
� � �
� � � � � � 	

HIS chapter begins our discussion of the implementation of standard data

structures. One of the simplest data structures is the ArrayList that is part

of the Collections API. In Part I (specifically Figure 3.9 and Figure 4.23) we have

already seen skeletons of the implementation, so in this chapter we concentrate on

the details of implementing the complete class, with the associated iterators. In

doing so, we make use of an interesting Java syntactic creation, the inner class.

We discuss the inner class in this chapter, rather than in Part I (where other syn-

tactic elements are introduced) because we view the inner class as a Java imple-

mentation technique, rather than a core language feature.

In this chapter, we will see:

• The uses and syntax of the inner class

• An implementation of a new class called the AbstractCollection

• An implementation of the ArrayList class.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� � �
� � � � � ! " # $ " % # & ' (! % ! ') * # % % ! %

We begin by reviewing the simple iterator implementation first described in Sec-

tion 6.2. Recall that we defined a simple iterator interface, that mimics the stan-

dard Collections API Iterator, and this interface is shown in Figure 15.1.

+
package weiss.ds;,-
public interface Iterator.
{/
 boolean hasNext();0
 Object next();1
}

2 3 4 5 6 7 8 9 : 8 ; < �
Iterator

� � � � � � = � � � � > � = � � � � ? @ A

+
// An iterator class that steps through a MyContainer.,-
package weiss.ds;./
class MyContainerIterator implements Iterator0
{1
 private int current = 0;B
 private MyContainer container;C
 + D
 MyContainerIterator(MyContainer c)+ +
 { container = c; }+ ,
 + -
 public boolean hasNext()+ .
 { return current < container.size; }+ /
 + 0
 public Object next()+ 1
 { return container.items[current++]; }+ B
}

2 3 4 5 6 7 8 9 : E
 � � � � � � � � � � � � � � � � < �
MyContainerIteratorF � � � > � = G� � � � ? @ A

 � � � � � � � � � H � � � � � � � � � � � � � � I
+

package weiss.ds;,-
public class MyContainer.
{/
 Object [] items;0
 int size;1B
 public Iterator iterator()C
 { return new MyContainerIterator(this); }+ D
 + +
 // Other methods not shown.+ ,
}

2 3 4 5 6 7 8 9 : J ; < �
MyContainer

= � � � � � � � > � = � � � � ? @ A

We then define two classes: the container and its iterator. Each container class

is responsible for providing an implementation of the iterator interface. In our

case, the implementation of the iterator interface is provided by the

MyContainerIterator class, shown in Figure 15.2. The MyContainer

class, shown in Figure 15.3, provides a factory method that creates an instance of

MyContainerIterator, and returns this instance using the interface type

Iterator. Figure 15.4 provides a main that illustrates the use of the container/

iterator combination. Figures 15.1 to 15.4 simply replicate Figures 6.5 to 6.8 in

the original iterator discussion from Section 6.2.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� � K
+

 public static void main(String [] args),
 {

-
 MyContainer v = new MyContainer();./
 v.add("3");0
 v.add("2");1B
 System.out.println("Container contents: ");C
 Iterator itr = v.iterator();+ D
 while(itr.hasNext())+ +
 System.out.println(itr.next());+ ,
 }

2 3 4 5 6 7 8 9 : L
main

� � � < � � � � � � � M � � � � � � � � � � � � � � � N � � � � > � = � � � � ? @ A

+
package weiss.ds;,-
public class MyContainer.
{/
 private Object [] items;0
 private int size = 0;1
 // Other methods for MyContainer not shownBC
 public Iterator iterator()+ D
 { return new LocalIterator(this); }+ +
 + ,
 // The iterator class as a nested class+ -
 private static class LocalIterator implements Iterator+ .
 {+ /
 private int current = 0;+ 0
 private MyContainer container;+ 1
 + B
 LocalIterator(MyContainer c)+ C
 { container = c; }, D
 , +
 public boolean hasNext(), ,
 { return current < container.size; }, -
 , .
 public Object next(), /
 { return container.items[current++]; }, 0
 }, 1
}

