classes. Figure 4.6 ill ustrates a possible Per son hierarchy. Notice that

Facul t y is indirectly, rather than directly, derived from Pers on — so faculty

are people too! This fact is transparent to the user of the classes because IS-A

relationships are transitive. In other words, if X IS-A Y and Y IS-A Z, then X

IS-A Z. The Person hierarchy ill ustrates the typical design issues of factoring

out commonalities into base classes and then specializing in the derived classes.

In this hierarchy, we say that the derived class is a subclass of the base class and

the base class is a superclass of the derived class. These relationships are transi-

tive, and furthermore, the i ns t anceof operator works with subclasses. Thus if

Student

Graduate Faculty StaffUndergrad

Person

Employee

BOOK.mkr Page 154 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D � �

obj is of type Under gr ad (and not nul l), then obj i ns t an c eof

Per son is t r ue.

� � � � ½ ¾ � � � � � � � � ¿ À � �

We know that any member that is declared with private visibil ity is accessible

only to methods of the class. Thus as we have seen, any private members in the

base class are not accessible to the derived class.

Occasionally we want the derived class to have access to the base class mem-

bers. There are two basic options. The first is to use either public or friendly

access, as appropriate. However, this allows access to other classes in addition to

derived classes.

� ¯ O ° Q N S Q N S e R d d
² N ² c N O ^ X _ ^ X ^ g U \ Z V
Z f \ [\] ^ _ \ [` U T X X
T h [T U X V ` U T X X \ X ^ h
Z f \ X T b \ j T ` Á T i \ l

If we want to restrict access to only derived classes, we can make members

protected. A protected class member is visible to methods in a derived class and

also methods in classes in the same package, but not to anyone else.1 Declaring

data members as protected or public violates the spirit of encapsulation and infor-

mation hiding and is generally done only as a matter of programming expediency.

Typically, a better alternative is to write accessor and mutator methods or to use

friendly access. However, if a protected declaration allows you to avoid convo-

luted code, then it is not unreasonable to use it. In this text, protected data mem-

bers are used for precisely this reason. Protected methods are also used in this

text. This allows a derived class to inherit an internal method without making it

accessible outside the class hierarchy. Notice that in toy code, in which all classes

are in the default unnamed package, protected members are visible.

BOOK.mkr Page 155 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D � Â
� � � � Ã � ¬ � � � ¥ � « À ¦ � � « � ¥ ¨

super

� a h V ` V h X Z] Y ` Z V] ^ X
W] ^ Z Z \ h µ Z f \ h T X ^ h k
i U \ Ä \] V k j T] T b \ Z \]
[\ a T Y U Z ` V h X Z] Y ` Z V]
^ X i \ h \] T Z \ [Z f T Z
` T U U X Z f \ g T X \ ` U T X X
Ä \] V k j T] T b \ Z \]
` V h X Z] Y ` Z V] a V] Z f \
^ h f \] ^ Z \ [j V] Z ^ V h µ
T h [Z f \ h T j j U ^ \ X
Z f \ [\ a T Y U Z ^ h ^ Z ^ T U ^ Ä T k
Z ^ V h a V] T h � T [[^ k
Z ^ V h T U [T Z T a ^ \ U [X l

Each derived class should define its constructors. If no constructor is written, then

a single zero-parameter default constructor is generated. This constructor will call

the base class zero-parameter constructor for the inherited portion and then apply

the default initialization for any additional data fields (meaning 0 for primitive

types, and nul l for reference types).

Constructing a derived class object by first constructing the inherited portion

is standard practice. In fact, it is done by default, even if an explicit derived class

constructor is given. This is natural because the encapsulation viewpoint tells us

that the inherited portion is a single entity, and the base class constructor tells us

how to initialize this single entity.

1. The rule for protected visibilit y is quite complex. A protected member of class B is visible to all methods in

class that are in the same package as B. It is also visible to methods in any class D that is in a different package

than B if D extends B, but only if accessed through a reference that is type-compatible with D (including an

implicit or explicit t hi s). Specifically, it is NOT VISIBLE in class D if accessed through a reference of type

B. The following example ill ustrates this.

 c l ass D emo e xte nds j ava. io . Fi l t er I nput St r eam
 { / / F il t er I nput Str eam h as p ro t ect ed d at a f i el d n amed i n
 publ i c v oid f oo()
 {
 j ava.i o. Fi l t er I nput St r eam b = t hi s; / / l egal
 Syst em. out . pr i ntl n(i n) ; / / l egal
 Syst em. out . pr i ntl n(t hi s . i n) ; / / l egal
 Syst em. out . pr i ntl n(b . i n) ; / / i l l egal
 }
 }

BOOK.mkr Page 156 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D � Å

Base class constructors can be explicitly called by using the method super .

Thus the default constructor for a derived class is in reali ty

m
c l ass S t udent e xt ends P er sonn
{o
 publ i c S t udent (S t r i ng n , i nt a g, S t r i ng a d, S t r i ng p ,p
 doubl e g)q
 { s uper (n , a g, a d, p) ; gpa = g ; }

r
 s
 / / t oSt r i ng a nd g et Age o mi t t edt
 u
 pr i vat e d oubl e g pa;m v
}

w x y z { | } ~ Æ Ç � < H A ? � C A � ? � � ? < > È C � B H H
Student É � H > H

super

 publ i c D er i ved()
 {
 super () ;
 }

super
^ X Y X \ [Z V

` T U U Z f \ g T X \ ` U T X X
` V h X Z] Y ` Z V] l

The super method can be called with parameters that match a base class

constructor. As an example, Figure 4.7 illustrates the implementation of the

St udent constructor.

The super method can be used only as the first line of a constructor. If it is

not provided, then an automatic call to super with no parameters is generated.

� � � � Ê
final Ë � � ¬ � ¨ � ¥ ¨ � � � �

� Ì P L R e ² N Q M ° ^ X ^ h k
_ T] ^ T h Z V _ \] Z f \ ^ h k
f \] ^ Z T h ` \ f ^ \] T] ` f �
T h [b T � h V Z g \
V _ \]] ^ [[\ h l

As described earlier, the derived class either overrides or accepts the base class

methods. In many cases, it is clear that a particular base class method should be

invariant over the hierarchy, meaning that a derived class should not override it. In

this case, we can declare that the method is final and cannot be overridden.

BOOK.mkr Page 157 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D � F

Declaring invariant methods f i nal is not only good programming practice.

It also can lead to more efficient code. It is good programming practice because in

addition to declaring your intentions to the reader of the program and documen-

tation, you prevent the accidental overriding of a method that should not be over-

ridden.

To see why using f i nal may make for more eff icient code, suppose base

class Base declares a final method f and suppose Der i ved extends Base.

Consider the routine

 void d oI t (B ase o bj)
 {
 obj . f () ;
 }

» Z T Z ^ ` g ^ h [^ h i ` V Y U [
g \ Y X \ [W f \ h Z f \
b \ Z f V [^ X ^ h _ T] ^ T h Z
V _ \] Z f \ ^ h f \] ^ Z T h ` \
f ^ \] T] ` f � l

Since f is a final method, it does not matter whether obj actually references

a Base or Der i ved object; the definition of f is invariant, so we know what f

does. As a result, a compile-time decision, rather than a run-time decision, could

be made to resolve the method call. This is known as static binding. Because

binding is done during compilation rather than at run time, the program should

run faster. Whether this is noticeable would depend on how many times we avoid

making the run-time decision while executing the program.

» Z T Z ^ ` b \ Z f V [X
f T _ \ h V ` V h Z] V U U ^ h i
V g ³ \ ` Z T h [Z f Y X T] \
] \ X V U _ \ [T Z ` V b k
j ^ U \ Z ^ b \ Y X ^ h i X Z T Z ^ `
g ^ h [^ h i l

A corollary to this observation is that if f is a trivial method, such as a single

field accessor, and is declared f i nal , the compiler could replace the call to f

with its inline definition. Thus the method call would be replaced by a single line

that accesses a data field, thereby saving time. If f is not declared f i nal , then

this is impossible, since obj could be referencing a derived class object, for

BOOK.mkr Page 158 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D � J

which the definition of f could be different.2 Static methods have no controlling

object and thus are resolved at compile time using static binding.

� Ì P L R e S e R d d b T � h V Z
g \ \ Í Z \ h [\ [l � e N R Ì

S e R d d ^ X T a ^ h T U ` U T X X l

Similar to the final method is the final class. A final class cannot be extended.

As a result, all of its methods are automatically final methods. As an example, the

St r i ng class is a final class. Notice that the fact that a class has only final meth-

ods does not imply that it is a final class. Final classes are also known as leaf

classes because in the inheritance hierarchy, which resembles a tree, final classes

are at the fringes, like leaves.

In the Per son class, the trivial accessors and mutators (those starting with

get and set) are good candidates for final methods, and they are declared as

such in the online code.

2. In the preceding two paragraphs, we says that static binding and inline optimizations “could be” done because

although compile-time decisions would appear to make sense, Section 8.4.3.3 of the language specification

makes clear that inline optimizations for trivial final methods can be done, but this optimization must be done

by the virtual machine at runtime, rather than the compiler at compile time. This ensures that dependent classes

do not get out of sync as a result of the optimization.

BOOK.mkr Page 159 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Â �
� � � � Î Ï Ð � « « � ¨ � ¥ © � Ë � � ¬ � ¨

� f \ [\] ^ _ \ [` U T X X
b \ Z f V [b Y X Z f T _ \
Z f \ X T b \] \ Z Y] h
Z � j \ T h [X ^ i h T Z Y] \
T h [b T � h V Z T [[
\ Í ` \ j Z ^ V h X Z V Z f \
Z f] V W X U ^ X Z l

Ñ R O Q P R e ° ¡ N O O P P L Ò
^ h _ V U _ \ X ` T U U ^ h i T
g T X \ ` U T X X b \ Z f V [
g � Y X ^ h i

super
l

Methods in the base class are overridden in the derived class by simply providing

a derived class method with the same signature.3 The derived class method must

have the same return type and may not add exceptions to the throws li st. The

derived class may not reduce visibility, as that would violate the spirit of an IS-A

relationship. Thus you may not override a public method with a package visible

method.

Sometimes the derived class method wants to invoke the base class method.

Typically, this is known as partial overriding. That is, we want to do what the

base class does, plus a li ttle more, rather than doing something entirely different.

Calls to a base class method can be accomplished by using super . Here is an

example:

3. If a different signature is used, you simply have overloaded the method, and now there are two methods with

different signatures available for the compiler to choose from.

BOOK.mkr Page 160 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D Â D
m

c l ass S t udent e xt ends P er sonn
{o
 publ i c S t udent (S t r i ng n , i nt a g, S t r i ng a d, S t r i ng p ,p
 doubl e g)q
 { s uper (n , a g, a d, p) ; g pa = g ; }

r
 s
 publ i c S t r i ng t oSt r i ng()t
 { r et ur n s uper . t oSt r i ng() + g et GPA() ; }u
 m v
 publ i c d oubl e g et GPA()m m
 { r et ur n g pa; }m n
 m o
 pr i vat e d oubl e g pa;m p
}m qm r
c l ass E mpl oyee e xt ends P er sonm s
{m t
 publ i c E mpl oyee(S t r i ng n , i nt a g, S t r i ng a d,m u
 S t r i ng p , d oubl e s)n v
 { s uper (n , a g, a d, p) ; s al ar y = s ; }n m
 n n
 publ i c S t r i ng t oSt r i ng()n o
 { r et ur n s uper . t oSt r i ng() + " " + g et Sal ar y() ; }n p
 n q
 publ i c d oubl e g et Sal ar y()n r
 { r et ur n s al ar y ; }n s
 n t
 publ i c v oi d r ai se(d oubl e p er cent Rai se)n u
 { s al ar y * = (1 + p er cent Rai se) ; }o v
 o m
 pr i vat e d oubl e s al ar y ;o n
}

w x y z { | } ~ Ó · = > C � Ô � � > A >
Student

B < Õ
Employee

C � B H H > H Ö � H @ < × � � A =� � ? Ô H � �
super

publ i c cl ass Wor kahol i c e xt ends Wor ker
{
 publ i c v oi d d oWor k()
 {
 super . doWor k() ; / / Wor k l i ke a Wor ker
 dr i nkCof f ee() ; / / Take a b r eak
 super . doWor k() ; / / Wor k l i ke a Wor ker s ome mor e
 }
}

BOOK.mkr Page 161 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Â ¢

A more typical example is the overriding of standard methods, such as

t oSt r i ng. Figure 4.8 illustrates this use in the St udent and Empl oyee

classes.

m
c l ass P er sonDemon
{o
 publ i c s t at i c v oi d p r i nt Al l (P er son[] a r r)p
 {q
 f or (i nt i = 0 ; i < a r r . l engt h; i ++)

r
 {s
 i f (a r r [i] ! = n ul l)t
 {u
 Syst em. out . pr i nt (" [" + i + "] ") ;m v
 Syst em. out . pr i nt l n(a r r [i] . t oSt r i ng()) ;m m
 }m n
 }m o
 }m p
 m q
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)m r
 {m s
 Per son [] p = n ew Per son[4] ;m t
 m u
 p[0] = n ew Per son(" j oe" , 2 5, " New Yor k" ,n v
 " 212- 555- 1212") ;n m
 p[1] = n ew S t udent (" becky" , 2 7, " Chi cago" ,n n
 " 312- 555- 1212" , 4 . 0) ;n o
 p[3] = n ew Empl oyee(" bob" , 2 9, " Bost on" ,n p
 " 617- 555- 1212" , 1 00000. 0) ;n q
 n r
 pr i nt Al l (p) ;n s
 }n t
}

w x y z { | } ~ Ø ; � � � H A ? B A @ � < � � � � � � Ô � ? � = @ H Ô È @ A = B ? ? B � H

� � � � Ù � � � � � � � � � � � � � � � � � ¿ � Ð � � � � ¨

Figure 4.9 il lustrates the typical use of polymorphism with arrays. At line 17, we

create an array of four Per son references, which wil l be initialized to nul l .

The values of these references can be set at lines 19 to 24, and we know that all

BOOK.mkr Page 162 Wednesday, March 14, 2001 1:26 PM

G = B A ; H ; < = > ? @ A B < C > I D Â ®

the assignments are legal because of the ability of a base type reference to refer to

objects of a derived type.

