CHAPTER

15 Inner Classes and
Implementation of Arraylist

HI'S chapter begins our discusson of the implementation of standard data
T structures. One of the simplest data structuresisthe Ar r ayLi st thatis part
of the Colledions API. In Part | (specificdly Figure 3.9 and Figure 4.23) we have
aready seen skeletons of the implementation, so in this chapter we concentrate on
the details of implementing the complete dass, with the associated iterators. In
doing so, we make use of an interesting Java syntactic creation, the inner class.
We discuss the inner class in this chapter, rather than in Part | (where other syn-
tadic elements are introduced) because we view the inner class as a Java imple-
mentation technique, rather than a core language feaure.

In this chapter, we will see

* The uses and syntax of the inner class
« Animplementation of anew classcdled the Abst ract Col | ecti on

* Animplementationof the Ar r ayLi st class

m Inner Classes and Implementation of ArrayList

15.1

lterators and Nested Classes

We begin by reviewing the simple iterator implementation first described in Sec

tion 6.2. Recdl that we defined a simple iterator interface, that mimics the stan-

dard Colledions API | t er at or, and thisinterfaceis siown in Figure 15.1.

1
2
3
4 {
5
6
7

}

package wei ss. ds;

public interface Iterator

bool ean hasNext ();
QObj ect next();

Figure 15.1 The |l t er at or interface from Section 6.2

/'l An iterator class that steps through a MyContai ner.

package wei ss. ds;

{

private int current = 0;
private MyContai ner container;

1
2
3
4
5 class MyContainerlterator inplenents Iterator
6
7
8

MyCont ai nerlterator(MyContainer c)
{ container =c¢; }

public bool ean hasNext ()
{ return current < container.size; }

public Object next()
{ return container.itens[current++]; }

Figure 15.2 Implementation of the MyCont ai ner | t er at or, from Sec-

tion 6.2

[terators and Nested Classes

1 package wei ss. ds;

2

3 public class M/Contai ner

4 {

5 Qbject [] items;

6 int size;

7

8 public Iterator iterator()
9 { return new MyContainerlterator(this); }
10

11 // Ot her methods not shown.
12 }

Figure 15.3 The MyCont ai ner class from Section 6.2

We then define two classes:. the container and itsiterator. Each container class
is responsible for providing an implementation dof the iterator interface In our
case, the implementation of the iterator interface is provided by the
MyCont ai nerl t erator class shown in Figure 15.2. The MyCont ai ner
class shown in Figure 15.3, provides a factory methodthat creaes an instance of
MyCont ai ner | t er at or, and returns this instance using the interface type
| t er at or. Figure 15.4 provides amain that illustrates the use of the ntainer/
iterator combination. Figures 15.1 to 15.4 simply replicate Figures 6.5 to 6.8 in

the origind iterator discusson from Sedion 62.

608 Inner Classes and Implementation of ArrayList

1 public static void main(String [] args)
2 {

3 MyCont ai ner v = new MyContainer();

4

5 v.add("3");

6 v.add("2");

7

8 Systemout.println("Container contents: ");
9 Iterator itr = v.iterator();

10 while(itr.hasNext())

11 Systemout.printin(itr.next());
12 }

Figure 15.4 mai n method to illustrate iterator design from Section 6.2

1 package wei ss. ds;

2

3 public class MContainer

4 {

5 private Object [] itens;

6 private int size = 0;

7 /1 O her methods for MyContai ner not shown
8

9 public Iterator iterator()

10 { return new Local Iterator(this); }

11

12 /1 The iterator class as a nested cl ass

13 private static class Locallterator inplenents Iterator
14 {

15 private int current = O;

16 private MyContai ner contai ner;

17

18 Local Iterator(MyContainer c)

19 { container =c; }

20

21 publi c bool ean hasNext()

22 { return current < container.size; }
23

24 public Object next()

25 { return container.itens[current++]; }
26 }

27 }

Figure 15.5 Iterator design using nested class.