2 3 4 5 6 7 8 9 : 9
 � � � � � � � � � N � M � � � N � � � � � � = � � � � @

This design hides the iterator class implementation, because

MyContainerIterator is not a public class. Thus the user is forced to pro-

 � � � � � � � � � H � � � � � � � � � � � � � � O

gram to the Iterator interface, and does not have access to the details of how

the iterator was implemented—the user cannot even declare objects of type

weiss.ds.MyContainerIterator. However, it still exposes more details

than we usually like. In the MyContainer class, the data is not private, and the

corresponding iterator class, while not public, is stil l package visible. We can

solve both problems by using nested classes: we simply move the iterator class

inside of the container class. At that point the iterator class is a member of the

container class, and thus it can be declared as a private class and its methods can

access private data from MyContainer. The revised code is illustrated in Figure

15.5; with only a stylistic change of renaming MyContainerIterator as

LocalIterator. No other changes are required.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� P �
� � � Q � ! " # $ " % # & ' � & & ! ") * # % % ! %

R S T U U V W X Y Z [[\]] \ ^ \ _
` a b c d a S e] c e f g ` a]]
\ S c h a c \ c \] a g ` a]] \ S _
] \ f e a S d c h e b g ` a]] i
a S f \] f e g ` a b e f j] _
\ S k c h e] a ^ e] l S _
c a m a] a S e] c e f
g ` a]] i e m g e n c c h a c \ c
\] S d c a

static

g ` a]] o R S \ S S e b g ` a]]
a ` p a l] g d S c a \ S] a S
\ ^ n ` \ g \ c b e q e b e S g e c d
c h e d j c e b d r s e g c
c h a c g b e a c e f \ c o

In the Section 15.1, we used a nested class to further hide detail s. In addition to

nested classes, Java provides inner classes. An inner class is similar to a nested

class in that it is a class inside another class, and is treated as a member of the

outer class for visibility purposes. An inner class is declared using the same syn-

tax as a nested class, except that i t is not a static class. In other words, the

static qualifier is missing in the inner class declaration.

Before getting into the inner class specifics, let us look at the problem that

they are designed to solve. Figure 15.6 il lustrates the relationship between the

iterator and container classes that were written in the previous section. Each

instance of the LocalIterator maintains a reference to the container over

which it is iterating and a notion of the iterator’s current position. The relationship

that we have is that each LocalIterator must be associated with exactly one

instance of MyContainer. It is impossible for the container reference in

any iterator to be null, and the iterator’s existence makes no sense without

knowing which MyContainer object caused its creation.

 � � � � � � � � �
 � � � � � � � � � � � P P

2 3 4 5 6 7 8 9 : t
 � � � � � u = � � � � � � � � � � � � � � � < � �

Since we know that itr1 must be tied to one and only one iterator, it seems

that the expression container.items is redundant: if the iterator could only

remember the container that constructed it, we wouldn’ t have to keep track of it

ourselves. And if it remembered it, we might expect that if inside of the

LocalIterator we referred to items, then since the LocalIterator

does not have an items field, the compiler (and runtime system) would be smart

enough to deduce that we are talking about the items field of the

MyContainer object that caused the construction of this particular

LocalIterator. This is exactly what an inner class does, and what distin-

guishes it from a nested class.

The big difference between an inner class and a nested class is that when an

instance of an inner class object is constructed, there is an implicit reference to

the outer class object that caused its construction. This implies that an inner class

items: 3, 5, 2v

itr1

container

itr2

container

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� P v

object cannot exist without an outer class object for it to be attached to, with an

exception being if it is declared in a static method (because local and anonymous

classes are technically inner classes), a detail we wil l discuss later.

w q c h e S a ^ e d q c h e
d j c e b g ` a]] \]
Outer

i c h e S c h e
\ ^ n ` \ g \ c b e q e b e S g e \]
Outer.this

o

If the name of the outer class is Outer, then the implicit reference is

Outer.this. Thus, if LocalIterator was declared as an instance inner

class (i.e. the static keyword was removed), then the MyContainer.this

reference could be used to replace the container reference that the iterator is

storing. The picture in Figure 15.7 il lustrates that the structure would be identical.