The pr i nt Al l routine simply steps through the array and calls the

t oSt r i ng method, using dynamic binding. The test at line 7 is important

because, as we have seen, some of the array references could be nul l .

In the example, suppose that prior to completing the printing, we want to give

p[3] – which we know is an employee – a raise? Since p[3] is an Empl oyee,

it might seem that

 p[3] . r ai se(0 . 04) ;

would be legal. But it is not. The problem is that the static type of p[3] is a

Per son, and r ai se is not defined for Per son. At compile time, only (visible)

members of the static type of the reference can appear to the right of the dot oper-

ator.

We can change the static type by using a cast:

 ((Empl oyee) p [3]) . r ais e(0 . 04) ;

� ° Ú L S R d Q ^ X T
` T X Z [V W h Z f \ ^ h k
f \] ^ Z T h ` \ f ^ \] T] k
` f � l Û T X Z X T] \ T U k
W T � X _ \] ^ a ^ \ [T Z
] Y h Z ^ b \ g � Z f \ _ ^] k
Z Y T U b T ` f ^ h \ l

makes the stati c type of the reference to the lef t of the dot operator an

Empl oye e. If this is impossible (for instance p[3] is in a completely different

hierarchy), the compiler wil l complain. If it is possible for the cast to make sense,

the program will compile, and so the above code will successfully give a 4% raise

to p[3] . This construct, in which we change the static type of an expression from

a base class to a class farther down in the inheritance hierarchy is known as a

downcast.

BOOK.mkr Page 163 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Â E

What if p[3] was not an Empl oyee? For instance, what if we used the fol-

lowing?

 ((E mpl oyee) p [1]). r ai se(0 . 04) ; / / p[1] i s a S t udent

In that case the program would compile, but the virtual machine would throw

a Cla ssCast Except i on, which is a runtime exception that signals a pro-

gramming error. Cast are always double-checked at runtime to ensure that the

programmer (or a malicious hacker) is not trying to subvert Java’s strong typing

system. The safe way of doing these types of calls is to use i nst anceof first:

 i f (p [3] in st anceof Em pl oyee)
 ((Emplo yee) p [3]). r ai se(0 . 04) ;

Ü Ý Þ ß à á â ã ä â ä ã å â à æ ç æ è é â à á

Suppose we have a Ci r c l e class, and for any non-null Ci r cl e c , c. ar ea()

returns the area of Circle c . Additi onall y, suppose we have a Rectangl e

class, and for any non-nul l Rec t ang l e r , r . ar ea () returns the area of

Rectan gle r . Possibly we have other classes such as Ellip se, Trian gle ,

and Squar e, all with ar ea methods. Suppose we have an array that contains

references to these objects and we want to compute the total area of all the

objects. Since they all have an ar ea method for all classes, polymorphism is an

attractive option, yielding code such as:

BOOK.mkr Page 164 Wednesday, March 14, 2001 1:26 PM

ê > H @ × < @ < × ë @ > ? B ? C = @ > H D Â �

 publ i c s t at i c t ot al Ar ea(WhatType [] a r r)
 {
 doubl e t ota l = 0 . 0;
 f or (i nt i = 0 ; i < ar r . l engt h; i ++)
 i f (a rr [i] ! = nu l l)
 t ot al + = a r r [i] . ar ea() ;

 r et ur n t ot al ;
 }

For this code to work, we need to decide the type declaration for WhatType.

None of Ci r c l e, Rect angl e, etc. will work, since there is no IS-A relation-

ship. Thus we need to define a type, say Shape, such that Ci r cl e IS-A Shape,

Rect angl e IS-A Shape, etc. A possible hierarchy is illustrated in Figure 4.10.

Additionally, in order for ar r [i] . ar ea() to make sense, ar ea must be a

method available for Shape.

This suggests a class for Shape, as shown in Figure 4.11. Once we have the

Shape class, we can provide others, as shown in Figure 4.12. These classes also

include a per i met er method. Observe that Squar e reuses code inherited

from Rect angl e.

BOOK.mkr Page 165 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Â Â

w x y z { | } ~ ì í · = > = @ > ? B ? C = � � � H = B � > H � H > Õ @ < B < @ < = > ? @ A B < C > > î B Ô � � >

m
publ i c c l ass S hapen
{o
 publ i c d oubl e a r ea()p
 {q
 r et ur n - 1;

r
 }s
}

w x y z { | } ~ ì ì ï � H H @ � � >
Shape

C � B H H

Square

Rectangle

Shape

Circle

BOOK.mkr Page 166 Wednesday, March 14, 2001 1:26 PM

ê > H @ × < @ < × ë @ > ? B ? C = @ > H D Â Å
m

publ i c c l ass C i r c l e e xt ends S hapen
{o
 publ i c C i r c l e(d oubl e r ad)p
 { r adi us = r ad; }q

r
 publ i c d oubl e a r ea()s
 { r et ur n Mat h. PI * r adi us * r adi us; }t
 u
 publ i c d oubl e p er i met er ()m v
 { r et ur n 2 * M at h. PI * r adi us ; }m m
 m n
 publ i c S t r i ng t oSt r i ng()m o
 { r et ur n " Ci r c l e: " + r adi us; }m p
 m q
 pr i vat e d oubl e r adi us ;m r
}m sm t
publ i c c l ass R ect angl e e x t ends S hapem u
{n v
 publ i c R ect angl e(d oubl e l en, d oubl e w i d)n m
 { l engt h = l en; w i dt h = w i d; }n n
 n o
 publ i c d oubl e a r ea()n p
 { r et ur n l engt h * w i dt h; }n q
 n r
 publ i c d oubl e p er i met er ()n s
 { r et ur n 2 * (l engt h + w i dt h) ; }n t
 n u
 publ i c S t r i ng t oSt r i ng()o v
 { r et ur n " Rect angl e: " + l engt h + " " + w i dt h; }o m
 o n
 publ i c d oubl e g et Lengt h()o o
 { r et ur n l engt h; }o p
 o q
 publ i c d oubl e g et Wi dt h()o r
 { r et ur n w i dt h; }o s
 o t
 pr i vat e d oubl e l engt h;o u
 pr i vat e d oubl e w i dt h;p v
}p mp n
publ i c c l ass S quar e e xt ends R ect angl ep o
{p p
 publ i c S quar e(d oubl e s i de)p q
 { s uper (s i de, s i de) ; }p r
 p s
 publ i c S t r i ng t oSt r i ng()p t
 { r et ur n " Squar e: " + g et Lengt h() ; }p u
}

w x y z { | } ~ ì ð
Circ l e

Ö
Recta ngle

Ö B < Õ
Square

C � B H H > H

BOOK.mkr Page 167 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Â F
m

c l ass S hapeDemon
{o
 publ i c s t at i c d oubl e t ot al Ar ea(S hape [] a r r)p
 {q
 doubl e t ot al = 0 ;

r
 s
 f or (i nt i = 0 ; i < a r r . l engt h; i ++)t
 i f (a r r [i] ! = n ul l)u
 t ot al + = a r r [i] . ar ea() ;m v
 m m
 r et ur n t ot al ;m n
 }m o
 m p
 publ i c s t at i c v oi d p r i nt Al l (S hape [] a)m q
 {m r
 f or (i nt i = 0 ; i < a . l engt h; i ++)m s
 Syst em. out . pr i nt l n(a [i]) ;m t
 }m u
 n v
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)n m
 {n n
 Shape [] a = n ew S hape[] { new Ci r c l e(2 . 0) ,n o
 n ew Rect angl e(1 . 0, 3 . 0) ,n p
 n ul l , n ew Squar e(2 . 0) } ;n q
 n r
 Syst em. out . pr i nt l n(" Tot al a r ea = " + t ot al Ar ea(a)) ;n s
 pr i nt Al l (a) ;n t
 }n u
}

w x y z { | } ~ ì ñ ò B Ô � � > � ? � × ? B Ô A = B A � H > H A = > H = B � > = @ > ? B ? C = �

The code in Figure 4.12, with classes that extend the simple Shape class in

Figure 4.11 that returns -1 for ar ea, can now be used polymorphically, as shown

in Figure 4.13.

� V V b T h �
i nst anceof

V j k
\] T Z V] X ^ X T X � b j Z V h
V a j V V] V g ³ \ ` Z k V] ^ k
\ h Z \ [[\ X ^ i h l

A huge benefit of this design is that we can add a new class to the hierarchy

without disturbing implementations. For instance, suppose we want to add trian-

gles into the mix. All we need to do is have Tr i angl e extend Shape, override

ar ea appropriately, and now Tr i angl e objects can be included in any

Shape[] object. Observe that this involves:

BOOK.mkr Page 168 Wednesday, March 14, 2001 1:26 PM

ê > H @ × < @ < × ë @ > ? B ? C = @ > H D Â J

• NO CHANGES to the Shape class

• NO CHANGES to the Ci r c l e, Rect angl e, or Squar e classes

• NO CHANGES to the t ot al Ar ea method

making it difficult to break existing code in the process of adding new code.

Notice also the lack of any i ns t anceof tests, which is typical of good poly-

morphic code.

� � � � � ó � � « � ¦ � Ë � � ¬ � ¨ � ¥ ¨ � � � �

Although the code in the previous example works, improvements are possible in

the Shape class written in Figure 4.11. Notice that the Shape class itself, and

the are a method in particular are placeholders: the Shape ’s ar ea method is

never intended to be called directly. It is there so that the compiler and runtime

system can conspire to use dynamic binding and cal l an appropriate ar ea

method. In fact, examining mai n, we see that Shape objects themselves are not

supposed to be created either. The class exists simply as a common superclass for

the others.4

The programmer has attempted to signal that call ing Shape’s area is an error

by returning -1, which is an obviously impossible area. But this is a value that

might be ignored. Furthermore, this is a value that will be returned if when

extending Shape, ar ea is not overridden. This failure to override could occur

4. Declaring a private Shape constructor DOES NOT solve the second problem: the constructor is needed by the

subclasses.

BOOK.mkr Page 169 Wednesday, March 14, 2001 1:26 PM

because of a typing error: an Are a function is written instead of ar ea, making it

diff icult to track down the error at runtime.

� g X Z] T ` Z b \ Z f V [X
T h [` U T X X \ X] \ j] \ k
X \ h Z j U T ` \ f V U [\] X l

A better solution for ar ea is to throw a runtime exception

(Unsuppor t edOper at i onExcept i on is a good one) in the Shape class.

This is preferable to returning -1 because the exception will not be ignored.

However, even that solution resolves the problem at runtime. It would be bet-

ter to have syntax that explicitly states that ar ea is a placeholder and does not

need any implementation at all, and that further, Shape is a placeholder class and

cannot be constructed, even though it may declare constructors, and wil l have a

default constructor if none are declared. If this syntax were available, then the

compiler could, at compile-time, declare as illegal any attempts to construct a

Shape instance. It could also declare as illegal any classes, such as Tr i angl e,

for which there are attempts to construct instances, even though ar ea has not

been overridden. This exactly describes abstract methods and abstract classes.

� h R c d Q O R S Q
² N Q M ° f T X h V
b \ T h ^ h i a Y U [\ a ^ h ^ k
Z ^ V h T h [^ X Z f Y X T U k
W T � X [\ a ^ h \ [^ h Z f \
[\] ^ _ \ [` U T X X l

An abstract method is a method that declares functionality that all derived

class objects must eventually implement. In other words, it says what these

objects can do. However, it does not provide a default implementation. Instead,

each object must provide its own implementation.

A class that has at least one abstract method is an abstract class. Java requires

that all abstract classes be declared as such. When a derived class fails to override

an abstract method with an implementation, the method remains abstract in the

derived class. As a result, if a class that is not intended to be abstract fails to over-

BOOK.mkr Page 170 Wednesday, March 14, 2001 1:26 PM

ê > H @ × < @ < × ë @ > ? B ? C = @ > H D Å D

ride an abstract method, the compiler will detect the inconsistency and report an

error.

An example of how we can make Shape abstract is shown in Figure 4.14.

No changes are required to any of the other code in Figures 4.12 and 4.13.

Observe that an abstract class can have methods that are not abstract, as is the

case with semi per i met er .

m
publ i c a bst r act c l ass S hapen
{o
 publ i c a bst r act d oubl e a r ea() ;p
 publ i c a bst r act d oubl e p er i met er () ;qr
 publ i c d oubl e s emi per i met er ()s
 { r et ur n p er i met er () / 2 ; }t
}

w x y z { | } ~ ì } ô < B � H A ? B C A
Shape

C � B H H Ö õ @ × � ? > H ö ÷ ø ù B < Õ ö ÷ ø ú B ? > � < C = B < × > Õ

An abstract class can also declare both static and instance fields. Like nonab-

stract classes, these fields would typically be private, and the instance fields

would be initialized by constructors. Although abstract classes cannot be created,

these constructors will be called when the derived classes use super . In a more

extensive example, the Shape class could include the coordinates of the object’s

extremities, which would be set by constructors, and it could provide implementa-

tion of methods, such as posi t i onOf , that are independent of the actual type of

object; posi t i onOf would be a final method.

BOOK.mkr Page 171 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Å ¢
� ` U T X X W ^ Z f T Z U \ T X Z
V h \ T g X Z] T ` Z
b \ Z f V [b Y X Z g \ T h

R c d Q O R S Q S e R d d l

As mentioned earlier, the existence of at least one abstract method makes the

base class abstract and disallows creation of it. Thus a Shape object cannot itself

be created; only the derived objects can. However, as usual, a Shape variable can

reference any concrete derived object, such as a Ci r cl e or Rect angl e. Thus

 Shape a , b;
 a = n ew Cir c l e(3 . 0); / / L egal
 b = n ew S hape(" ci r c le ") ; / / I l le gal

Before continuing, let us summarize the four types of class methods:

1. Final methods. The virtual machine may choose at runtime to per-
form inline optimization, thus avoiding dynamic binding. We use a
final method only when the method is invariant over the inheri-
tance hierarchy (that is, when the method is never redefined).