This design hides the iterator class implementation, because

MyCont ai nerl t erat or isnot apubdic dass Thus the user is forced to pro-

[terators and Nested Classes m

gramtothel t er at or interface and does nat have accesto the detail s of how
the iterator was implemented—the user cannot even declare objeds of type
wei ss. ds. MyCont ai ner | t er at or. However, it still expases more details
than we usually like. In the MyCont ai ner class the datais not private, and the
corresponding iterator class while not public, is gill padkage visible. We can
solve both problems by using nested classes: we simply move the iterator class
inside of the cntainer class At that point the iterator classis a member of the
container class and thus it can be dedared as a private classand its methods can
accessprivate datafrom My Cont ai ner . Therevised codeisillustrated in Figure
15.5; with only a stylistic change of renaming MyCont ai nerlterator as

Local I t er at or. No other changes are required.

An inner class is simi-
lar to a nested class
in that it is a class in-
side another class,
and is declared us-
ing the same syn-
tax as a nested
class, except that it
isnotastatic
class. An inner class
always contains an
implicit reference to
the outer object

that created it.

Inner Classes and Implementation of ArrayList

15.2 Iterators and Inner Classes

In the Section 151, we used a nested class to further hide detail s. In addition to
nested classes, Java provides inner classes. An inner class is similar to a nested
classin that it is a dass inside another class, and is treaed as a member of the
outer classfor visibility purposes. An inner classis dedared using the same syn-
tax as a nested class except that it is not a static dass. In other words, the
st ati ¢ quaifierismissng intheinner classdedaration.

Before getting into the inner class pedfics, let us look at the problem that
they are designed to solve. Figure 15.6 illustrates the relationship between the
iterator and container classes that were written in the previous sction. Each
instance of the Local |t er at or maintains a reference to the container over
whichitisiteratingand anation of theiterator's current position. The relationship
that we have isthat ead Local | t er at or must be assciated with exadly one
instance of MyCont ai ner. It is imposdgble for the cont ai ner referencein
any iterator to be nul | , and the iterator's existence makes no sense withou

knowingwhich MyCont ai ner objed caused its creation.

[terators and Inner Classes m

vV ——p itens: 3,5, 2

itrl itr2

Figure 15.6 Iterator/container relationship

Sincewe know that i t r 1 must be tied to one and orly oreiterator, it seams
that the expresson cont ai ner . i t enms isredundant: if the iterator could only
remember the mntainer that constructed it, we wouldn’'t have to keep track of it
ourselves. And if it remembered it, we might exped that if inside of the
Local It erat or we referred to i t ens, then since the Local |t er at or
does not have ani t ens field, the compiler (and runtime system) would be smart
enough to deduce that we ae talking about the itens field o the
MyCont ai ner objed that caused the onstruction of this particular
Local I terat or. This is exactly what an inner class does, and what distin-
guishesit from a nested class

The big dfference between an inner classand a nested classis that when an
instance of an inner classobjed is constructed, there is an implicit reference to

the outer classobject that caused its construction. Thisimplies that an inner class

612 Inner Classes and Implementation of ArrayList

If the name of the
outer closs is

Qut er, then the
implicit reference is

CQuter.this.

object canna exist withou an ouer classobjed for it to be attached to, with an
exception being if it is dedared in a static method (because locd and anonymous
classs aretechnicdly inner classs), adetail we will discusslater.

If the name of the outer class is Qut er, then the implicit reference is
Quter.this. Thus, if Local I terator was dedared as an instance inner
class(i.e. the st at i ¢ keyword was removed), then the MyCont ai ner.thi s
reference ould be used to replacethe cont ai ner reference that the iterator is
storing. The picturein Figure 15.7 il lustrates that the structure would beidenticd.