A revised class is shown in Figure 15.8.

2 3 4 5 6 7 8 9 : x
 � � � � � u = � � � � � � � y � � < � � � � = � � � � � �

items: 3, 5, 2v

itr1

MyContainer.this

current = 3

itr2

MyContainer.this

current = 0

 � � � � � � � � �
 � � � � � � � � � � � P z
+

package weiss.ds;,-
public class MyContainer.
{/
 private Object [] items;0
 private int size = 0;1B
 // Other methods for MyContainer not shownC+ D
 public Iterator iterator()+ +
 { return new LocalIterator(); }+ ,
 + -
 // The iterator class as an inner class+ .
 private class LocalIterator implements Iterator+ /
 {+ 0
 private int current = 0;+ 1
 + B
 public boolean hasNext()+ C
 { return current < MyContainer.this.size; }, D
 , +
 public Object next(), ,
 { return MyContainer.this.items[current++]; }, -
 }, .
}

2 3 4 5 6 7 8 9 : {
 � � � � � � � � � N � M � � � N � � � � = � � � � @

In the revised implementation, observe that LocalIterator no longer has

an explicit reference to a MyContainer, and also observe that its constructor is

no longer necessary, since it only initialized the MyContainer reference.

Finally, Figure 15.9 illustrates that just as using this is optional in an instance

method, the Outer.this reference is also optional if there is no name clash.

Thus, MyContainer.this.size can be shortened to size, as long as there

is no other variable named size that is in a closer scope.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� P |
+ -

 // The iterator class as an inner class+ .
 private class LocalIterator implements Iterator+ /
 {+ 0
 private int current = 0;+ 1
 + B
 public boolean hasNext()+ C
 { return current < size; }, D
 , +
 public Object next(), ,
 { return items[current++]; }, -
 }

2 3 4 5 6 7 8 9 : }
 � � � = � � � � ~
Outer.this

� � � � � � � � � � � � �

Local classes and anonymous classes do not specify whether they are

static, and they are always technically considered inner classes. However, if

such a class is declared in a static method, it has no implicit outer reference (and

thus behaves like a nested class), whereas if it is declared inside an instance

method, its implicit outer reference is the invoker of the method.

The addition of inner classes requires a significant set of rules, many of

which attempt to deal with language corner cases and dubious coding practices.

For instance, suppose we suspend belief for a minute and imagine that

LocalIterator is public. We do so only to illustrate the complications that

the language designers face when adding a new language feature. Under this

assumption the iterator’s type is MyContainer.LocalIterator, and since

it is visible, one might expect that

MyContainer.LocalIterator itr =
 new MyContainer.LocalIterator();

is legal, since like all classes, it has a default a zero-parameter constructor. How-

ever, this cannot possibly work, since there is no way to initialize the implicit ref-

 � � � � � � � � �
 � � � � � � � � � � � P �

erence. Which MyContainer is itr referring to? We need some syntax, that

won’ t conflict with any other language rules. Here’s the rule: If there is a con-

tainer c, then itr could be constructed using a bizarre syntax invented for just

this case, in which the outer object in effect invokes new:

MyContainer.LocalIterator itr = c.new LocalIterator();

Notice that this implies that in an instance factory method, this.new is

legal, and shorthands to the more conventional new seen in a factory method. If

you find yourself using the bizarre syntax, then most likely you have a bad design.

In our example, once LocalIterator is private, this entire issue goes away,

and if LocalIterator is not private, there is little reason to use an inner class

in the first place.

There are also other rules, some of which are arbitrary. Private members of

the inner or nested class are public to the outer class. To access any member of an

inner class, the outer class only needs to provide a reference to an inner class

instance and use the dot operator, as is normal for other classes. Thus inner and

nested classes are considered part of the outer class.