2. Abstract methods. Overriding is resolved at run time. The base
class provides no implementation and is abstract. The absence of a
default requires either that the derived classes provide an imple-
mentation or that the classes themselves be abstract.

3. Static methods. Overridding is resolved at compile time because
there is no controll ing object.

4. Other methods. Overriding is resolved at run time. The base class
provides a default implementation that may be either overridden
by the derived classes or accepted unchanged by the derived
classes.

BOOK.mkr Page 172 Wednesday, March 14, 2001 1:26 PM

û � � A @ � � > ; < = > ? @ A B < C > D Å ®
Ü Ý ü ý þ ÿ � â � ÿ à � ä é à æ â � ç ä è à

� � e Q P ¯ e N P L M N O P Q �
R L S N ^ X Y X \ [Z V [\ k

] ^ _ \ T ` U T X X a] V b
X \ _ \] T U g T X \
` U T X X \ X l � T _ T [V \ X
h V Z T U U V W b Y U Z ^ j U \
^ h f \] ^ Z T h ` \ l

All the inheritance examples seen so far derived one class from a single base

class. In multiple inheritance, a class may be derived from more than one base

class. For instance, we may have a Student class and an Employee class. A

St udent Empl oyee could then be derived from both classes.

Although multiple inheritance sounds attractive, and some languages (includ-

ing C++) support it, it is wrought with subtleties that make design diff icult. For

instance, the two base classes may contain two methods that have the same signa-

ture but different implementations. Alternately, they may have two identically

named fields. Which one should be used?

For example, suppose that in the previous St udent Empl oyee example

Per son is a class with data field name and method t oSt r i ng. Suppose, too,

that St udent extends Per son and overrides t oSt r i ng to include the year of

graduation. Further, suppose that Empl oyee extends Per son but does not over-

ride t oSt r i ng; instead, it declares that it is f i nal .

1. Since St udent Empl oyee inherits the data members from both
St udent and Empl oyee, do we get two copies of name?

2. If St udent Empl oyee does not override to St r i ng, which
t oSt r i ng method should be used?

When many classes are involved, the problems are even larger. It appears

however, that the typical multiple inheritance problems can be traced to conflict-

ing implementations or conflicting data fields. As a result, Java does not allow

multiple inheritance. Instead, it provides an alternative known as the interface.

BOOK.mkr Page 173 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Å E
Ü Ý Ü � é à � ä � à æ � ç è à

� f \ P L Q N O Ì R S N ^ X T h
T g X Z] T ` Z ` U T X X Z f T Z
` V h Z T ^ h X h V ^ b j U \ k
b \ h Z T Z ^ V h [\ Z T ^ U X l

The interface in Java is the ultimate abstract class. It consists of publi c abstract

methods and public static final fields, only.

A class is said to implement the interface if it provides definitions for all of

the abstract methods in the interface. A class that implements the interface

behaves as if it had extended an abstract class specified by the interface.

m
package j ava. l ang;no
publ i c i nt er f ace C ompar abl ep
{q
 i nt c ompar eTo(O bj ect o t her) ;

r
}

w x y z { | } ~ ì �
Comparable

@ < A > ? � B C >

In principle, the main difference between an interface and an abstract class is

that although both provide a specification of what the subclasses must do, the

interface is not allowed to provide any implementation details either in the form

of data fields or implemented methods. The practical effect of this is that multiple

interfaces do not suffer the same potential problems as multiple inheritance

because we cannot have conflicting implementations. Thus, while a class may

extend only one other class, it may implement more than one interface.

� � � � � � � � ¦ � 	 � � ¥ © � ¥ ¸ ¥ � � « 	 � ¦ �

Syntacticall y, virtuall y nothing is easier than specifying an interface. The inter-

face looks li ke a class declaration, except that it uses the keyword i nte r fa ce.

BOOK.mkr Page 174 Wednesday, March 14, 2001 1:26 PM

· = > ; < A > ? � B C > D Å �

It consists of a li sting of the methods that must be implemented. An example is

the Compar abl e interface, shown in Figure 4.15, which is part of the standard

j ava. l ang package, starting with Java 1.2.

The Compar abl e interface specifies one method that every subclass must

implement: compar eTo, which behaves like the St r i ng compar eTo

method. In fact, St r i ng implements precisely this interface. Note that we do not

have to specify that these methods are publ i c and abst r act . Since these

modifiers are required for interface methods, they can and should be omitted.

� � � � � ¸ � � � � � � ¥ � � ¥ © � ¥ ¸ ¥ � � « 	 � ¦ �
� f \

implements

S e R � d N ^ X Y X \ [Z V [\ k
` U T] \ Z f T Z T ` U T X X
^ b j U \ b \ h Z X T h ^ h k
Z \] a T ` \ l � f \ ` U T X X
b Y X Z ^ b j U \ b \ h Z
T U U ^ h Z \] a T ` \ b \ Z f k
V [X V] ^ Z] \ b T ^ h X
T g X Z] T ` Z l

A class implements an interface by

1. declaring that it implements the interface, and
2. defining implementations for all the interface methods.

An example is shown in Figure 4.16. Here, we finalize the Shape class,

which we used in Section 4.2.

Line 1 shows that when implementing an interface, we use implements

instead of ext ends . Shape is abstract because it has abstract methods; if it did

not, it would not need to be declared abstract. We can provide any methods that

we want, but we must provide at least those listed in the interface. The interface is

implemented at lines 6 to 17. Notice that we must implement the exact method

specified in the interface. Thus these methods take Obj ect as a parameter,

instead of Shape or Compar abl e.

BOOK.mkr Page 175 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Å Â

A class that implements an interface can be extended if it is not final. The

extended class automatically implements the interface. Thus, Ci r c l e automati-

cally implements Compar abl e, and it has inherited the compar eTo method

from Shape.

A class that implements an interface may stil l extend one other class. The

ext ends clause must precede the i mpl ement s clause.

m
publ i c a bst r act c l ass S hape i mpl ement s C ompar abl en
{o
 publ i c a bst r act d oubl e a r ea() ;p
 publ i c a bst r act d oubl e p er i met er () ;q

r
 publ i c i nt c ompar eTo(O bj ect r hs)s
 {t
 Shape o t her = (Shape) r hs ;u
 doubl e d i f f = a r ea() - o t her . ar ea() ;m vm m
 i f (d i f f = = 0)m n
 r et ur n 0 ;m o
 el se i f (d i f f < 0)m p
 r et ur n - 1;m q
 el sem r
 r et ur n 1 ;m s
 }m t
 m u
 publ i c d oubl e s emi per i met er ()n v
 { r et ur n p er i met er () / 2 ; }n m
}

w x y z { | } ~ ì ¶ · = >
Shape

C � B H H
 � @ < B � � > ? H @ � < � Ö È = @ C = @ Ô � � > Ô > < A H A = >
Comparable

@ < A > ? � B C >

� � � � £ Ë À � � � � � � ¸ ¥ � � « 	 � ¦ �

As we mentioned earlier, a class may implement multiple interfaces. The syntax

for doing so is simple. A class implements multiple interfaces by

BOOK.mkr Page 176 Wednesday, March 14, 2001 1:26 PM

· = > ; < A > ? � B C > D Å Å

1. listing the interfaces (comma separated) that it implements, and
2. defining implementations for all of the interface methods.

The interface is the ultimate in abstract classes and represents an elegant

solution to the multiple inheritance problem.

� � � � � ¸ ¥ � � « 	 � ¦ � � « � ó � � « � ¦ � � � � �

Because an interface is an abstract class, all the rules of inheritance apply. Specif-

ically:

1. The IS-A relationship holds. If class C implements interface I,
then C IS-A I and is type-compatable with I. If a class C imple-
ments interfaces I1, I2, and I3, then C IS-A I1, C IS-A I2, and C IS-
A I3, and is type compatable with I1, I2, and I3.

2. The i nst anceof operator can be used to determine if a refer-
ence is type-compatable with an interface.

3. When a class implements an interface method, it may not reduce
visibility. Since all interface methods are public, all implementa-
tions must be public.

4. When a class implements an interface method, it may not add
checked exceptions to the throws list. If a class implements multi-
ple interfaces in which the same method occurs with different
throws list, the throws list of the implementation may list only
checked exceptions that are in the intersection of the throws lists
of the interface methods.

5. When a class implements an interface method, it must implement
the exact signature (not including throws list); otherwise, it inher-
its an abstract version of the interface method, and has provided a
non-abstract overloaded, but different method.

6. A class may not implement two interfaces that contain a method
with the same signature and different return types, since it would
be impossible to provide both methods in one class.

7. If a class fails to implement any methods in an interface, it must be
declared abstract.

8. Interfaces can extend other interfaces (including multiple inter-
faces).

BOOK.mkr Page 177 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D Å F
Ü Ý � þ ä � ç � à ä � ç ÿ � ä é à æ â � ç ä è à â ä � ç � ç

Two important places where inheritance is used in Java are the Obj ect class and

the hierarchy of exceptions.

� � ½ � � � ¬ �
Object

� � �

Java specifies that if a class does not extend another class, then it impli citly

extends the class Obj ect (defined in jav a.lan g). As a result, every class is

either a direct or indirect subclass of Obj ect .

The Obj ect class contains several methods, and since it is not abstract, all

have implementations. The most commonly-used method is t oSt r i ng, which

we have already seen. If t oSt r i ng is not written for a class, an implementation

is provided that concatenates the name of the class, an @, and the class’ “hash-

Code” .

Other important methods are equal s and the hash Code, which we will

discuss in more detail i n Chapter 6, and a set of somewhat tricky methods that

advanced Java programmers need to know about.

BOOK.mkr Page 178 Wednesday, March 14, 2001 1:26 PM

õ � < Õ B Ô > < A B � ; < = > ? @ A B < C > @ < � B � B D Å J

w x y z { | } ~ ì Æ · = > = @ > ? B ? C = � � � > î C > � A @ � < H
 � B ? A @ B � � @ H A �

� � ½ � � � ¬ � ¹ � � « � « ¦ ¬ � � 	 � � ¦ � � � � � ¥

As described in Section 2.5, there are several types of exceptions. The root of the

hierarchy, a portion of which is shown in Figure 4.17, is Throwable , which

defines defines a set of pr i ntS t ac kTr ace methods, provides a t oSt r in g

implementation, a pair of constructors, and little else. The hierarchy is spli t off

into Er r or , Runt i meExcept i on, and checked exceptions. A checked excep-

Error

Throwable

Exception

RuntimeExce ption
Out Of Memor yEr r or
I nt er nal Er r or
UnknownEr r or

Nul l Poi nt er Excepti on
Ar r ayIn dexOut Of BoundsExcept i on
Ar i t hmet i cExcept io n
Unsuppor t edOper ati onExcept i on
NoSuchMet hodExcept i on
I nval id Ar gument Exc ept i on
j ava. ut i l . NoSuchEl ement Except io n
j ava. ut i l . Concur re nt modi f i cat io nExcept i on
j ava. ut i l . Empt ySta ckExcept i on
Cl assCast Except i on

j ava. i o. I OExcept i on

j ava. i o. Fi l eNot FoundExcept i on

BOOK.mkr Page 179 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D F �

tion is any Except io n that is not a Runt im eExcept io n. For the most part,

each new class extends another exception class, providing only a pair of construc-

tors. It is possible to provide more, but none of the standard exceptions bother to

do so. In weis s .u t i l , we implement three of the standard j ava. ut i l

exceptions. One such implementation, which shows that new exception classes

typically provide lit tle more than constructors, is shown in Figure 4.18.

m
package w ei ss . ut i l ;no
publ i c c l ass N oSuchEl ement Except i on e xt ends R unt i meExcept i onp
{q
 / * *

r
 * C onst r uc t s a N oSuchEl ement Except i on w i t hs
 * n o d et ai l m essage.t
 * /u
 publ i c N oSuchEl ement Except i on()m v
 {m m
 }m n
 m o
 / *m p
 * C onst r uc t s a N oSuchEl ement Except i on w i t hm q
 * a d et ai l m essage.m r
 * @ par am msg t he d et ai l m esage.m s
 * /m t
 publ i c N oSuchEl ement Except i on(S t r i ng m sg)m u
 {n v
 super (m sg) ;n m
 }n n
}

w x y z { | } ~ ì Ó
NoSuchElementExcept i on

Ö @ Ô � � > Ô > < A > Õ @ <
weis s.util

÷

� � ½ � £ ¸ � Ï � � ¬ � ¤ � ¦ � « � � � « ª � � � � « ¥

I/O in Java looks fairly complex to use but works nicely for doing I/O with differ-

ent sources, such as the terminal , fil es, and Internet sockets. Because it is

designed to be extensible, there are lots of classes — over 50 in all . It is cumber-

BOOK.mkr Page 180 Wednesday, March 14, 2001 1:26 PM

õ � < Õ B Ô > < A B � ; < = > ? @ A B < C > @ < � B � B D F D

some to use for trivial tasks; for instance reading a number from the terminal

requires substantial work.

Input is done through the use of stream classes. Because Java was designed

for Internet programming, most of the I/O centers around byte-oriented reading

and writing.

Byte-oriented I/O is done with stream classes that extend I nput St r eam or

Out put St r eam. I nput St r eam and Out put St r eam are abstract classes

and not interfaces, so there is no such thing as a stream open for both input and

output. These classes declare an abstract r ead and wr i t e method for single-

byte I/O, respectively and also a small set of concrete methods such as c l ose

and block I/O (which can be implemented in terms of calls to single-byte I/O).

Examples of these classes include Fi l eI nput St r eam and

Fi l eOut put St r eam, as well as the hidden Socket I nput St r eam and

Socket Out put St r eam. (The socket streams are produced by methods that

return an object statically typed as I nput St r eam or Out put St r eam).

InputStreamReade

r
T h [

OutputStreamWrit

er
` U T X X \ X T] \

c O P Ò N d Z f T Z T U U V W X
Z f \ j] V i] T b b \] Z V
`] V X X V _ \] a] V b Z f \
Stream

Z V
Reader

f ^ \] T] ` f ^ \ X l

Character-oriented I/O is done with classes that extend the abstract classes

Reader and Wr i t er . These also contain r ead and wr i t e methods. There are

not as many Reader and Wr i t er classes as I nput St r eam and

Out put St r eam.