A revised classis $rown in Figure 15.8.

vV ——p itens: 3,5, 2

MyCont ai ner.this MyCont ai ner.this
current =3 current =0

Figure 15.7 lIterator/container with inner classes

[terators and Inner Classes

1 package wei ss. ds;

2

3 public class MyContainer

4 {

5 private Object [] itens;

6 private int size = 0;

7

8 /1 Ot her nethods for MyContainer not shown

9

10 public Iterator iterator()

11 { return new Local lterator(); }

12

13 /1 The iterator class as an inner class

14 private class Locallterator inplenents Iterator
15 {

16 private int current = O;

17

18 publi c bool ean hasNext ()

19 { return current < MyContainer.this.size; }
20

21 public Object next()

22 { return MyContainer.this.items[current++]; }
23 }

24 }

Figure 15.8 Iterator design using inner class.

In the revised implementation, observethat Local | t er at or no longer has
an explicit referenceto a MyCont ai ner, and also observe that its constructor is
no longer necessry, since it only initialized the MyCont ai ner reference
Finally, Figure 15.9 illustrates that just as using t hi s is optional in an instance
method, the Qut er . t hi s referenceis also optional if there is no name clash.
Thus, MyCont ai ner. t hi s. si ze can be shortened to si ze, aslong asthere

is no other variable named size that isin acloser scope.

Inner Classes and Implementation of ArrayList

13 /1 The iterator class as an inner class
14 private class Locallterator inplenents Iterator
15 {

16 private int current = O;

17

18 publi c bool ean hasNext ()

19 { return current < size; }

20

21 public Object next()

22 { return items[current++]; }

23 }

Figure 15.9 Inner class; Qut er . t hi s may be optional

Locd classes and anonymous clases do not spedfy whether they are
stati c, and they are dways technicdly considered inner classes. However, if
such aclassis dedared in a static method, it has no implicit outer reference (and
thus behaves like anested clasg, whereas if it is dedared inside an instance
method, itsimplicit outer referenceis the invoker of the method.

The adition of inner classes requires a significant set of rules, many of
which attempt to ded with language corner cases and dubious coding pradices.
For instance suppose we suspend belief for a minute and imagine that
Local I terat or is public. We do so only to illustrate the complications that
the language designers face when adding a new language feaure. Under this
assumption the iterator’'s type is MyCont ai ner . Local | t er at or, and since

it isvisible, one might expect that

MyCont ai ner. Local Iterator itr =
new MyCont ai ner. Local Iterator();

islegal, sincelike dl classs, it has a default a zeo-parameter constructor. How-

ever, this cannot possbly work, since there is no way to initiaize the implicit ref-

[terators and Inner Classes

erence. Which MyCont ai ner isi t r referring to? We need some syntax, that
won't conflict with any other language rules. Here's the rule: If there is a @on-
tainer ¢, theni t r could be @mnstructed using a bizarre syntax invented for just

this case, in which the outer objed in effect invokes new.

M/Cont ai ner. Local Iterator itr = c.new Local Iterator();

Notice that this implies that in an instance factory method, t hi s. new is
legal, and shorthands to the more mnventional new seen in a factory method. If
you find youself using the bizarre syntax, then most likely you have abad design.
In our example, once Local | t er at or is private, this entire issue goes away,
andif Local | t er at or isnat private, thereislittle reasonto use aninner class
in thefirst place

There are also ather rules, some of which are abitrary. Private members of
the inner or nested classare public to the outer class To accessany member of an
inner class the outer class only needs to provide a reference to an inner class
instance and use the dot operator, as is normal for other classes. Thus inner and
nested classes are wnsidered part of the outer class

Both inner and nested classes can be final, or they can be abstract, or they can
beinterfaces (but interfaces are dways datic, because they cannat have any data,
including an implicit reference), or they can be nore of these. Inner classes may
not have static fields or methods, except for static final fields. Interfaces may have
nested classes or interfaces. Finaly, when you compile the eove example, you

will see that the ompiler generates a class file named MyCon-

m Inner Classes and Implementation of ArrayList

t ai ner $Local I terat or. cl ass, which would have to be included in any
distribution to clients. In ather words, eadh inner and nested classis a dass and

has a crrespondng classfile. Anonymous classes use numbersinstead of names.