Both inner and nested classes can be final, or they can be abstract, or they can

be interfaces (but interfaces are always static, because they cannot have any data,

including an implicit reference), or they can be none of these. Inner classes may

not have static fields or methods, except for static final fields. Interfaces may have

nested classes or interfaces. Finally, when you compile the above example, you

will see that the compiler generates a class file named MyCon-

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� P �

tainer$LocalIterator.class, which would have to be included in any

distribution to clients. In other words, each inner and nested class is a class, and

has a corresponding class file. Anonymous classes use numbers instead of names.

 � � � � � � � � �
 � � � � � � � � � � � P I
+

package weiss.util;,-
/**.
 * AbstractCollection provides default implementations for/
 * some of the easy methods in the Collection interface.0
 */1
public abstract class AbstractCollection implements CollectionB
{C
 /**+ D
 * Tests if this collection is empty.+ +
 * @return true if the size of this collection is zero.+ ,
 */+ -
 public boolean isEmpty()+ .
 {+ /
 return size() == 0;+ 0
 }+ 1
 + B
 /**+ C
 * Change the size of this collection to zero., D
 */, +
 public void clear(), ,
 {, -
 Iterator itr = iterator();, .
 while(itr.hasNext()), /
 {, 0
 itr.next();, 1
 itr.remove();, B
 }, C
 }

- D- +
 /**

- ,
 * Obtains a primitive array view of the collection.

- -
 * @returns the primitive array view.

- .
 */

- /
 public Object [] toArray()

- 0
 {

- 1
 Object [] copy = new Object[size()];

- B

- C
 Iterator itr = iterator();. D
 int i = 0;. +
 . ,
 while(itr.hasNext()). -
 copy[i++] = itr.next();. .
 . /
 return copy; . 0
 }

2 3 4 5 6 7 8 9 : 8 � > �
AbstractCollection � � � � � �

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� P K
. 1

 /**. B
 * Returns true if this collection contains x.. C
 * If x is null, returns false./ D
 * (This behavior may not always be appropriate.)/ +
 * @param x the item to search for./ ,
 * @returns true if x is not null and is found in/ -
 * this collection./ .
 *// /
 public boolean contains(Object x)/ 0
 {/ 1
 if(x == null)/ B
 return false;/ C
 0 D
 Iterator itr = iterator();0 +
 while(itr.hasNext())0 ,
 if(x.equals(itr.next()))0 -
 return true;0 .
 0 /
 return false; 0 0
 }0 1
 0 B
 /**0 C
 * Removes non-null x from this collection.1 D
 * @param x the item to remove.1 +
 * @returns true if remove succeeds.1 ,
 */1 -
 public boolean remove(Object x)1 .
 {1 /
 if(x == null)1 0
 return false;1 1
 1 B
 Iterator itr = iterator();1 C
 while(itr.hasNext())B D
 if(x.equals(itr.next()))B +
 {B ,
 itr.remove();B -
 return true;B .
 }B /
 B 0
 return false;B 1
 }B B
}

2 3 4 5 6 7 8 9 : 8 8 > �
AbstractCollection � � � � A �

; < �
AbstractCollection

� � � � � � P O
� � � � � � !

AbstractCollection
) * # % %

� h e
AbstractC-

ollection
\ ^ n ` e _

^ e S c]] d ^ e d q c h e
^ e c h d f] \ S c h e
Collection

\ S _
c e b q a g e o

Before we implement the ArrayList class, observe that some of the methods

in the Collection interface can be easily implemented in terms of others. For

instance, isEmpty is easil y implemented by checking if the size is 0. Rather

than doing so in ArrayList, LinkedList, and all the other concrete imple-

mentations, it would be preferable to do this once, and use inheritance to obtain

isEmpty. We could even override isEmpy if it turns out that for some collec-

tions there is a faster way of performing isEmpty than computing the current

size. However, we cannot implement isEmpty in the Collection interface;

thi s can onl y be done i n an abst ract cl ass. Thi s w i l l be the

AbstractCollection class. To simpli fy implementations, programmers

designing new collections classes can extend the AbstractCollection class

rather than implementing the Collection interface A sample implementation

of AbstractCollection is shown in Figures 15.10 and 15.11.