However, this is not a problem, because of the I nput St r eamReader and

Out put St r eamWr i t er classes. These are called bridges because they cross

over from the St r eam to Reader hierarchies. An I nput St r eamReader is

BOOK.mkr Page 181 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D F ¢

constructed with any I nput St r eam, and creates an object that IS-A Reader .

For instance, we can create a Reader for files using:

 I nput St r eam f i s = n ew Fi l eI nput St re am(" f oo. tx t ") ;
 Reader f i n = n ew I nput St r eamReader(f i s) ;

It happens that there is a Fi l eReader convenience class that does this

already; Figure 4.19 provides a plausible implementation.

From a Reader , we can do limited I/O; the r ead method returns one char-

acter. If we want to read one line instead, we need a class called

Buf f er edReader . Like other Reader objects, a Buf f er edReader is con-

structed from any other Reader , but it provides both buffering and a r eadLi ne

method. Thus, continuing the previous example,

 Buf f er edReader b i n = new Buf f er edReader (f i n) ;

Wrapping an I nput St r eam inside an I nput St r eamReader inside a

Buf f er edReader works for any I nput St r eam, including Syst em. i n or

sockets. Figure 4.20, which duplicates Figure 2.15, illustrates the use of this pat-

tern to read two numbers from the standard input.

The wrapping idea is an example of a commonly-used Java design pattern,

that we will see again in Section 4.6.2.

BOOK.mkr Page 182 Wednesday, March 14, 2001 1:26 PM

õ � < Õ B Ô > < A B � ; < = > ? @ A B < C > @ < � B � B D F ®
m

c l ass F i l eReader e x t ends I nput St r eamReadern
{o
 publ i c F i l eReader (S t r i ng n ame)p
 t hr ows F i l eNot FoundExcept i onq
 { s uper (n ew F i l eI nput St r eam(n ame)) ; }

r
}

w x y z { | } ~ ì Ø
File Reader

C � < � > < @ > < C > C � B H H

BOOK.mkr Page 183 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D F E
m

i mpor t j ava. i o. I nput St r eamReader ;n
i mpor t j ava. i o. Buf f er edReader ;o
i mpor t j ava. i o. I OExcept i on;pq
i mpor t j ava. ut i l . St r i ngTokeni zer ;

r
s

publ i c c l ass M axTestt
{u
 publ i c s t at i c v oi d mai n(S t r i ng a r gs[])m v
 {m m
 Buf f er edReader i n = n ew B uf f er edReader (n ewm n
 I nput St r eamReader (S yst em. i n)) ;m o
 m p
 St r i ng o neLi ne;m q
 St r i ngTokeni zer s t r ;m r
 i nt x ;m s
 i nt y ;m tm u
 Syst em. out . pr i nt l n(" Ent er 2 i nt s o n o ne l i ne: ") ;n v
 t r yn m
 {n n
 oneLi ne = i n. r eadLi ne() ;n o
 i f (o neLi ne = = n ul l)n p
 r et ur n;n q
 n r
 s t r = n ew S t r i ngTokeni zer (o neLi ne) ;n s
 i f (s t r . count Tokens() ! = 2)n t
 {n u
 Syst em. out . pr i nt l n(" Er r or : n eed t wo i nt s") ;o v
 r et ur n;o m
 }o n
 x = I nt eger . par seI nt (s t r . next Token()) ;o o
 y = I nt eger . par seI nt (s t r . next Token()) ;o p
 Syst em. out . pr i nt l n(" Max: " + M at h. max(x , y)) ;o q
 }o r
 cat ch(I OExcept i on e)o s
 { S yst em. er r . pr i nt l n(" Unexpect ed I O e r r or ") ; }o t
 cat ch(N umber For mat Except i on e)o u
 { S yst em. er r . pr i nt l n(" Er r or : n eed t wo i nt s") ; }p v
 p m
 }p n
}

w x y z { | } ~ ð í ï ? � × ? B Ô A = B A Õ > Ô � < H A ? B A > H A = > È ? B � � @ < × � � H A ? > B Ô H B < Õ ? > B Õ > ? H

Similar to the Buf f er Reader is the Pr i nt Wr i t er , which allows us to

do pr i nt l n operations.

BOOK.mkr Page 184 Wednesday, March 14, 2001 1:26 PM

õ � < Õ B Ô > < A B � ; < = > ? @ A B < C > @ < � B � B D F �

The Out put St r eam hierarchy includes several wrappers, such as

Dat aOut put St r eam, Obj ect Out put St r eam, and GZI POut put -

St r eam.

Dat aOut put St r eam allows us to write primitives in binary form (rather

than human-readable text form); for instance a call to wr i t eI nt writes the four

bytes that represent a 32-bit integer. Writing data the way avoids conversions to

text form, resulting in time and (sometimes) space savings.

Obj ect Out put St r eam allows us to write an entire object including all its

components, its component’s components, etc., to a stream. The object and all its

components must implement the Ser i al i zabl e interface. There are no meth-

ods in the interface; one must simply declare that a class is serializable.5 The

GZI POut put St r eam wraps an Out put St r eam and compresses the writes

prior to sending it to the Out put St r eam. In addition, there is a

Buf f er edOut put St r eam class. Similar wrappers are found on the I nput -

St r eam side. As an example, suppose we have an array of serializable Per son

objects. We can write the objects, as a unit, compressed as follows:

5. The reason for this is that serialization, by default, is insecure. When an object is written out in an

Obj ect Out put St r eam, the format is well -known, so its private members can be read by a malicious user.

Similarly, when an object is read back in, the data on the input stream is not checked for correctness, so it is

possible to read a corrupt object. There are advanced techniques that can be used to ensure security and integriy

when serialization is used, but that is beyond the scope of this text. The designers of the serialization library felt

that serialization should not be the default because correct use requires knowledge of these issues, and so they

placed a small roadblock in the way.

BOOK.mkr Page 185 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D F Â

Per son [] p = g et Per sons() ; / / p opul at e t he a r r ay
Fi l eOutp ut St r eam fo ut = n ew Fi l eOut put St r eam(" peopl e.g z i p") ;
Buf f er edOut put St r eam b out = ne w B uf f er edOut put St r eam(f out) ;
GZI POutp ut St r eam go ut = n ew GZI POut put St r eam(b out) ;
Obj ect Out put St r eam oout = n ew Obj ect Out putS t r eam(g out) ;
oout . wri t eObj ect (p) ;
oout . c lo se() ;

Later on, we could read everything back:

Fi l eI nput St r eam f in = n ew F i le I nput St r eam(" peopl e. gzi p") ;
Buf f er edI nput St r eam b i n = n ew Buf f er edI nput St r eam(f in) ;
GZI PI nput St r eam g in = n ew GZIP I nput St r eam(bi n) ;
Obj ect In put St r eam oi n = n ew Obj ect I nput St re am(g i n) ;
Per son [] p = (Pers on[]) o i n.r eadObj ect ();
oi n. cl ose() ;

The online code expands this example by having each Per son store a name, a

birthdate, and the two Per son objects that represent the parents.

� f \ ^ [\ T V a h \ X Z ^ h i
W] T j j \] X ^ h V] [\] Z V
T [[a Y h ` Z ^ V h T U ^ Z � ^ X
Á h V W h T X Z f \ N S ° �
O R Q ° O ¯ R Q Q N O L l

The idea of nesting wrappers in order to add functionality is known as the

decorator pattern. By doing this, we have numerous small classes that are com-

bined to provide a powerful interface. Without this pattern, each different I/O

source would have to have functionality for compression, serialization, character,

and byte I/O, etc. With the pattern each source is only responsible for minimal

basic I/O, and then the extra features are added on by the decorators.

Ü Ý � � � � ÿ à � à ä � â ä ã � à ä à æ â è � � � � � ä à ä � á
� N L N O P S j] V i] T b k

b ^ h i T U U V W X Y X Z V
^ b j U \ b \ h Z Z � j \ k
^ h [\ j \ h [\ h Z U V i ^ ` l

Recall that an important goal of object-oriented programming is the support of

code reuse. An important mechanism that supports this goal is the generic mecha-

nism: If the implementation is identical except for the basic type of the object, a

generic implementation can be used to describe the basic functionali ty. For

BOOK.mkr Page 186 Wednesday, March 14, 2001 1:26 PM

; Ô � � > Ô > < A @ < × � > < > ? @ C Ç � Ô � � < > < A H D F Å

instance, a method can be written to sort an array of items; the logic is indepen-

dent of the types of objects being sorted, so a generic method could be used.

� h � T _ T µ i \ h \] ^ ` ^ Z � ^ X
V g Z T ^ h \ [g � Y X ^ h i
^ h f \] ^ Z T h ` \ l

Unlike many of the newer languages (such as C++, which uses templates to

implement generic programming), Java does not support generic implementations

directly. This is because generic programming can be implemented using the

basic concepts of inheritance. This section describes how generic methods and

classes can be implemented in Java using the basic principles of inheritance.6

m
/ / M emor yCel l c l assn
/ / Obj ect r ead() - - > Ret ur ns t he s t or ed v al ueo
/ / voi d w r i t e(O bj ect x) - - > x i s s t or edpq
publ i c c l ass M emor yCel l

r
{s
 / / P ubl i c m et hodst
 publ i c O bj ect r ead() { r et ur n s t or edVal ue; }u
 publ i c v oi d w r i t e(O bj ect x) { s t or edVal ue = x ; }m vm m
 / / P r i vat e i nt er nal d at a r epr esent at i onm n
 pr i vat e O bj ect s t or edVal ue;m o
}

w x y z { | } ~ ð ì � > < > ? @ C
MemoryCell

C � B H H

6. Direct support for generic methods and classes is under strong consideration as a possible language addition.

Currently, the approach described in this section is the one most widely used.

BOOK.mkr Page 187 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D F F
m

publ i c c l ass T est Memor yCel ln
{o
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)p
 {q
 Memor yCel l m = n ew Memor yCel l () ;

r
s

 m. wr i t e(n ew S t r i ng(" 37")) ;t
 St r i ng v al = (St r i ng) m . r ead() ;u
 Syst em. out . pr i nt l n(" Cont ent s a r e: " + v al) ;m v
 }m m
}

w x y z { | } ~ ð ð � H @ < × A = > × > < > ? @ C
MemoryCell

C � B H H

BOOK.mkr Page 188 Wednesday, March 14, 2001 1:26 PM

; Ô � � > Ô > < A @ < × � > < > ? @ C Ç � Ô � � < > < A H D F J
m

/ * *n
 * T he S i mpl eAr r ayLi s t i mpl ement s a g r owabl e a r r ay o f O bj ect .o
 * I nser t i ons a r e a l ways d one a t t he e nd.p
 * /q
publ i c c l ass S i mpl eAr r ayLi s t

r
{s
 / * *t
 * R et ur ns t he n umber o f i t ems i n t hi s c ol l ec t i on.u
 * @ r et ur n t he n umber o f i t ems i n t hi s c ol l ec t i on.m v
 * /m m
 publ i c i nt s i ze()m n
 {m o
 r et ur n t heSi ze;m p
 }m q
 m r
 / * *m s
 * R et ur ns t he i t em a t p osi t i on i dx .m t
 * @ par am i dx t he i ndex t o s ear ch i n.m u
 * @ t hr ows A r r ayI ndexOut Of BoundsExcept i on i f i ndex i s b ad.n v
 * /n m
 publ i c O bj ect g et (i nt i dx)n n
 {n o
 i f (i dx < 0 | | i dx > = s i ze())n p
 t hr ow n ew A r r ayI ndexOut Of BoundsExcept i on() ;n q
 r et ur n t heI t ems[i dx] ; n r
 }n s
 n t
 / * *n u
 * A dds a n i t em t o t hi s c ol l ect i on, a t t he e nd.o v
 * @ par am x a ny o bj ec t .o m
 * @ r et ur n t r ue (as p er j ava. ut i l . Ar r ayLi st) .o n
 * /o o
 publ i c b ool ean a dd(O bj ect x)o p
 {o q
 i f (t heI t ems. l engt h = = s i ze())o r
 {o s
 Obj ect [] o l d = t heI t ems;o t
 t heI t ems = n ew Obj ect [t heI t ems. l engt h * 2 + 1] ;o u
 f or (i nt i = 0 ; i < s i ze() ; i ++)p v
 t heI t ems[i] = o l d[i] ;p m
 }p n
 p o
 t heI t ems[t heSi ze++] = x ; p p
 r et ur n t r ue; p q
 }p r
 p s
 pr i vat e s t at i c f i nal i nt I NI T_CAPACI TY = 1 0;p tp u
 pr i vat e i nt t heSi ze = 0 ;q v
 pr i vat e O bj ect [] t heI t ems = n ew Obj ect [I NI T_CAPACI TY] ;q m
}

w x y z { | } ~ ð ñ ò @ Ô � � @ � @ > Õ
Ar rayList

Ö È @ A =
add

Ö
get

Ö B < Õ
size

÷

BOOK.mkr Page 189 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D J �
� � Ã � � � � ¥ ©

Object
	 � « � � ¥ � « � ¦ � � �

The basic idea in Java is that we can implement a generic class by using an appro-

priate superclass, such as Obj ect .

Consider the I nt Cel l class shown in Figure 3.2. Recall that the I nt Cel l

supports the r ead and wr i t e methods. We can, in principle, make this a generic

Memor yCel l class that stores any type of Obj ect by replacing instances of

i nt with Obj ect . The resulting Memor yCel l class is shown in Figure 4.21.

There are two details that must be considered when we use this strategy. The

first is illustrated in Figure 4.22, which depicts a mai n that writes a " 37" to a

Memor yCel l object and then reads from the Memor yCel l object. To access a

specific method of the object we must downcast to the correct type. (Of course in

this example, we do not need the downcast, since we are simply invoking the

t oSt r i ng method at line 9, and this can be done for any object.

A second important detail is that primitive types cannot be used. Only refer-

ence types are compatable with Obj ect . A standard workaround to this problem

is discussed momentarily.

Memor yCel l is a fairly small example. To see a larger example that is typi-

cal of generic code reuse, Figure 4.23 shows a simpli fied generic Ar r ayLi st

class; the online code fil ls in some additional methods.