[terators and Inner Classes

package wei ss. util;

1
2
3 /**

4 * AbstractCollection provides default inplenentations for

5 * some of the easy methods in the Collection interface.

6 */

7 public abstract class AbstractCollection inplenents Collection
8

9 /**

10 * Tests if this collection is enpty.

11 * @eturn true if the size of this collection is zero.
12 */

13 public bool ean i sEnmpty()

14 {

15 return size() == 0;

16 }

18 [**

19 * Change the size of this collection to zero.
20 */

21 public void clear()

22 {

23 Iterator itr = iterator();

24 while(itr.hasNext())

25 {

26 itr.next();

27 itr.remove();

29 }

31 [**

32 * Obtains a primtive array view of the collection.
33 * @eturns the primtive array view

34 */

35 public Cbject [] toArray()

36 {

37 bj ect [] copy = new Object[size()];

39 Iterator itr = iterator();
40 int i =0;

42 while(itr.hasNext())
43 copy[i++] = itr.next();

45 return copy,
46 }

Figure 15.10 Sample implementation of Abst r act Col | ecti on (Part 1)

m Inner Classes and Implementation of ArrayList

47 [**

48 * Returns true if this collection contains x.
49 * |f x is null, returns false.

50 * (This behavior may not always be appropriate.)
51 * @aramx the itemto search for.
52 * @eturns true if x is not null and is found in
53 * this collection.

54 */

55 public bool ean contains(Cbject x)
56 {

57 if(x == null)

58 return false;

59

60 Iterator itr = iterator();

61 while(itr.hasNext())

62 if(x.equals(itr.next()))
63 return true;

64

65 return false;

66 }

67

68 [**

69 * Rempbves non-null x fromthis collection.
70 * @aramx the itemto renove.

71 * @eturns true if renpve succeeds.
72 */

73 public bool ean renpve(Object x)

74 {

75 if(x == null)

76 return fal se;

77

78 Iterator itr = iterator();

79 while(itr.hasNext())

80 if(x.equals(itr.next()))
81 {

82 itr.remove();

83 return true;

84 }

85

86 return fal se;

87 }

88 }

Figure 15.11 Sample implementation of Abst r act Col | ecti on (Part 2)

The Abst ract Col | ecti on Class m

15.3 The Abstr act Col | ecti on Class

Before we implement the Ar r ayLi st class, observe that some of the methods The Abst ract C-

in the Col | ect i on interface ca be eaily implemented in terms of others. For ©! | €6t onimple-

ments some of the
instance, i SEnpt y is easily implemented by checking if the size is 0. Rather
methods in the

than dangsoin Arrayli st, Li nkedLi st, andall the other concrete imple- Col | ectionin.
mentations, it would be preferable to dothis once, and use inheritanceto oltain terface.
i SEnpt y. We could even override i sEnpy if it turns out that for some mllec
tions there is a faster way of performing i sEnpt y than computing the current
size. However, we canat implement i SEnpt y inthe Col | ect i on interface;
this can only be done in an abstract class. This will be the
Abstract Col | ecti on class. To simplify implementations, programmers
designing new colledions classes can extend the Abst r act Col | ecti on class
rather than implementing the Col | ect i on interfaceA sample implementation
of Abst ract Col | ecti on isshownin Figures 15.10 and 15.11.