The Collections API also defines additional classes such as

AbstractList, AbstractSequentialList, and AbstractSet.We

have chosen not to implement those, in keeping with our intention of providing a

simplified subset of the Collections API. If , for some reason you are implement-

ing your own collections and extending the Java 1.2 Collections API, you should

extend the most specific abstract class.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� v �
� � � � � � � * ! � ! & # � $ & $ �

ArrayList � � � # &
� ! " # $ "

The various ArrayList classes shown in Part I were not iterator-aware. This

section provides an implementation of ArrayList that we will place in

weiss.util, and includes support for bidirectional iterators. In order to keep

the amount of code somewhat manageable, we have stripped out the bulk of the

Javadoc comments. They can be found in the online code.

The implementation is found in Figures 15.12 to 15.15. At line 3 we see that

ArrayList extends the AbstractCollection abstract class, and at line 4

ArrayList declares that it implements the List interface.

The internal array, theItems, and collection size, theSize, are declared

at lines 9 and 10, respectively. More interesting is modCount, which is declared

at line 11. modCount represents the number of structural modifications (adds,

removes) made to the ArrayList. The idea is that when an iterator is con-

structed, the iterator saves this value in its data member expectedModCount.

When any iterator operation is performed, the iterator’s expectedModCount

member is compared with the ArrayList’s modCount, and if they disagree, a

ConcurrentModificationException can be thrown.

Line 16 illustrates the typical constructor that performs a shallow copy of the

members in another collection, simply by stepping through the collection and

calling add. The clear method, started at line 27, initializes the ArrayList

and can be called from the constructor. It also resets theItems, which allows

the garbage collector to reclaim all the otherwise unreferenced objects that were

 � � � � � � � � � � � � � � �
ArrayList

y � � < � �
 � � � � � � v P

in the ArrayList. The remaining routines in Figure 15.12 are relatively

straightforward.

Figure 15.13 implements the remaining methods that do not depend on itera-

tors. findPos is a private helper that returns the position of an object that is

either being removed or subjected to a contains call. Extra code is present

because it is legal to add null to the ArrayList, and if we were not careful,

the call to equals at line 60 could have generated a

NullPointerException. Observe that both add and remove will result in

a change to modCount.

In Figure 15.14 we see the two factory methods that return iterators, and we

see the beginning of the implementation of the ListIterator interface.

Observe that ArrayListIterator IS-A ListIterator and

ListIterator IS-A Iterator. So ArrayListIterator can be

returned at lines 103 and 106.

In the implementation of ArrayListIterator, done as a private inner

class, we maintain the current position at line 111. The current position represents

the index of element that would be returned by calling next. At line 112 we

declare the expectedModCount member. Like all class members, it is initial-

ized when an instance of the iterator is created (immediately prior to calling the

constructor); modCount is a shorthand for ArrayList.this.modCount.

The two Boolean instance members that follow are flags used to verify that a call

to remove is legal.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� v v
+

package weiss.util;,-
public class ArrayList extends AbstractCollection.
 implements List/
{0
 private static final int DEFAULT_CAPACITY = 10;1
 private static final int NOT_FOUND = -1;B
 C
 private Object [] theItems;+ D
 private int theSize;+ +
 private int modCount = 0;+ ,+ -
 public ArrayList()+ .
 { clear(); }+ /
 + 0
 public ArrayList(Collection other)+ 1
 {+ B
 clear();+ C
 Iterator itr = other.iterator();, D
 while(itr.hasNext()), +
 add(itr.next()); , ,
 }, -
 , .
 public int size(), /
 { return theSize; }, 0
 , 1
 public void clear(), B
 {, C
 theSize = 0;

- D
 theItems = new Object[DEFAULT_CAPACITY];

- +
 modCount++;

- ,
 }

- -- .
 public Object get(int idx)

- /
 {

- 0
 if(idx < 0 || idx >= size())

- 1
 throw new ArrayIndexOutOfBoundsException();