BOOK.mkr Page 190 Wednesday, March 14, 2001 1:26 PM

; Ô � � > Ô > < A @ < × � > < > ? @ C Ç � Ô � � < > < A H D J D
� � Ã � � « � � � � « 	 � « ª « � � � � � Ð � � � � �

When we implement algorithms, often we run into a language typing problem: we

have an object of one type, but the language syntax requires an object of a differ-

ent type.

� Ú O R ¯ ¯ N O S e R d d
X Z V] \ X T h \ h Z ^ Z � ! Z f \
W] T j \ \ " T h [T [[X
V j \] T Z ^ V h X Z f T Z Z f \
V] ^ i ^ h T U Z � j \ [V \ X
h V Z X Y j j V] Z ` V] k
] \ ` Z U � l � h R R ¯ Q N O

S e R d d ^ X Y X \ [W f \ h
Z f \ ^ h Z \] a T ` \ V a T
` U T X X ^ X h V Z \ Í T ` Z U �
W f T Z ^ X h \ \ [\ [l

This technique il lustrates the basic theme of a wrapper class. One typical use

is to store a primitive type, and add operations that the primitive type either does

not support or does not support correctly. A second example was seen in the I/O

system, in which a wrapper stores a reference to an object and forwards requests

to the object, embelleshing the result somehow (for instance, with buffering or

compression). A similar concept is an adapter class (in fact wrapper and adapter

are often used interchangeably). An adapter class is typically used when the inter-

face of a class is not exactly what is needed, and provides a wrapping effect, while

changing the interface.

In Java, we have already seen that although every reference type is compati-

ble with Obj ect , the eight primitive types are not. As a result, Java provides a

wrapper class for each of the eight primitive types. For instance, the wrapper for

the i nt type is I nt eger . Each wrapper object is immutable (meaning its state

can never change), stores one primitive value that is set when the object is con-

structed, and provides a method to retrieve the value. The wrapper classes also

contain a host of static utility methods.

As an example, Figure 4.24 shows how we can use the Ar r ayLi st to store

integers.

BOOK.mkr Page 191 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D J ¢
m

i mpor t j ava. ut i l . Ar r ayLi s t ;no
c l ass Wr apper Demop
{q
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)

r
 {s
 Ar r ayLi st a r r = n ew A r r ayLi st () ;t
 u
 ar r . add(n ew I nt eger (4 6)) ;m v
 I nt eger w r apper Val = (I nt eger) a r r . get (0) ;m m
 i nt v al = w r apper Val . i nt Val ue() ;m n
 Syst em. out . pr i nt l n(" Posi t i on 0 : " + v al) ; m o
 }m p
}

w x y z { | } ~ ð } ; � � � H A ? B A @ � < � � A = >
Integer

È ? B � � > ? C � B H H ÷

� � Ã � £ ó ¨ � � � � « � � ¬ � ¥ © � ¥ © � ¥ ¸ ¥ � � « 	 � ¦ �
� f \ R R ¯ Q N O ¯ R Q �

Q N O L ^ X Y X \ [Z V
` f T h i \ Z f \ ^ h Z \] k
a T ` \ V a T h \ Í ^ X Z ^ h i
` U T X X Z V ` V h a V] b Z V
T h V Z f \] l

The adapter pattern is used to change the interface of an existing class to conform

to another. Sometimes it is used to provide a simpler interface, either with fewer

methods, or easier-to-use methods. Other times it is used simply to change some

method names. In either case, the implementation technique is similar.

We have already seen one example of an adapter: the bridge classes

I nput St r eamReader and Out put St r eamReader that convert byte-ori-

ented streams into character-oriented streams.

As another example, our Memor yCel l class in Section 4.6.1 uses r ead and

wr i t e. But what if we wanted the interface to use get and put instead? There

are two reasonable alternatives. One is to cut and paste a completely new class.

The other is to use composition, in which we design a new class, that wraps the

behavior of an existing class.

BOOK.mkr Page 192 Wednesday, March 14, 2001 1:26 PM

; Ô � � > Ô > < A @ < × � > < > ? @ C Ç � Ô � � < > < A H D J ®
m

/ / A c l ass f or s i mul at i ng a m emor y c el l .n
publ i c c l ass S t or ageCel lo
{p
 publ i c O bj ect g et ()q
 { r et ur n m . r ead() ; }

r
 s
 publ i c v oi d p ut (O bj ect x)t
 { m . wr i t e(x) ; }u
 m v
 Memor yCel l m = n ew Memor yCel l () ;m m
}

w x y z { | } ~ ð � ô < B Õ B � A > ? C � B H H A = B A C = B < × > H A = >
MemoryCell

@ < A > ? � B C > A �� H >
get

B < Õ
put

÷

We use this technique to implement the new class, St or ageCel l , in Figure

4.25. Its methods are implemented by calls to the wrapped Memor yCell . It is

tempting to use inheritance instead of composition, but inheritance supplements

the interface (i.e. it adds additional methods, but leaves the originals.) If that is the

appropriate behavior, then indeed inheritance may be preferable to composition.

� � Ã � � � � ¥ © ¸ ¥ � � « 	 � ¦ � � � � � 	 � « � � ¥ � « � ¦ � � �

Using Obj ect as a generic type works only if the operations that are being per-

formed can be expressed using only methods available in the Obj ect class.

BOOK.mkr Page 193 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D J E
m

c l ass F i ndMaxDemon
{o
 / * *p
 * R et ur n m ax i t em i n a .q
 * P r econdi t i on: a . l engt h > 0

r
 * /s
 publ i c s t at i c C ompar abl e f i ndMax(C ompar abl e [] a)t
 {u
 i nt m axI ndex = 0 ;m v
 m m
 f or (i nt i = 1 ; i < a . l engt h; i ++)m n
 i f (a [i] . compar eTo(a [m axI ndex]) > 0)m o
 maxI ndex = i ;m p
 m q
 r et ur n a [m axI ndex] ; m r
 }m s
 m t
 / * *m u
 * T est f i ndMax o n S hape a nd S t r i ng o bj ec t s .n v
 * /n m
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)n n
 {n o
 Shape [] s h1 = { n ew Ci r c l e(2. 0) ,n p
 n ew Squar e(3. 0) ,n q
 n ew Rect angl e(3 . 0, 4 . 0) } ;n r
 n s
 St r i ng [] s t 1 = { " Joe" , " Bob" , " Bi l l " , " Zeke" } ;n t
 n u
 Syst em. out . pr i nt l n(f i ndMax(s h1)) ;o v
 Syst em. out . pr i nt l n(f i ndMax(s t 1)) ;o m
 }o n
}

w x y z { | } ~ ð ¶ � > < > ? @ C
fin dMax

? � � A @ < > Ö È @ A = Õ > Ô � � H @ < × H = B � > H B < Õ H A ? @ < × H

Consider, for example, the problem of finding the maximum item in an array

of items. The basic code is type-independent, but it does require the abil ity to

compare any two objects and decide which is larger and which is smaller. Thus

we cannot simply find the maximum of an array of Obj ect — we need more

information. The simplest idea would be to find the maximum of an array of

Compar abl e. To determine order, we can use the compar eTo method that we

BOOK.mkr Page 194 Wednesday, March 14, 2001 1:26 PM

; Ô � � > Ô > < A @ < × � > < > ? @ C Ç � Ô � � < > < A H D J �

know must be available for all Compar abl es. The code to do this is shown in

Figure 4.26.

It is important to mention a few caveats. First, only objects that implement

the Compar abl e interface can be passed as elements of the Compar abl e

array. Objects that have a compar eTo method but do not declare that they

implement Compar abl e are not Compar abl e, and do not have the requisite

IS-A relationship.

Second, if the Compar abl e array were to have two objects that are incom-

patible (e.g. a St r i ng and a Shape), the compar eTo method would throw a

Cl assCast Except i on. This is the expected (indeed, required) behavior.

BOOK.mkr Page 195 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D J Â
m

/ * *n
 * S i mpl i f i ed v er si on o f t he I nt eger c l ass i n j ava. l ang.o
 * /p
publ i c f i nal c l ass I nt eger i mpl ement s C ompar abl eq
{

r
 publ i c I nt eger ()s
 { t hi s(0) ; }tu
 publ i c I nt eger (i nt x)m v
 { v al ue = x ; }m mm n
 publ i c i nt i nt Val ue()m o
 { r et ur n v al ue; }m pm q
 publ i c S t r i ng t oSt r i ng()m r
 { r et ur n " " + v al ue; }m sm t
 publ i c i nt c ompar eTo(O bj ect r hs)m u
 { r et ur n v al ue < ((I nt eger) r hs) . val ue ? - 1 :n v
 v al ue = = ((I nt eger) r hs) . val ue ? 0 : 1 ; }n mn n
 publ i c b ool ean e qual s(O bj ect r hs)n o
 { r et ur n r hs i nst anceof I nt eger & &n p
 v al ue = = ((I nt eger) r hs) . val ue; }n qn r
 pr i vat e i nt v al ue;n s
}

w x y z { | } ~ ð Æ ò @ Ô � � @ � @ > Õ � > ? H @ � < � � A = >
Int eger

C � B H H @ <
java. l ang

÷ # Ô @ A HH A B A @ C Ô > A = � Õ H B < Õ B
hashCod e

Ô > A = � Õ ÷

Third, as before, primitives cannot be passed as Compar abl es, but the

wrappers work because they implement the Compar abl e interface. Figure 4.27

il lustrates how the I nt eger class could be implemented by the Java library.

This version is missing the static util ity methods and also does not include a

hashCode method that is described in Chapter 6.

Fourth, it is not required that the interface be a standard library interface.

Finally, this solution does not always work, becuase it might be impossible to

declare that a class implements a needed interface. For instance, the class might

be a library class, while the interface is a user-defined interface. And if the class is

BOOK.mkr Page 196 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � D J Å

final, we can’ t even create a new class. The next sections offers another solution

for this problem, which is the function object. The function object uses interfaces

also, and is perhaps one of the central themes encountered in the Java library.

Ü Ý % � é à � þ ä è � � æ & � þ ä è � â � ä ' () à è � á *

In Section 4.6, we saw how interfaces can be used to write generic algorithms. As

an example, the method in Figure 4.26 can be used to find the maximum item in

an array.

However, the f i ndMax method has an important limitation. That is, it works

only for objects that implement the Compar abl e interface and are able to pro-

vide compar eTo as the basis for all comparison decisions. There are many situ-

ations in which this is not feasible. As an example, consider the

Si mpl eRect angl e class in Figure 4.28.

BOOK.mkr Page 197 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >D J F
m

/ / A s i mpl e r ec t angl e c l ass.n
publ i c c l ass S i mpl eRect angl eo
{p
 publ i c S i mpl eRect angl e(i nt l , i nt w)q
 { l engt h = l ; w i dt h = w ; }

r
s

 publ i c i nt g et Lengt h()t
 { r et ur n l engt h; }u
 m v
 publ i c i nt g et Wi dt h()m m
 { r et ur n w i dt h; }m n
 m o
 publ i c S t r i ng t oSt r i ng()m p
 { r et ur n " Rect angl e " + g et Lengt h() + " b y "m q
 + g et Wi dt h() ; }m r
 m s
 pr i vat e i nt l engt h;m t
 pr i vat e i nt w i dt h;m u
}

w x y z { | } ~ ð Ó
Simp l eRectangle

C � B H H A = B A Õ � > H < � A @ Ô � � > Ô > < A A = >
Comparable

@ < A > ? � B C >

The Si mpl eRect angl e class does not have a compar eTo function, and

consequently cannot implement the Compar abl e interface. The main reason for

this is that because there are many plausible alternatives, it is diff icult to decide on

a good meaning for compar eTo. We could base the comparison on area, perim-

eter, length, width, and so on. Once we write compar eTo, we are stuck with it.

What if we want to have f i ndMax work with several different comparison alter-

natives?

The solution to the problem is to pass the comparison function as a second

parameter to f i ndMax , and have f i ndMax use the comparison function instead

of assuming the existence of compar eTo. Thus f i ndMax wil l now have two

parameters: an array of Obj ect (which need not have compar eTo defined),

and a comparison function.

BOOK.mkr Page 198 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � D J J

The main issue left is how to pass the comparison function. Some languages

allow parameters to be functions (actually they are pointers to functions). How-

ever, this solution often has eff iciency problems and is not available in all object-

oriented languages. Java does not allow functions to be passed as parameters; we

can only pass primitive value and references. So we appear not to have a way of

passing a function.

m
package w ei ss . ut i l ;no
/ * *p
 * C ompar at or f unct i on o bj ect i nt er f ace.q
 * /

r
publ i c i nt er f ace C ompar at ors
{t
 / * *u
 * R et ur n t he r esul t o f c ompar i ng l hs a nd r hs .m v
 * @ par am l hs f i r st o bj ec t .m m
 * @ par am r hs s econd o bj ect .m n
 * @ r et ur n < 0 i f l hs i s l ess t han r hs,m o
 * 0 i f l hs i s e qual t o r hs ,m p
 * > 0 i f l hs i s g r eat er t han r hs .m q
 * @ t hr ows C l assCast Except i on i f o bj ect sm r
 * c annot b e c ompar ed.m s
 * /m t
 i nt c ompar e(O bj ect l hs , O bj ect r hs) ;m u
}

w x y z { | } ~ ð Ø · = >
Comparator

@ < A > ? � B C > Ö � ? @ × @ < B � � � Õ > � @ < > Õ @ <
java . util? > È ? @ A A > < � � ? A = >

weiss.util
� B C + B × > ÷

, � L S Q ° O ^ X T h V Z f \]
h T b \ a V] T a Y h ` k
Z ^ V h V g ³ \ ` Z l

However, recall that an object consists of data and functions. So we can

embed the function in an object, and pass a reference to it. Indeed, this idea works

in all object-oriented languages. The object is called a function object, and is

sometimes also called a functor.