The Colledions APl aso defines addtional clases wch as
AbstractLi st, Abstract Sequenti al Li st, and Abstract Set .We
have chosen not to implement those, in keeping with ou intention d providing a
simplified subset of the Colledions API. If, for some reason you are implement-

ing your own coll edions and extending the Java 1.2 Collections API, you should

extend the most spedfic abstrad class

620

Inner Classes and Implementation of ArrayList

15.4 Implementation of Arr ayLi st with an
lterator

Thevarious Arr ayLi st classes sown in Part | were not iterator-aware. This
section provides an implementation of ArrayLi st that we will place in
wei ss. uti |, and includes support for bidirectional iterators. In order to keep
the anount of code somewhat manageeble, we have stripped ou the bulk of the
Javadoc comments. They can be foundin the online mde.

The implementationisfound in Figures 15.12 to 15.15. At line 3 we seethat
ArraylLi st extendsthe Abst ract Col | ecti on abstract class and at line 4
ArraylLi st dedaresthat it implementstheLi st interface

Theinternal array, t hel t ens, and colledion size, t heSi ze, are dedared
at lines 9 and 10, respedively. More interesting is nodCount , which is dedared
at line 11. nrodCount represents the number of structural modifications (adds,
r enpves) made to the Arr ayLi st. The ideais that when an iterator is con-
structed, the iterator saves this value in its data member expect edModCount .
When any iterator operation is performed, the iterator's expect edMbdCount
member is compared with the Ar r ayLi st 'snodCount , and if they disagree a
Concurrent Modi fi cati onExcepti on canbethrown.

Line 16 illustrates the typical constructor that performs a shall ow copy o the
members in another colledion, simply by stepping through the collection and
calingadd. The cl ear method, started at line 27, initializes the Ar r ayLi st
and can be cdled from the cnstructor. It also resets t hel t ens, which alows

the garbage colledor to redaim al the otherwise unreferenced oljeds that were

Implementation of ArrayLi st with an lterator

in the ArrayLi st. The remaining routines in Figure 1512 are relatively
straightforward.

Figure 15.13 implements the remaining methods that do not depend m itera-
tors. fi ndPos is a private helper that returns the position d an dbjed that is
either being removed o subjected to a cont ai ns call. Extra code is present
because it islegal to add nul | to the ArrayLi st, and if we were not careful,
the cdl to equals a line 60 could have generated a
Nul | Poi nt er Except i on. Observe that both add andr enpve will result in
a changeto nodCount .

In Figure 15.14 we see the two fadory methods that return iterators, and we
see the beginning d the implementation d the Li stlterator interface
Observe that ArraylListlterator |ISA Listlterator and
Listlterator ISA Iterator. So ArraylListlterator can be
returned at lines 103and 106.

In the implementation o ArrayLi stlterator, done & a private inner
class we maintain the current positionat line 111. The current position represents
the index of element that would be returned by cdling next . At line 112 we
declare the expect edModCount member. Like all classmembers, it isinitial-
ized when an instance of the iterator is creaed (immediately prior to calling the
constructor); nrodCount is a shorthand for ArrayLi st. t hi s. nrodCount .
The two Boolean instance members that foll ow are flags used to verify that a call

torenove islegal.

622 Inner Classes and Implementation of ArrayList

1 package weiss.util;

2

3 public class ArraylList extends AbstractCollection
4 i mpl ements Li st

5 {

6 private static final int DEFAULT_CAPACITY = 10;
7 private static final int NOT_FOUND = -1;

8

9 private Object [] theltens;

10 private int theSize;

11 private int nodCount = O;

12

13 public ArrayList()

14 { clear(); }

15

16 public ArrayList(Collection other)

17 {

18 clear();

19 Iterator itr = other.iterator();

20 while(itr.hasNext())

21 add(itr.next());

22 }

23

24 public int size()

25 { return theSize; }

26

27 public void clear()

28 {

29 t heSi ze = 0;

30 theltenms = new Obj ect[DEFAULT_CAPACITY];
31 nodCount ++;

32 }

33

34 public Cbject get(int idx)

35 {

36 if(idx <0 || idx >= size())

37 t hrow new Arrayl ndexQut Of BoundsException();
38 return theltens[idx];