- B
 return theItems[idx];

- C
 }. D
 . +
 public Object set(int idx, Object newVal). ,
 {. -
 if(idx < 0 || idx >= size()). .
 throw new ArrayIndexOutOfBoundsException();. /
 Object old = theItems[idx]; . 0
 theItems[idx] = newVal;. 1
 return old; . B
 }. C/ D
 public boolean contains(Object x)/ +
 { return findPos(x) != NOT_FOUND; }

2 3 4 5 6 7 8 9 : 8 E
ArrayList

� � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � �
ArrayList

y � � < � �
 � � � � � � v z
/ ,

 private int findPos(Object x)/ -
 {/ .
 for(int i = 0; i < size(); i++)/ /
 if(x == null)/ 0
 {/ 1
 if(theItems[i] == null)/ B
 return i;/ C
 }0 D
 else if(x.equals(theItems[i]))0 +
 return i;0 ,
 0 -
 return NOT_FOUND;0 .
 }0 /0 0
 public boolean add(Object x)0 1
 {0 B
 if(theItems.length == size())0 C
 {1 D
 Object [] old = theItems;1 +
 theItems = new Object[theItems.length * 2 + 1];1 ,
 for(int i = 0; i < size(); i++)1 -
 theItems[i] = old[i];1 .
 }1 /
 theItems[theSize++] = x; 1 0
 modCount++;1 1
 return true; 1 B
 }1 C
 B D
 public boolean remove(Object x)B +
 {B ,
 int pos = findPos(x);B -
 B .
 if(pos == NOT_FOUND)B /
 return false;B 0
 elseB 1
 {B B
 remove(pos);B C
 return true;C D
 } C +
 }C ,
 C -
 public Object remove(int idx)C .
 {C /
 Object removedItem = theItems[idx];C 0
 for(int i = idx; i < size() - 1; i++)C 1
 theItems[i] = theItems[i + 1];C B
 theSize--;C C
 modCount++; + D D
 return removedItem;+ D +
 }

2 3 4 5 6 7 8 9 : 8 J
ArrayList

� � � � � � � � � � � � � � � � � � A �

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� v |
+ D ,

 public Iterator iterator()+ D -
 { return new ArrayListIterator(0); }+ D .+ D /
 public ListIterator listIterator(int idx)+ D 0
 { return new ArrayListIterator(idx); }+ D 1+ D B
 // This is the implementation of the ArrayListIterator.+ D C
 private class ArrayListIterator implements ListIterator+ + D
 {+ + +
 private int current;+ + ,
 private int expectedModCount = modCount;+ + -
 private boolean nextCompleted = false;+ + .
 private boolean prevCompleted = false;+ + /
 + + 0
 ArrayListIterator(int pos)+ + 1
 {+ + B
 if(pos < 0 || pos > size())+ + C
 throw new IndexOutOfBoundsException();+ , D
 current = pos;+ , +
 }+ , ,
 + , -
 public boolean hasNext()+ , .
 {+ , /
 if(expectedModCount != modCount)+ , 0
 throw new ConcurrentModificationException();+ , 1
 return current < size();+ , B
 }+ , C
 + - D
 public boolean hasPrevious()+ - +
 {+ - ,
 if(expectedModCount != modCount)+ - -
 throw new ConcurrentModificationException();+ - .
 return current > 0;+ - /
 }

2 3 4 5 6 7 8 9 : 8 L
ArrayList

� � � � � � � � � � � � � � � � � � � �

The ArrayListIterator constructor is declared package visible; thus it

is usable by the ArrayList. Of course it could be declared public, but there is

no reason to do so. Both hasNext and hasPrevious verify that there have

been no external structural modifications since the iterator was created, throwing

an exception if the ArrayList modCount does not match the

ArrayListIterator expectedModCount.

 � � � � � � � � � � � � � � �
ArrayList

y � � < � �
 � � � � � � v �

The ArrayListIterator class is completed in Figure 15.15. next and

previous are mirror image symmetries. Examining next, we see first a test at

line 138 to make sure we have not exhausted the iteration (implicitly this tests for

structural modifications also). We then set nextCompleted to true to allow

remove to succeed, and then we return the array item that current is examin-

ing, advancing current after its value has been used.

previous is similar, except that we must lower current’s value first.