BOOK.mkr Page 199 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ � �
� f \ a Y h ` Z ^ V h V g ³ \ ` Z
` U T X X ` V h Z T ^ h X T
b \ Z f V [X j \ ` ^ a ^ \ [
g � Z f \ i \ h \] ^ ` T U k
i V] ^ Z f b l � h ^ h k
X Z T h ` \ V a Z f \ ` U T X X
^ X j T X X \ [Z V Z f \ T U k
i V] ^ Z f b l

The function object often contains no data. The class simply contains a single

method, with a given name, that is specified by the generic algorithm (in this case

f i ndMax). An instance of the class is then passed to the algorithm, which in turn

calls the single method of the function object. We can design different compari-

son functions by simply declaring new classes. Each new class contains a differ-

ent implementation of the agreed-upon single method.

In Java, to implement this idiom we use inheritance, and specifically we

make use of interfaces. The interface is used to declare the signature of the

agreed-upon function. As an example, Figure 4.29 shows the Compar at or

interface, which is part of the standard j ava. ut i l package. Recall that to illus-

trate how the Java library is implemented, we will reimplement a portion of

j ava. ut i l as wei ss. ut i l .

The interface says that any (non-abstract) class that claims to be a

Compar at or must provide an implementation of the compar e method; thus

any object that is an instance of such a class has a compar e method that it can

call.

BOOK.mkr Page 200 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � ¢ � D
m

publ i c c l ass U t i l sn
{o
 / / G ener i c f i ndMax, w i t h a f unct i on o bj ec t .p
 / / P r econdi t i on: a . l engt h > 0 .q
 publ i c s t at i c O bj ect f i ndMax(O bj ect [] a ,

r
 Compar at or c mp)s
 {t
 i nt m axI ndex = 0 ;u
 f or (i nt i = 1 ; i < a . l engt h; i ++)m v
 i f (c mp. compar e(a [i] , a [m axI ndex]) > 0)m m
 maxI ndex = i ;m n
 m o
 r et ur n a [m axI ndex] ;m p
 }m q
}

w x y z { | } ~ ñ í � > < > ? @ C
fi ndMax

B � × � ? @ A = Ô Ö � H @ < × B � � < C A @ � < � � $ > C A

m
c l ass O r der Rect ByWi dt h i mpl ement s C ompar at orn
{o
 publ i c i nt c ompar e(O bj ect o bj 1, O bj ect o bj 2)p
 {q
 Si mpl eRect angl e r 1 = (Si mpl eRect angl e) o bj 1;

r
 Si mpl eRect angl e r 2 = (Si mpl eRect angl e) o bj 2;s
 t
 r et ur n(r 1. get Wi dt h() - r 2. get Wi dt h()) ;u
 }m v
}m mm n
publ i c c l ass C onpar eTestm o
{m p
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)m q
 {m r
 Obj ect [] r ect s = n ew Obj ect [4] ;m s
 r ec t s [0] = n ew S i mpl eRect angl e(1 , 1 0) ;m t
 r ec t s [1] = n ew S i mpl eRect angl e(2 0, 1) ;m u
 r ec t s [2] = n ew S i mpl eRect angl e(4 , 6) ;n v
 r ec t s [3] = n ew S i mpl eRect angl e(5 , 5) ;n m
 n n
 Syst em. out . pr i nt l n(" MAX WI DTH: " + n o
 U t i l s . f i ndMax(r ec t s , n ew Or der Rect ByWi dt h())) ;n p
 }n q
}

w x y z { | } ~ ñ ì - î B Ô � � > � � B � � < C A @ � < � � $ > C A

Using this interface, we can now pass a Compar at or as the second param-

eter to f i ndMax . If this Compar at or is cmp, we can safely make the call

BOOK.mkr Page 201 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ � ¢

cmp. compar e(o1, o2) to compare any two objects as needed. It is up to the

caller of f i ndMax to pass an appropriately implemented instance of

Compar at or as the actual argument.

An example is shown in Figure 4.30. f in dMax now takes two parameters.

The second parameter is the function object. As shown on line 10, f i ndMax

expects that the function object implements a method named compar e, and it

must do so, since it implements the Compar at or interface.

Once f i ndMax is written, it can be called in mai n. To do so, we need to

pass to f i ndMax an array of Si mpl eRect angl e objects and a function object

that implements the Compar at or interface. We implement a new class

Or der Rect ByWi dt h, which contains the required compar e method.

compar e returns a integer indicating if the first rectangle is less than, equal to,

or greater than the second rectangle on the basis of widths. mai n simply passes

an instance of Or der Rect ByWi dt h to f i ndMax .7 Both mai n and

Or der Rect ByWi dt h are shown in Figure 4.31. Observe that the

Or der Rect ByWi dt h object has no data members. This is usually true of func-

tion objects.

The function object technique is an illustration of a pattern that we see over

and over again, not just in Java, but in any language that has objects. In Java, this

7. The trick of implementing compar e by subtracting works for i nt s as long as both are the same sign. Other-

wise there is a possibilit y of overflow.

BOOK.mkr Page 202 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � ¢ � ®

pattern is used over and over and over again, and represents perhaps the single

dominant idiomatic use of interfaces.

� � Ê � � . � � � ¨ � � � �

Generally speaking, when we write a class, we expect, or at least hope, for it to be

useful in many contexts, not just the particular application that is being worked

on.

An annoying feature of the function object pattern, especially in Java, is the

fact that because it is used so often, it results in the creation of numerous small

classes, that each contain one method, that are used perhaps only once in a pro-

gram, and that have limited applicabili ty outside of the current application.

This is annoying for at least two reasons. First, we might have dozens of

function object classes. If they are public, by rule they are scattered in separate

files. If they are package visible, they might all be in the same file, but we still

have to scroll up and down to find their definitions, which is likely to be far

removed from the one or perhaps two places in the entire program where they are

instantiated as function objects. It would be preferable if each function object

class could be declared as close as possible to its instantiation. Second, once a

name is used, it cannot be reused in the package without possibil ities of name col-

lisions. Although packages solve some namespace problems, they do not solve

them all, especially when the same class name is used twice in the default pack-

age.

BOOK.mkr Page 203 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ � E
� L N d Q N S e R d d ^ X T
` U T X X [\ ` U T] T Z ^ V h
Z f T Z ^ X j U T ` \ [^ h k
X ^ [\ T h V Z f \] ` U T X X
[\ ` U T] T Z ^ V h / Z f \
V Y Z \] ` U T X X / Y X ^ h i
Z f \ Á \ � W V] [
st at i c

l

With a nested class, we can solve some of these problems. A nested class is a

class declaration that is placed inside another class declaration – the outer class –

using the keyword st at i c . A nested class is considered a member of the outer

class. As a result, it can be public, private, package visible, or protected, and

depending on the visibility, may or may not be accessible by methods that are not

part of the outer class. Typically, it is private, and thus inaccessible from outside

the outer class. Also, because a nested class is a member of the outer class, its

methods can access private static members of the outer class, and can access pri-

vate instance members when given a reference to an outer object.

� h \ X Z \ [` U T X X ^ X T
j T] Z V a Z f \ V Y Z \] k
` U T X X T h [` T h g \
[\ ` U T] \ [W ^ Z f T _ ^ X ^ k
g U ^ Z � X j \ ` ^ a ^ \] l � U U
V Y Z \] ` U T X X b \ b k
g \] X T] \ _ ^ X ^ g U \ Z V
Z f \ h \ X Z \ [` U T X X 0
b \ Z f V [X l

Figure 4.32 il lustrates the use of a nested class in conjunction with the func-

tion object pattern. The sta t i c in front of the nested class declaration of

Or der Rect ByWi dt h is essential; without it, we have an inner class, which

behaves differently and is discussed later.

Occasionally, a nested class is public. In Figure 4.32, if

Or der Rect ByWi dt h was declared public, the class

Compar eTest I nner 1. Or der Rect ByWi dt h could be used from outside of

the Compar eTes t I nner 1 class.

BOOK.mkr Page 204 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � ¢ � �
m

c l ass C ompar eTest I nner 1n
{o
 pr i vat e s t at i c c l ass O r der Rect ByWi dt h i mpl ement s C ompar at orp
 {q
 publ i c i nt c ompar e(O bj ect o bj 1, O bj ect o bj 2)

r
 {s
 Si mpl eRect angl e r 1 = (Si mpl eRect angl e) o bj 1;t
 Si mpl eRect angl e r 2 = (Si mpl eRect angl e) o bj 2;u
 m v
 r et ur n(r 1. get Wi dt h() - r 2. get Wi dt h()) ;m m
 }m n
 }m om p
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)m q
 {m r
 Obj ect [] r ect s = n ew Obj ect [4] ;m s
 r ec t s [0] = n ew S i mpl eRect angl e(1 , 1 0) ;m t
 r ec t s [1] = n ew S i mpl eRect angl e(2 0, 1) ;m u
 r ec t s [2] = n ew S i mpl eRect angl e(4 , 6) ;n v
 r ec t s [3] = n ew S i mpl eRect angl e(5 , 5) ;n m
 n n
 Syst em. out . pr i nt l n(" MAX WI DTH: " +n o
 U t i l s . f i ndMax(r ec t s , n ew Or der Rect ByWi dt h())) ;n p
 }n q
}

w x y z { | } ~ ñ ð � H @ < × B < > H A > Õ C � B H H A � = @ Õ >
OrderRectBy Width

C � B H HÕ > C � B ? B A @ � <

BOOK.mkr Page 205 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ � Â
m

c l ass C ompar eTest I nner 2n
{o
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)p
 {q
 Obj ect [] r ect s = n ew Obj ect [4] ;

r
 r ec t s [0] = n ew S i mpl eRect angl e(1 , 1 0) ;s
 r ec t s [1] = n ew S i mpl eRect angl e(2 0, 1) ;t
 r ec t s [2] = n ew S i mpl eRect angl e(4 , 6) ;u
 r ec t s [3] = n ew S i mpl eRect angl e(5 , 5) ;m v
 m m
 c l ass O r der Rect ByWi dt h i mpl ement s C ompar at orm n
 {m o
 publ i c i nt c ompar e(O bj ect o bj 1, O bj ect o bj 2)m p
 {m q
 Si mpl eRect angl e r 1 = (Si mpl eRect angl e) o bj 1;m r
 Si mpl eRect angl e r 2 = (Si mpl eRect angl e) o bj 2;m s
 m t
 r et ur n(r 1. get Wi dt h() - r 2. get Wi dt h()) ;m u
 }n v
 }n mn n
 Syst em. out . pr i nt l n(" MAX WI DTH: " +n o
 U t i l s . f i ndMax(r ec t s , n ew Or der Rect ByWi dt h())) ;n p
 }n q
}

w x y z { | } ~ ñ ñ � H @ < × B Ô > A = � Õ C � B H H A � = @ Õ >
Order RectByWidth

C � B H H Õ > C 1� B ? B A @ � < � � ? A = > ?

� � Ê � � 2 � ¦ � � � � � �
� T _ T T U X V T U U V W X
` U T X X [\ ` U T] T Z ^ V h X
^ h X ^ [\ V a b \ Z f V [X l
» Y ` f ` U T X X \ X T] \
Á h V W h T X e ° S R e

S e R d d N d T h [b T �
h V Z g \ [\ ` U T] \ [
W ^ Z f T _ ^ X ^ g U ^ Z � b V [^ k
a ^ \] µ T h [b T � h V Z g \
[\ ` U T] \ [Y X ^ h i Z f \
X Z T Z ^ ` b V [^ a ^ \] l

In addition to allowing class declarations inside of classes, Java also allows class

declarations inside of methods. These classes are called local classes. This is

il lustrated in Figure 4.33.

Note that when a class is declared inside a method, it cannot be declared

pr i vat e or st at i c . However, the class is visible only inside of the method in

which it was declared. This makes it easier to write the class right before its first

(perhaps only) use and avoid pollution of namespaces.

An advantage of declaring a class inside of a method is that the class’ meth-

ods (in this case compar e) has access to local variables of the function that are

BOOK.mkr Page 206 Wednesday, March 14, 2001 1:26 PM

· = > õ � < C A � ?
 õ � < C A @ � < # � $ > C A H � ¢ � Å

declared prior to the class. This can be important in some applications. There is a

technical rule: in order to access local variables, the variables must be declared

f i nal . We wil l not be using these types of classes in the text.

� � Ê � £ ó ¥ � ¥ � � � À � � � �

One might suspect that by placing a class immediately before the line of code in

which it is used, we have declared the class as close as possible to its use. How-

ever, in Java, we can do even better.

� h R L ° L ± ² ° � d
S e R d d ^ X T ` U T X X Z f T Z

f T X h V h T b \ l

Figure 4.34 ill ustrates the anonymous inner class. An anonymous class is a

class that has no name. The syntax is that instead of writing new I nner () , and

providing the implementation of I nner as a named class, we write new

I nt er f ace() , and then provide the implementation of the interface (every-

thing from the opening to closing brace) immediately after the new expression.

Instead of implementing an interface anonymously, it is also possible to extend a

class anonymously, providing only the overridden methods.

� h V h � b V Y X ` U T X X \ X
^ h Z] V [Y ` \ X ^ i h ^ a ^ ` T h Z
U T h i Y T i \ ` V b j U ^ k
` T Z ^ V h X l

The syntax looks very daunting, but after a while, one gets used to it. It com-

plicates the language significantly, because the anonymous class is a class. As an

example of the complications that are introduced, since the name of a constructor

is the name of a class, how does one define a constructor for an anonymous class?

The answer is that you cannot do so.

BOOK.mkr Page 207 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ � F
m

c l ass C ompar eTest I nner 3n
{o
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)p
 {q
 Obj ect [] r ect s = n ew Obj ect [4] ;

r
 r ec t s [0] = n ew S i mpl eRect angl e(1 , 1 0) ;s
 r ec t s [1] = n ew S i mpl eRect angl e(2 0, 1) ;t
 r ec t s [2] = n ew S i mpl eRect angl e(4 , 6) ;u
 r ec t s [3] = n ew S i mpl eRect angl e(5 , 5) ;m v
 m m
 Syst em. out . pr i nt l n(" MAX WI DTH: " +m n
 Ut i l s . f i ndMax(r ect s, n ew Comparator()m o
 {m p
 public int compare(Object obj1, Object obj2)m q
 {m r
 SimpleRectangle r1 = (SimpleRectangle) obj1;m s
 SimpleRectangle r2 = (SimpleRectangle) obj2;m t
 m u
 return(r1.getWidth() - r2.getWidth());n v
 }n m
 }n n
)) ;n o
 }n p
}

w x y z { | } ~ ñ } � H @ < × B < B < � < � Ô � � H C � B H H A � @ Ô � � > Ô > < A A = > � � < C A @ � < � � $ > C A

� h V h � b V Y X ` U T X X \ X
T] \ V a Z \ h Y X \ [Z V
^ b j U \ b \ h Z a Y h ` Z ^ V h
V g ³ \ ` Z X l

The anonymous class is in practice very useful, and its use is often seen as

part of the function object pattern in conjunction with event-handling in user

interfaces. In event handling, the programmer is required to specify, in a function,

what happens when certain events occur.