39 }

40

41 public Object set(int idx, Object newal)
42 {

43 if(idx <0 || idx >= size())

44 t hrow new Arrayl ndexOut Of BoundsException();
45 bject old = theltens[idx];

46 theltenms[idx] = newval;

47 return ol d;

48 }

49

50 publ i c bool ean contai ns(Cbject x)

51 { return findPos(x) !'= NOT_FOUND; }

Figure 15.12 Arrayli st implementation (part 1)

Implementation of ArrayLi st with an lterator 623

52 private int findPos(Cbject x)

53 {

54 for(int i =0; i <size(); i++)

55 if(x == null)

56 {

57 if(theltems[i] == null)
58 return i;

59 }

60 else if(x.equals(theltens[i]))
61 return i;

62

63 return NOT_FOUND,

64 }

65

66 public bool ean add(Object x)

67 {

68 if(theltens.length == size())

69 {

70 bject [] old = theltens;

71 theltens = new Object[theltems.length * 2 + 1];
72 for(int i =0; i <size(); i++)
73 theltems[i] = old[i];

74 }

75 theltens[theSize++] = x;

76 modCount ++;

77 return true;

78 }

79

80 public bool ean renove(Object x)

81 {

82 int pos = findPos(x);

83

84 i f(pos == NOT_FOUND)

85 return fal se;

86 el se

87 {

88 remove(pos);

89 return true;

90 }

91 }

92

93 public Cbject remove(int idx)

94 {

95 bj ect renovedltem = theltens[idx];
96 for(int i =idx; i <size() - 1; i++)
97 theltenms[i] = theltens[i + 1];
98 t heSi ze- - ;

99 nodCount ++;

100 return renovedltem

101 }

Figure 15.13 ArraylLi st implementation (part 2)

624 Inner Classes and Implementation of ArrayList

102 public Iterator iterator()

103 { return new ArrayListlterator(0); }

104

105 public Listlterator listlterator(int idx)

106 { return new ArrayListlterator(idx); }

107

108 /1 This is the inplenentation of the ArrayListlterator.
109 private class ArraylListlterator inplenments Listlterator
110 {

111 private int current;

112 private int expectedMdCount = nodCount;

113 private bool ean next Conpl eted = fal se;

114 private bool ean prevConpl eted = fal se;

115

116 ArraylListlterator(int pos)

117 {

118 if(pos <0 || pos > size())

119 t hrow new | ndexCQut Of BoundsException();

120 current = pos;

121 }

122

123 publi c bool ean hasNext()

124 {

125 i f(expectedvbdCount != nodCount)

126 t hrow new Concurrent Modi fi cati onException();
127 return current < size();

128 }

129

130 publi c bool ean hasPrevious()

131 {

132 i f(expectedvbdCount != nodCount)

133 t hrow new Concurrent Modi fi cati onException();
134 return current > O;

135 }

Figure 15.14 ArraylLi st implementation (part 3)

TheArraylLi stlterator constructor is dedared package visible; thusiit
isusable by the Ar rayLi st . Of course it could be dedared public, but there is
no reason to do so. Both hasNext and hasPr evi ous verify that there have
been noexterna structural modifications sncethe iterator was creaed, throwing
an exception if the ArraylList nodCount does not match the

ArraylLi stlterator expect edvbdCount .

Implementation of ArrayLi st with an lterator

The ArraylLi stlterator classiscompleted in Figure 15.15. next and
pr evi ous are mirror image symmetries. Examining next , we seefirst atest at
line 138 to make sure we have not exhausted the iteration (implicitly this tests for
structural modifications also). We then set next Conpl et ed to true to allow
r enpve to succeed, and then we return the array item that cur r ent is examin-
ing, advancing cur r ent after its value has been used.

previ ous is smilar, except that we must lower cur r ent’s value first.
Thisis because when traversingin reverse, if cur r ent equals the container size,
we have not yet started the iteration, and when cur r ent equals zero, we have
completed the iteration (but can remove the item in pasition, if the prior operation
was pr evi ous). Observe that next followed by pr evi ous yields identicd
items.