This is because when traversing in reverse, if current equals the container size,

we have not yet started the iteration, and when current equals zero, we have

completed the iteration (but can remove the item in position, if the prior operation

was previous). Observe that next followed by previous yields identical

items.

Finally, we come to remove, which is extremely tricky because the seman-

tics of remove depend on which direction the traversal is proceeding. In fact,

this probably suggests a bad design in the Collections API: method semantics

should not depend so strongly on which methods have been called prior to it. But

remove is what it is, so we have to implement it.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� v �
+ - 0

 public Object next()+ - 1
 {+ - B
 if(!hasNext()) + - C
 throw new NoSuchElementException(); + . D
 nextCompleted = true; + . +
 prevCompleted = false; + . ,
 return theItems[current++];+ . -
 }+ . .
 + . /
 public Object previous()+ . 0
 {+ . 1
 if(!hasPrevious()) + . B
 throw new NoSuchElementException(); + . C
 prevCompleted = true; + / D
 nextCompleted = false; + / +
 return theItems[--current];+ / ,
 }+ / -
 + / .
 public void remove()+ / /
 {+ / 0
 if(expectedModCount != modCount)+ / 1
 throw new ConcurrentModificationException();+ / B
 + / C
 if(nextCompleted)+ 0 D
 ArrayList.this.remove(--current);+ 0 +
 else if(prevCompleted)+ 0 ,
 ArrayList.this.remove(current);+ 0 -
 else+ 0 .
 throw new IllegalStateException();+ 0 /
 + 0 0
 prevCompleted = nextCompleted = false;+ 0 1
 expectedModCount++;+ 0 B
 }+ 0 C
 }+ 1 D
}

2 3 4 5 6 7 8 9 : 8 9
ArrayList

� � � � � � � � � � � � � � � � � � � �

The implementation of remove begins with the test for structural modifica-

tion at line 156. If the prior iterator state change operation was a next, as evi-

denced by the test at line 159 showing that nextCompleted is true, then we

call the ArrayList remove method (started at line 93 in Figure 15.13) that

takes an index as a parameter. The use of ArrayList.this.remove is

required because the local version of remove hides the outer class version.

> M � � � � � v I

Because we have already advanced pass the item to be removed, we must remove

the item in position current-1. This slides the next item from current to

current-1 (since the old current-1 position has now been removed) so we

use the expression --current in line 160.

When traversing the other direction, we are sitting on the last item that was

returned, so we simply pass current as a parameter to the outer remove. After

it returns, the elements in higher indices are slid one index lower, so current is

sitting on the correct element, and can be used in the expression at line 162.

In either case, we cannot do another remove until we do a next or

previous, so at line 166 we clear both flags. Finally, at line 167, we increase

the value of expectedModCount to match the container’s. Observe that this is

increased only for this iterator, so any other iterators are now invalidated.

This class, which is perhaps the simplest of the Collections API classes that

contains iterators il lustrates why in Part IV we elect to begin with a simple proto-

col, and then provide more complete implementations at the end of the chapter.

� � � � � � �

This chapter introduced the inner class, which is a Java technique that is com-

monly used to implement iterator classes. Each instance of an inner class corre-

sponds to exactly one instance of an outer class and automaticall y maintains a

reference to the outer class object that caused its construction. A nested class

relates two types to each other, while an inner class relates two objects to each

other. The inner class is used in this chapter to implement the ArrayList.

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� v K

The next chapter illustrates implementations of stacks and queues.

� � � � � � � � � � � ¡ � � �

AbstractCollection Implements some of the methods in the

Collection interface. (619)

inner class A class inside a class, that is useful for implementing the iterator

pattern. The inner class always contains an implicit reference to the outer

object that created it. (610)

¢ � � � � £ ¤ � � � �

1. An instance inner class cannot be constructed without an outer object.

This is most easily done with a factory method in the outer class. It is com-

mon to forget the word static when declaring a nested class, and this

will often generate a diff icult to understand error related to this rule.