Ü Ý 3 ß 4 ä ç � â è 5 â ä � â ä ã ß à � ç â ÿ á
6 � h T b ^ ` g ^ h [^ h i ^ X

h V Z ^ b j V] Z T h Z a V]
X Z T Z ^ ` µ a ^ h T U µ V] j] ^ k
_ T Z \ b \ Z f V [X l

A common myth is that all methods and all parameters are bound at runtime. This

is not true. First, there are some cases in which dynamic binding is never used or

is not an issue:

BOOK.mkr Page 208 Wednesday, March 14, 2001 1:26 PM

ê � < B Ô @ C 7 @ < Õ @ < × ê > A B @ � H ¢ � J

• static methods, regardless of how the method is invoked

• final methods

• private methods (since they are only invoked from inside the class, and are

thus impliclty final)

In other scenarios, dynamic binding is meaningfully used. But what exactly

does dynamic binding mean?

� h � T _ T µ Z f \ j T] T b k
\ Z \] X Z V T b \ Z f V [
T] \ T U W T � X [\ k
[Y ` \ [X Z T Z ^ ` T U U � µ T Z
` V b j ^ U \ Z ^ b \ l

Dynamic binding means that the method that is appropriate for the object

being operated on is the one that is used. However, it does not mean that the abso-

lute best match is performed for all parameters. Specifically, in Java, the parame-

ters to a method are always deduced statically, at compile time.

For a concrete example, consider the code in Figure 4.35. In the whi chFoo

method, a call is made to f oo. But which f oo is called? We expect the answer to

depend on the runtime types of ar g1 and ar g2.

Because parameters are always matched at compile time, it does not matter

what type ar g2 is actually referencing. The f oo that is matched will be

 publ i c v oi d f oo(B ase x) { / * * / }

The only issue is whether the Base or Der i ved version is used That is the

decision that is made at runtime, when the object that ar g1 references is known.

BOOK.mkr Page 209 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ D �
8 Q R Q P S ° ¡ N O e ° R P L Ò
b \ T h X Z f T Z Z f \ j T k
] T b \ Z \] X Z V T
b \ Z f V [T] \ T U W T � X
[\ [Y ` \ [X Z T Z ^ ` T U U � µ
T Z ` V b j ^ U \ Z ^ b \ l

The precise methodology used is that the compiler deduces, at compile time,

the best signature, based on the static types of the parameters and the methods

that are available for the static type of the controlling reference. At that point, the

signature of the method is set. This step is called static overloading. The only

remaining issue is which class’ version of that method is used. This is done by

having the virtual machine deduce the runtime type of this object. Once the

runtime type is known, the virtual machine walks up the inheritance hierarchy,

looking for the last overridden version of the method; this is the first method of

the appropriate signature that the virtual machine finds as it walks up toward

Obj ect .8 This second step is called dynamic binding.

6 � h T b ^ ` g ^ h [^ h i
b \ T h X Z f T Z V h ` \
Z f \ X ^ i h T Z Y] \ V a T h
^ h X Z T h ` \ b \ Z f V [^ X
T X ` \] T Z ^ h \ [µ Z f \
` U T X X V a Z f \ b \ Z f V [
` T h g \ [\ Z \] k
b ^ h \ [T Z] Y h Z ^ b \
g T X \ [V h Z f \ [� k
h T b ^ ` Z � j \ V a Z f \
^ h _ V Á ^ h i V g ³ \ ` Z l

Static overloading can lead to subtle errors when a method that is supposed to

be overridden is instead overloaded. Figure 4.36 illustrates a common program-

ming error that occurs when implementing the equal s method.

8. If no such method is found, perhaps because only part of the program was recompiled, then the virtual machine

throws a NoSuchMet hodExcept i on.

BOOK.mkr Page 210 Wednesday, March 14, 2001 1:26 PM

ê � < B Ô @ C 7 @ < Õ @ < × ê > A B @ � H ¢ D D
m

c l ass B asen
{o
 publ i c v oi d f oo(B ase x)p
 { S yst em. out . pr i nt l n(" Base. Base") ; }q

r
 publ i c v oi d f oo(D er i ved x)s
 { S yst em. out . pr i nt l n(" Base. Der i ved") ; }t
}um v
c l ass D er i ved e xt ends B asem m
{m n
 publ i c v oi d f oo(B ase x)m o
 { S yst em. out . pr i nt l n(" Der i ved. Base") ; }m p
 m q
 publ i c v oi d f oo(D er i ved x)m r
 { S yst em. out . pr i nt l n(" Der i ved. Der i ved") ; }m s
}m tm u
c l ass S t at i cPar amsDemon v
{n m
 publ i c s t at i c v oi d w hi chFoo(B ase a r g1, B ase a r g2)n n
 {n o
 / / I t i s g uar ant eed t hat w e w i l l c al l f oo(B ase)n p
 / / O nl y i ssue i s w hi ch c l ass' s v er s i on o f f oo(B ase)n q
 / / i s c al l ed; t he d ynami c t ype o f a r g1 i s u sedn r
 / / t o d ec i de.n s
 ar g1. f oo(a r g2) ;n t
 }n uo v
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)o m
 {o n
 Base b = n ew Base() ;o o
 Der i ved d = n ew Der i ved() ;o po q
 whi chFoo(b , b) ;o r
 whi chFoo(b , d) ;o s
 whi chFoo(d , b) ;o t
 whi chFoo(d , d) ;o u
 }p v
}

w x y z { | } ~ ñ � ; � � � H A ? B A @ � < � � H A B A @ C � @ < Õ @ < × � � ? � B ? B Ô > A > ? H

The equal s method is defined in class Obj ect and is intended to return

true if two objects have identical states. It takes an Obj ect as parameter, and

Obj ect provides a default implementation that returns true only if the two

BOOK.mkr Page 211 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ D ¢

objects are the same. In other words, in class Obj ect , the implementation of

equal s is roughly

 publ i c b ool ean equal s(O bj ect o t her)
 { r et ur n t his = = o t her ; }

When overridding equal s , the parameter must be of type Obj ect ; other-

wise overloading is being done. In Figure 4.36, equal s is not overridden;

instead it is (unintentionally) overloaded. As a result, the call to sameVal will

return false, which appears surprising, since the call to equal s returns true and

sameVal calls equal s .

BOOK.mkr Page 212 Wednesday, March 14, 2001 1:26 PM

ê � < B Ô @ C 7 @ < Õ @ < × ê > A B @ � H ¢ D ®
m

f i nal c l ass S omeCl assn
{o
 publ i c S omeCl ass(i nt i)p
 { i d = i ; }q

r
 publ i c b ool ean s ameVal (O bj ect o t her)s
 { r et ur n o t her i nst anceof S omeCl ass & & e qual s(o t her) ; }t
 u
 / * *m v
 * T hi s i s a b ad i mpl ement at i on!m m
 * o t her h as t he w r ong t ype, s o t hi s d oesm n
 * n ot o ver r i de O bj ect ' s e qual s .m o
 * /m p
 publ i c b ool ean e qual s(S omeCl ass o t her)m q
 { r et ur n o t her ! = n ul l & & i d = = o t her . i d; }m r
 m s
 pr i vat e i nt i d;m t
}m un v
c l ass B adEqual sDemon m
{ n n
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)n o
 {n p
 SomeCl ass o bj 1 = n ew SomeCl ass(4) ;n q
 SomeCl ass o bj 2 = n ew SomeCl ass(4) ;n r
 n s
 Syst em. out . pr i nt l n(o bj 1. equal s(o bj 2)) ;n t
 Syst em. out . pr i nt l n(o bj 1. sameVal (o bj 2)) ;n u
 }o v
}

w x y z { | } ~ ñ ¶ ; � � � H A ? B A @ � < � � � � > ? � � B Õ @ < ×
equals

@ < H A > B Õ � � � � > ? ? @ Õ @ < ×
equa l s

÷ ë > ? > Ö A = > C B � � A = >
sameVal

? > A � ? < H � B � H > 9

The problem is that the call in sameVal is, t hi s . equal s(ot her) . The

static type of t hi s is SomeCl ass . In SomeCl ass there are two versions of

equal s : the listed equal s that takes a SomeCl ass as a parameter, and the

inherited equal s that takes an Obj ect . The static type of the parameter (other)

is Obj ect , so the best match is the equal s that takes an Obj ect . At runtime

the virtual machine searches for that equal s , and finds the one in class

BOOK.mkr Page 213 Wednesday, March 14, 2001 1:26 PM

; < = > ? @ A B < C >¢ D E

Obj ect . And since t hi s and ot her are different objects, the equal s method

in class Obj ect returns false.

Thus, equal s must be written to take an Obj ect as a parameter, and typi-

cally a downcast will be required after a verification that the type is appropriate.

One way of doing that is to use an i nst ance of test, but that is safe only for

final classes. Overriding equal s is actually fairly tricky in the presence of inher-

itance, and is discussed in Section 6.7.

� À � � � « �

Inheritance is a powerful feature that is an essential part of object-oriented pro-

gramming and Java. It allows us to abstract functionali ty into abstract base classes

and have derived classes implement and expand on that functionalit y. Several

types of methods can be specified in the base class, as il lustrated in Figure 4.37.

The most abstract class, in which no implementation is allowed, is the inter-

face. The interface lists methods that must be implemented by a derived class.

The derived class must both implement all of these methods (or itself be abstract)

and specify, via the implements clause, that it is implementing the interface.

Multiple interfaces may be implemented by a class, thus providing a simpler

alternative to multiple inheritance.

Method Overloading Comments

final : ; < = > < ? @ A A B? > A ? > = C
D > E @ F ? @ > < ; E = F < G = ? > G = F ? < @ > H = G ? = F @ F H G B I J = < G ; C? K > = E = F F = C = L ? > = C M N

w x y z { | } ~ ñ Æ õ � � ? A � � > H � � C � B H H Ô > A = � Õ H

BOOK.mkr Page 214 Wednesday, March 14, 2001 1:26 PM

� $ > C A H � � A = > � B Ô > ¢ D �

Finally, inheritance allows us to easily write generic methods and classes that

work for a wide range of generic types. This wil l typically involve using type con-

version operators. Interfaces are also widely used for generic components, and to

implement the function object pattern.

This chapter concludes a discussion that provided an overview of Java and

object-oriented programming. This chapter concludes the first part of the text,

which provided an overview of Java and object-oriented programming. We will

now go on to look at algorithms and the building blocks of problem-solving.

Ï � O � ¦ � � 	 � ¬ � � � � �

abstract class A class that cannot be constructed but serves to specify func-
tionali ty of derived classes. (172)

abstract method A method that has no meaningful definition and is thus

always defined in the derived class. (170)

Adapter A class that is typically used when the interface of another class is

not exactly what is needed. The adapter provides a wrapping effect, while

changing the interface. (191)

abstract P Q R S T U V W X Y V Z [X Y Y \] ^ _ T ` V Y R ^ T U \ [V U V R S X S T ^ R X R ` T YX a Y S] X Z S b c V] T _ V ` Z [X Y Y U Q Y S \] ^ _ T ` V X R T U \ [V dU V R S X S T ^ R b
static e ^ U \ T [V S T U V f ^ Z ^ R S] ^ [[T R g ^ a h V Z S b

i S j V] P Q R S T U V W X Y V Z [X Y Y \] ^ _ T ` V Y X ` V k X Q [S T U \ [V U V R S X S T ^ R S j X SU X l a V V T S j V] ^ _ V]] T ` ` V R a l S j V ` V] T _ V ` Z [X Y Y V Y^] X Z Z V \ S V ` Q R Z j X R g V ` a l S j V ` V] T _ V ` Z [X Y Y V Y b

Method Overloading Comments

m n o p q r s t u v w x y z { | } ~ � x � � � � � � � ~ { � x � �

BOOK.mkr Page 215 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �

anonymous class A class that has no name and is useful for implemented short

function objects. (207)

base class The class on which the inheritance is based. (149)

composition Preferred mechanism to inheritance when an IS-A relationship

does not hold. Instead, we say that an object of class B is composed of an

object of class A (and other objects). (143)

decorator pattern The pattern that involves the combining of several wrap-

pers in order to add functionality. (186)

derived class A completely new class that nonetheless has some compatibil ity

with the class from which it was derived. (149)

dynamic binding A run-time decision to apply the method corresponding to

the actual referenced object. (153)

extends clause A clause used to declare that a new class is a subclass of

another class. (150)

final class A class that may not be extended. (159)

final method A method that may not be overridden and is invariant over the

inheritance hierarchy. Static binding is used for final methods. (157)

function object An object passed to a generic function with the intention of

having its single method used by the generic function. (200)

Functor A function object. (199)

generic programming Used to implement type-independent logic. (186)

HAS-A relationship A relationship in which the derived class has a (instance

of the) base class. (143)

BOOK.mkr Page 216 Wednesday, March 14, 2001 1:26 PM

� � � ~ � { � x � { � ~ � � � ~ � � �

implements clause A clause used to declare that a class implements the

methods of an interface. (175)

inheritance The process whereby we may derive a class from a base class

without disturbing the implementation of the base class. Also allows the

design of class hierarchies, such as Except i on and I nput St r eam.