Finally, we cometo r enove, which is extremely tricky becaise the seman-
tics of r enove depend on which dredion the traversal is procedaling. In fad,
this probably suggests a bad design in the Collections API: method semantics
should not depend so strongly onwhich methods have been called prior to it. But

renove iswhat it is, so we have to implement it.

625

626 Inner Classes and Implementation of ArrayList

136 public Cbject next()

137 {

138 if('hasNext())

139 t hr ow new NoSuchEl enent Exception();
140 next Conpl eted = true;

141 prevConpl eted = fal se;

142 return theltens[current++];

143 }

144

145 public Cbject previous()

146 {

147 i f(!'hasPrevious())

148 t hr ow new NoSuchEl enent Exception();
149 prevConpl eted = true;

150 next Conpl eted = fal se;

151 return theltens[--current];

152 }

153

154 public void renove()

155 {

156 i f(expectedvbdCount != nodCount)

157 t hrow new Concurrent Modi fi cati onException();
158

159 i f(nextConpleted)

160 ArraylList.this.renmove(--current);
161 else if(prevConpleted)

162 ArraylList.this.remove(current);
163 el se

164 throw new |11 egal St at eException();
165

166 prevConpl et ed = next Conpl eted = fal se;
167 expect edModCount ++;

168 }

169 }

170 }

Figure 15.15 Arrayli st implementation (part 4)

The implementation o r enove begins with the test for structural modifica
tion at line 156. If the prior iterator state change operation was a next , as evi-
denced by the test at line 159 showing that next Conpl et ed is true, then we
cal the ArraylLi st renpve method (started at line 93 in Figure 15.13) that
takes an index as a parameter. The use of ArraylLi st.this.renove is

required because the local version d renove hides the outer class version.

Because we have dready advanced passthe item to be removed, we must remove
the item in pasition curr ent - 1. This dides the next item from current to
current -1 (sincetheold current - 1 position has now been removed) so we
use the expresson- - cur r ent inline 160.

When traversing the other direction, we ae sitting on the last item that was
returned, so we simply passcur r ent asaparameter to the outer r enove. After
it returns, the dementsin higher indices are dlid oreindex lower, socur rent is
sitting onthe correa element, and can be used in the expresson at line 162.

In either case, we canot do another r enove until we do a next or
pr evi ous, so at line 166 we dear both flags. Finally, at line 167, we incresse
the value of expect edMbdCount to match the container’s. Observe that thisis
increased only for thisiterator, so any other iterators are now invalidated.

This class which is perhaps the simplest of the Colledions API classes that
contains iterators il lustrates why in Part 1V we elect to begin with a simple proto-

col, and then provide more complete implementations at the end of the chapter.

Summary

This chapter introduced the inner class, which is a Java technique that is com-
monly used to implement iterator classes. Each instance of an inner class corre-
sponds to exadly one instance of an ouer class and automaticdly maintains a
reference to the outer classobjec that caused its construction. A nested class
relates two types to ead other, while an inner classrelates two oljeds to each

other. The inner classis used in this chapter to implement the Ar r ayLi st .

Summary

628 Inner Classes and Implementation of ArrayList

The next chapter illustrates implementations of stadks and queues.

ﬁﬁ Objects of the Game

Abst ract Col | ecti on Implements me of the methods in the
Col I ecti on interface (619)

inner class A classinside aclass that is useful for implementing the iterator
pattern. The inner classalways contains an implicit reference to the outer

object that created it. (610)

Common Error

1. Aninstanceinner classcanna be constructed withou an outer object.
Thisismost easily done with afactory methodin the outer class It iscom-
mon to forget the word st at i ¢ when declaring a nested class and this

will often generate adifficult to understand error related to thisrule.