� £ � � ¥ £ � � � £ � �

The following files are available:

MyContainerTest.java The test program for the final i terator example that

uses inner classes, as shown in Section 15.2. Itera-

tor.java and MyContainer.java are both found in

the weiss.ds package online.

AbstractCollection.java Contains the code in Figures 15.10 and 15.11.

¦ § � = � � � � � v O

ArrayList.java Contains the code in Figures 15.12 to 15.15.

¤ ¨ � � � © � � �
ª « ¬ ® ¯ °

15.1. What is the difference between a nested class and an inner class?

15.2. Are private members of an inner (or nested) class visible to methods in the

outer class?

15.3. In Figure 15.16, are the declarations of a and b legal? Why or why not?.

15.4. In Figure 15.16, (assuming il legal code is fixed) how are objects of type

Inner1 and Inner2 created (you may suggest additional members)?

+
class Outer,
{

-
 private int x = 0;.
 private static int y = 37;/0
 private class Inner1 implements SomeInterface1
 {B
 private int a = x + y;C
 }+ D
 private static class Inner2 implements SomeInterface+ +
 {+ ,
 private int b = x + y;+ -
 }+ .
}

2 3 4 5 6 7 8 9 : 8 t � � � � � � ± � N M � � ² @ �

ª « ³ ´ ® ¯ µ
15.5. Suppose an inner class I is declared public in its outer class O. Why might

unusual syntax be required to declare a class E that extends I but is

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� z �

declared as a top-level class? (The required syntax is even more bizarre

than what was seen for new, but often requires bad design to be needed.)

15.6. What is the running time of clear, as implemented for ArrayList?

What would be the running time if the inherited version from

AbstractCollection was used instead?

ª « ¶ ¯ · ¸ ° ¹ ¸ ´
15.7. Add both the previous and hasPrevious methods to the final ver-

sion of the MyContainer class.

15.8. Assume that we would like an iterator that implements the isValid,

advance, and retrieve set of methods, but all we have is the standard

java.util.Iterator interface.

a. What pattern describes the problem we are trying to solve?

b. Design a BetterIterator class, and then implement it in terms of

java.util.Iterator.

15.9. Figure 15.17 contains two proposed implementations of clear for

AbstractCollection. Do either work?

15.10. Provide an implementation of toString for AbstractCollection.

The running time should be linear in the size of the collection.

¶ ¯ ® º ¯ · » » ¹ « º ¶ ¯ ® ¼ ´ ¸ ° ½
15.11. The Collection interface in the Java Collections API defines methods

removeAll, addAll, and containsAll. Add these methods to the

¦ § � = � � � � � z P

Collection interface and provide implementations in

AbstractCollection.

+
 public void clear() // Version #1,
 {

-
 Iterator itr = iterator();.
 while(!isEmpty())/
 remove(itr.next());0
 }1B
 public void clear() // Version #2C
 {+ D
 while(!isEmpty())+ +
 remove(iterator().next());+ ,
 }

2 3 4 5 6 7 8 9 : 8 x � �
clear

� �
AbstractCollection

15.12. Collections.unmodifiableCollection takes a Collection

and returns an immutable Collection. Implement this method. To do

so, you wil l need to use a class inside a method. The class implements the

Collection interface, and throws an

UnsupportedOperationException for all mutating methods. For

other methods, it forwards the request to the Collection being

wrapped. You wil l also have to hide an unmodifiable iterator.

15.13. Two Collection objects are equal if either both implement the List

interface and contain the same items in the same order or both implement

the Set interface and contain the same items in any order. Otherwise, the

Collection objects are not equal. Provide, in

AbstractCollection, an implementation of equals that follows

 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � �� z v

this general contract. Additionally, provide a hashCode method in

AbstractCollection that follows the general contract of

hashCode (do this by using an iterator and adding the hashCodes of all

the entries. Watch out for null entries.)