(149)

interface A special kind of abstract class that contains no implementation

details. (174)

IS-A relationship A relationship in which the derived class is a (variation of

the) base class. (142)

leaf class A final class. (159)

local class A class inside a method, declared with no visibili ty modifier. (206)

multiple inheritance The process of deriving a class from several base

classes. Multiple inheritance is not allowed in Java. However, the alterna-

tive, multiple interfaces, is allowed. (173)

nested class A class inside a class, declared with the static modifier. (204)

partial overriding The act of augmenting a base class method to perform

additional, but not entirely different, tasks. (160)

polymorphism The abili ty of a reference variable to reference objects of sev-

eral different types. When operations are applied to the variable, the oper-

ation that is appropriate to the actual referenced object is automatically

selected. (153)

BOOK.mkr Page 217 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �

protected class member Accessible by the derived class and classes in the

same package. (155)

static binding The decision on which class’ version of a method to use is

made at compile time. Is only used for static, final, or private methods.

(158)

static overloading The first step for deducing the method that will be used. In

this step, the static types of the parameters are used to deduce the signature

of the method that will be invoked. Static overloading is always used.

(210)

subclass/superclass relationships If X IS-A Y, then X is a subclass of Y and Y

is a superclass of X. These relationships are transitive. (142)

super constructor call A call to the base class constructor. (157)

super object An object used in partial overloading to apply a base class

method. (160)

Wrapper A class that is used to store another type, and add operations that the

primitive type either does not support or does not support correctly. (191)

� � � � � � � � � � � �

1. Private members of a base class are not visible in the derived class.

2. Objects of an abstract class cannot be constructed.

BOOK.mkr Page 218 Wednesday, March 14, 2001 1:26 PM

� x � � x � � z z x z � � � �

3. If the derived class fails to implement any inherited abstract method, then

the derived class becomes abstract. If this was not intended, a compiler

error wil l result.

4. Final methods may not be overridden. Final classes may not be extended.

5. Static methods use static binding, even if they are overridden in a derived

class.

6. Java uses static overloading and always selects the signature of an over-

loaded method at compile time.

7. In a derived class, the inherited base class members should only be initial-

ized as an aggregate by using the super method. If these members are

public or protected, they may later be read or assigned to individually.

8. When you send a function object as a parameter, you must send a con-

structed object, and not simply the name of the class.

9. Overusing anonymous classes is a common error.

10. The throws list for a method in a derived class cannot be redefined to

throw an exception not thrown in the base class. Return types must also

match.

11. When a method is overridden it is illegal to reduce its visibil ity. This is

also true when implementing interface methods, which by definition are

always publ i c .

12. If a generic method returns a generic reference, then typically a type con-

version must be used to obtain the actual returned object.

BOOK.mkr Page 219 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �
� � � ¡ ¢ � � ¡ � � ¡ �

All of the chapter code is available onli ne. Some of the code was presented in

stages; for those classes, only one finalized version is provided.

PersonDemo.java The Per son hierarchy and test program.

Shape.java The abstract Shape class.

Circle.java The Ci r c l e class.

Square.java The Squar e class.

Rectangle.java The Rect angl e class.

ShapeDemo.java A test program for the Shape example.

NoSuchElementException.javaThe exception class in Figure 4.18. This is

part of wei ss. ut i l . Also online is

ConcurrentModificationException.java and

EmptyStackException.java.

DecoratorDemo.java An il lustration of the decorator pattern, including

buffering, compression, and serialization.

MemoryCell.java The Memor yCel l class in Figure 4.21.

TestMemoryCell.java The test program for the memory cell class shown in

Figure 4.22.

SimpleArrayList.java The generic simplified Ar r ayLi st class in Figure

4.23, with some additional methods. A test pro-

gram is provided in

ReadStringsWithSimpleArrayList.java.

BOOK.mkr Page 220 Wednesday, March 14, 2001 1:26 PM

� � { � ~ � � { ~ z � ~ { � � �

PrimitiveWrapperDemo.java Demonstrates the use of the In t eger class,

as shown in Figure 4.24.

StorageCellDemo.java The St or ageCel l adapter as shown in Figure

4.25, and a test program.

FindMaxDemo.java The f i ndMax generic algorithm in Figure 4.26.

SimpleRectangle.java Contains the Si mpl eRect angl e class Figure
4.28.

Comparator.java The Compar at or interface in Figure 4.29.

CompareTest.java Illustrates the function object, with no nested

classes, as shown in Figure 4.31.

CompareTestInner1.java Illustrates the function object, with a nested class,

as shown in Figure 4.32.

CompareTestInner2.java Illustrates the function object, with a nested class

inside a method, as shown in Figure 4.33.

CompareTestInner3.java Illustrates the function object, with an anonymous

class, as shown in Figure 4.34.

StaticParamsDemo.java The demonstration of static overloading and

dynamic binding shown in Figure 4.35.

BadEqualsDemo.java Illustrates the consequences of overloading instead

of overriding equal s , as shown Figure 4.36.

BOOK.mkr Page 221 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �
� £ ¡ � ¤ ¥ � ¡ �

¦ § ¨ © ª « ¬
4.1. What members of an inherited class can be used in the derived class? What

members become public for users of the derived class?

4.2. What is composition?

4.3. Explain polymorphism.

4.4. Explain dynamic binding. When is dynamic binding not used?

4.5. What is a final method?

4.6. Consider the program to test visibility in Figure 4.38.

a. Which accesses are il legal?

b. Make mai n a method in Base. Which accesses are illegal?

c. Make mai n a method in Der i ved. Which accesses are illegal?

d. How do these answers change if pr ot ect ed is removed from line 4?

e. Write a three-parameter constructor for Base. Then write a five-

parameter constructor for Der i ved.

BOOK.mkr Page 222 Wednesday, March 14, 2001 1:26 PM

� ~ z � � � ~ � � � ®

¯
publ i c c l ass B ase°
{±
 publ i c i nt b Publ i c ;²
 pr ot ect ed i nt b Pr ot ect ;³
 pr i vat e i nt b Pr i vat e;´
 / / P ubl i c m et hods o mi t t edµ
}¶·
publ i c c l ass D er i ved e xt ends B ase¯ ¸
{¯ ¯
 publ i c i nt d Publ i c ;¯ °
 pr i vat e i nt d Pr i vat e;¯ ±
 / / P ubl i c m et hods o mi t t ed¯ ²
}¯ ³¯ ´
publ i c c l ass T est er¯ µ
{¯ ¶
 publ i c s t at i c v oi d mai n(S t r i ng [] a r gs)¯ ·
 {° ¸
 Base b = n ew B ase() ;° ¯
 Der i ved d = n ew Der i ved() ;° °° ±
 Syst em. out . pr i nt l n(b . bPubl i c + " " + b . bPr ot ect + " "° ²
 + b . bPr i vat e + " " + d . dPubl i c + " "° ³
 + d . dPr i vat e) ;° ´
 }° µ
}

m n o p q r s t u ¹ º z x » z � � { x { ~ � { ¼ � � � � � � � { |

f. The class Der i ved consists of five integers. Which are accessible to

the class Deri ved?

g. A method in the class Der i ved is passed a Base object. Which of

the Base object members can the Der i ved class access?

4.7. What is the difference between a final class and other classes? Why are

final classes used?

4.8. What is an abstract method?

4.9. What is an abstract class?

BOOK.mkr Page 223 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � ½

4.10. What is an interface? How does the interface differ from an abstract class?

What members may be in an interface?

4.11. Explain the design of the Java I/O library. Include a class hierarchy picture

for all the classes described in Section 4.5.3.

4.12. How are generic algorithms implemented in Java?

4.13. Explain the Adapter and Wrapper patterns. How do they differ?

4.14. What are two common ways to implement adapters? What are the trade-

offs between these implementation methods?Describe how function

objects are implemented in Java.

4.15. What is a local class?

4.16. What is an anonymous class?

¦ § ¾ © ¿ ª « À
4.17. A local class can access local variables that are declared in that method

(prior to the class). Show that if this is allowed, it is possible for an

instance of the local class to access the value of the local variable, even

after the method has terminated. (For this reason, the compiler wil l allo-

cate these local variables from a different source than usual, and as a con-

sequence of that, the compiler will i nsist that these variables are

immutable.)

4.18. This exercise explores how Java performs dynamic binding, and also why

trivial final methods may not be inlined at compile time. Place each of the

classes in Figure 4.39
� �

its own file:

BOOK.mkr Page 224 Wednesday, March 14, 2001 1:26 PM

� ~ z � � � ~ � � � Á

¯
publ i c c l ass C l ass1°
{±
 publ i c s t at i c i nt x = 5 ;²³
 publ i c f i nal S t r i ng g et X()´
 { r et ur n " " + x + 1 2; }µ
}¶·
publ i c c l ass C l ass2¯ ¸
{¯ ¯
 publ i c s t at i c v oi d mai n (St r i ng[] a r gs)¯ °
 {¯ ±
 Cl ass1 o bj = n ew Cl ass1() ;¯ ²
 Syst em. out . pr i nt l n(o bj . get X()) ;¯ ³
 }¯ ´
}

m n o p q r s t u Â � � � � � ~ � � x z � ~ z � � � ~ Ã Ä Å Æ

a. Compile Cl ass2 and run the program. What is the output?

b. What is the exact signature (including return type) of the get X

method that is deduced at compile time at line 14?

c. Change the get X routine at line 5 to return an i nt ; remove the " "

from the body at line 6, and recompile Cl ass2. What is the output?

d. What is the exact signature (including return type) of the get X

method that is now deduced at compile time at line 14?

e. Change Cl as s1 back to its original, but recompile Cl ass1 only.

What is the result of running the program?

f. What would the result have been had the compiler been allowed to per-

form inline optimization?

BOOK.mkr Page 225 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �
¦ § Ç « È É ¬ Ê É ¿

4.19. Write a generic f i nd routine that searches an array of Obj ect for an

Obj ect x , returning the first item that matches (as declared by equal s

returning true).

4.20. Write generic method mi n and max , each of which accepts two

Compar abl e parameters and returns the smaller and larger, respectively.

Then use those methods on the Str i ng type.

4.21. Write generic methods mi n, which accepts an array of Compar abl e,

and returns the smallest item. Then use the method on the St r i ng type.

4.22. Write generic method max2, which accepts an array of Compar abl e

and returns an array of two Compar abl es representing the two largest

items in the array. The input array should be unchanged. Then use those

methods on the St r i ng type.

4.23. Write generic method sor t , which accepts an array of Compar abl e

and rearranges the array in nondecreasing sorted order. Test your method

on both St r i ng and Shape.

4.24. For the Shape example, modify the constructors in the hierarchy to throw

an I nval i dAr gument Exce pt i on when the parameters are negative.

4.25. Modify the Per son class so that it can use f i ndMax to obtain the alpha-

betically last person.

4.26. A Si ngl eBuf f er supports get and put : The Si ngl eBuf f er stores

a single item and a data member that indicates whether the

Si ngl eBuf f er is logically empty. A put may be applied only to an

BOOK.mkr Page 226 Wednesday, March 14, 2001 1:26 PM

� ~ z � � � ~ � � � �

empty buffer, and it inserts an item into the buffer. A get may be applied

only to a nonempty buffer, and it deletes and returns the contents of the

buffer. Write a generic class to implement Si ngl eBuf f er . Define an

exception to signal errors.

4.27. A Sor t edAr r ayLi st stores a collection of Compar abl e. It is like

Ar r ayLi s t , except that add will place the item in the correct sorted

order instead of at the end; however, at this point it will be diff icult for you

to use inheritance. Instead, implement a separate Sor t edAr r ayLi st

that supports add, get , r emove, and si ze.

4.28. This exercise asks you to write a generic count Mat ches function. Your

function will take two parameters. The first parameter is an array of i nt .

The second parameter is a function object that returns a Boolean.

a. Give a declaration for an interface that expresses the requisite function

object.

b. count Mat ches returns the number of array items for which the

function object returns true. Implement co unt Mat ches .

c. Test count Mat ches by writing a function object, Equal sZer o,

that implements your interface to accept one parameter and returns true

if the parameter is equal to zero. Use an Equal sZer o function object

to test count Mat ches .

BOOK.mkr Page 227 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� � �

4.29. Although the function objects we have looked at store no data, this is not a

requirement.

a. Give a declaration for an interface that expresses the requisite function

object.

b. Write a function object Equal sK. Equal sK contains one data mem-

ber (k). Equal sK is constructed with a single parameter (default is

zero) that is used to initialize k . Its method returns true if the parameter

is equal to k .

c. Use Equal sK to test count Mat ches in Exercise 4.28 (c).

Ç « ª Ë « È Ì Ì Ê § Ë Ç « ª Í ¿ É ¬ Î
4.30. Rewrite the Shape hierarchy to store the area as a data member and have

it computed by the Shape constructor. The constructors in the derived

classes should compute an area and pass the result to the super method.

Make ar ea a final method that returns only the value of this data member.

4.31. Add the concept of a position to the Shape hierarchy by including coordi-

nates as data members. Then add a di st ance method.

4.32. Write an abstract class for Dat e and its derived class Gr egor i anDat e.

4.33. Implement a taxpayer hierarchy that consists of a TaxPayer interface

and the classes Si ngl ePayer and Mar r i edPayer that implement the

interface.

4.34. Implement a gzip and gunzip program that performs compression and

uncompression of files.

BOOK.mkr Page 228 Wednesday, March 14, 2001 1:26 PM

Ï ~ � ~ z ~ � � ~ � � � �
Ð ¡ Ñ ¡ � ¡ � ¤ ¡ �

The following books describe the general principles of object-oriented software

development:

1. G. Booch, Object-Oriented Design and Analysis with Applications (Sec-

ond Edition), Benjamin/Cummings, Redwood City, Calif., 1994.

2. T. Budd, Understanding Object-Oriented Programming With Java, Add-

ison-Wesley, Reading, Mass., 2001.

3. D. de Champeaux, D. Lea, and P. Faure, Object-Oriented System Devel-

opment, Addison-Wesley, Reading, Mass., 1993.

4. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Ori-

ented Software Engineering: A Use Case Driven Approach (revised

fourth printing), Addison-Wesley, Reading, Mass., 1992.

5. B. Meyer, Object-Oriented Software Construction, Prentice-Hall, Engle-

wood Cliffs, N.J., 1988.

BOOK.mkr Page 229 Wednesday, March 14, 2001 1:26 PM

� � � ~ z � { � � � ~� ® �

BOOK.mkr Page 230 Wednesday, March 14, 2001 1:26 PM