On the Internet

The following fil es are avail able:

MyContainer Test.java Thetest program for the final iterator example that
uses inner classs, as own in Sedion 15.2. I ter a-
tor.java and MyContainer.java are both found in
thewei ss. ds padage online.

AbstractCollection.java Containsthe codein Figures 15.10and 15.11.

Ar

Exercises

rayList.java Contains the codein Figures 15.12 to 15.15.

Exercises @

15.1.

15.2.

15.3.

15.4.

1c
2 {
3
4
5
6
7
8

9
10
11
12
13
14 }

In Short

What is the difference between a nested classand an inner class?

Are private members of an inner (or nested) classvisible to methodsin the
outer class?

In Figure 15.16, are the declarations of a and b legal? Why or why not?.
In Figure 15.16, (assuming illegal code is fixed) how are objeds of type

I nner 1 and| nner 2 created (you may suggest additional members)?

lass Quter

private int x = 0;
private static int y = 37;

private class Innerl inplenents Sonel nterface

{
private int a = x +vy;
}
private static class Inner2 inplements Sonelnterface
{
private int b = x + vy;
}

Figure 15.16 Code for Figure 15.3

155.

In Theory
Suppose a1 inner classl isdedared publicin its outer classO. Why might

unusual syntax be required to dedare a ¢ass E that extends | but is

630

Inner Classes and Implementation of ArrayList

15.6.

15.7.

15.38.

15.9.

15.10.

15.11.

declared as a top-level class? (The required syntax is even more bizarre
than what was ®en for new; but often requires bad design to be needed.)

What is the running time of cl ear, as implemented for ArrayLi st ?
What would be the running time if the inherited version from

Abstract Col | ecti on wasused instead?

In Practice

Add both the pr evi ous and hasPr evi ous methods to the fina ver-

sion of the MyCont ai ner class

Asaume that we would like an iterator that implements the i sVal i d,

advance, andr et ri eve set of methods, but al we have is the standard

java.util.lterator interface

a. What pattern describes the problem we are trying to solve?

b. DesignaBetterlterator class and then implement it in terms of
java.util.lterator.

Figure 15.17 contains two proposed implementations of cl ear for

Abst ract Col | ecti on. Do either work?

Provide an implementation o t oSt ri ng for Abst ract Col | ecti on.

The running time should belinea in the size of the wlledion.

Programming Projects

The Col | ect i on interfacein the Java Colledions APl defines methods

renpveAl | , addAl | , and cont ai nsAl | . Add these methods to the

Exercises

Collection intefface ad povide implementations in

Abst ract Col | ecti on.

1 public void clear() /'l Version #1
2 {

3 Iterator itr = iterator();

4 while(!'isEmpty())

5 remove(itr.next());

6 }

7

8 public void clear() /'l Version #2
9 {

10 while(!'isEmpty())

11 remove(iterator().next());
12 }

Figure 15.17 Proposed implementations of cl ear for
Abstract Col | ection

15.12. Col | ecti ons. unnodi fi abl eCol | ecti on takesaCol | ecti on
and returns an immutable Col | ect i on. Implement this method. To do
so, youwill need to use a ¢assinside amethod. The dassimplements the
Col I ection interface and throws an
Unsuppor t edOper at i onExcept i on for al mutating methods. For
other methods, it forwards the request to the Col | ecti on being
wrapped. You will also have to hide an unmodifiable iterator.

15.13. Two Col | ect i on objeds are equal if either bath implement the Li st
interface ad contain the same items in the same order or both implement
the Set interface and contain the same items in any order. Otherwise, the
Col l ection objeds are not equal. Provide, in

Abst ract Col | ecti on, an implementation of equal s that follows

632 Inner Classes and Implementation of ArrayList

this genera contrad. Additionally, provide a hashCode method in
Abstract Col | ection that follows the genera contrad of
hashCode (dothisby using aniterator and adding the hashCodes of all

the entries. Watch out for nul | entries.)

