
1!

Java Threads!

2!

Agenda!

•  The thread concept!

•  Thread synchronization!

•  Cooperation among threads!

•  The Executor framework!

3!

A thread is a single sequential flow of control in a program.!
!
Java allows multiple threads to exist simultaneously.!
!
Threads may be executed either on a multi-processor machine, or
(more common) in simulated parallel on a single-processor machine
on a time-sharing basis. !

The thread concept!

4!

Advantages: !!
•  !Makes applications more responsible to input.!
•  !Allows a server to handle multiple clients simultaneously.!
•  !May take advantage of multiple processors.!

Threads!

Complications:!
•  !Interruption of a thread may leave an object in an inconsistent state
!(safety problem) !

•  !A thread may block the execution of other threads (liveness problem) !!

5!

Threads can be declared in one of two ways:!
!

!(1) by extending the Thread class!
!

!(2) by implementing the Runnable interface !

Creation of threads!

6!

public class MyThread extends Thread {!
 public void run() {!
 // the thread body!
 }!
!
 // other methods and fields!
}!

Extending the Thread class !

Creating and starting a thread:!
!

!new MyThread().start();!

7!

Example!
public class Counter1 extends Thread {!
 protected int count, inc, delay;!
!
 public Counter1(int init, int inc, int delay) {!
 this.count = init; this.inc = inc; this.delay = delay;!
 }!
!
 public void run() {!
 try {!
 for (;;) {!
 System.out.print(count + " ");!
 count += inc;!
 sleep(delay);!
 }!
 } catch (InterruptedException e) {}!
 }!
!
 public static void main(String[] args) {!
 new Counter1(0, 1, 33).start();!
 new Counter1(0, -1, 100).start();!
 }!
}!

8!

0 0 1 -1 2 -2 3 4 5 -3 6 -4 7 -5 8 9 -6 10 11 -7 12 13 -8!
14 15 -9 16 17 -10 18 19 -11 20 21 -12 22 23 -13 24 25 -14!
26 27 28 -15 29 30 -16 31 32 -17 33 34 35 -18 36 37 -19 38!
39 40 -20 41 42 -21 43 44 -22 45 46 47 -23 48 49 50 -24 51!
52 53 -25 54 55 56 -26 57 58 59 -27 60 61 62 -28 63 64 65 !
-29 66 67 68 -30 69 70 71 -31 72 73 74 -32 75 76 77 -33 78 !
79 80 -34 81 82 -35 83 84 -36 85 86 87 -37 88 89 90 -38 91 !
92 93 -39 94 95 96 -40 97 98 99 -41 100 101 102 -42 103 104!
...!

Output!

9!

public class MyRunnable extends AnotherClass!
 implements Runnable
{!
 public void run() {!
 // the thread body!
 }!
!
 // other methods and fields!
}!

Implementing the Runnable
interface !

Creating and starting a thread:!
!

!new Thread(new MyRunnable()).start();!

10!

Example!
public class Counter2 implements Runnable {!
 protected int count, inc, delay;!
!
 public Counter2(int init, int inc, int delay) {!
 this.count = init; this.inc = inc; this.delay = delay;!
 }!
!
 public void run() {!
 try {!
 for (;;) {!
 System.out.print(count + " ");!
 count += inc;!
 Thread.sleep(delay);!
 }!
 } catch (InterruptedException e) {}!
 }!
!
 public static void main(String[] args) {!
 new Thread(new Counter2(0, 1, 33)).start();!
 new Thread(new Counter2(0, -1, 100)).start();!
 }!
}!

11!

The life cycle of a thread!

Alive!

New!

Dead!

run() returns!

Runnable!

start()!

Blocked!
yield()!

Wait to be!
notified!

wait()!

notify()!
notifyAll()!

Wait for target!
to finish!

join()!

Target finish!

interrupt()!
throws InterruptedException!

Sleeping!
sleep()!

Time out!

Not interrupted!

Interrupted!

interrupt()!

12!

Synchronization!

While an object is being modified by a thread, it can be in an
inconsistent state.!
!
It is important to ensure that no other tread accesses the object in this
situation.!

13!

Example!

This implementation is valid when used in single-thread programs.
However, it cannot safely be used in multithreaded programs!!

public class Account {!
 // ...!
 public boolean withdraw(long amount) {!
 if (amount <= balance) {!
 long newBalance = balance - amount;!
 balance = newBalance;!
 return true;!
 }!
 return false;!
 }!
!
 private long balance;!
}!

14!

Race hazard!

Balance! !Withdrawal1 ! ! ! !Widthdrawal2!
1000000 !widthdraw(1000000)! !widthdraw(1000000)!
1000000 !amount <= balance!
1000000 !! ! ! ! ! ! !amount <= balance!
1000000 !newBalance = ...;!
1000000 !! ! ! ! ! ! !newBalance = ...;!
 0 !!balance = ...; ! !!
 0 !! ! ! ! ! ! !balance = ...;!
 0 !!return true;!
 0 !! ! ! ! ! ! !return true;!

Class Account is not thread-safe!

15!

Java guarantees that reading and assignment of variables of primitive
types, except long and double, are atomic (cannot be interrupted). ! !
!
All other operations should be explicitly synchronized to ensure atomicity.!

Atomic operations!

16!

Critical regions!

A critical region is a section of program code that should be
executed by only one thread at a time.!
!
Java provides a synchronization mechanism to ensure that, while a
thread is executing statements in a critical region, no other thread
can execute statements in the same critical region at the same time.!
!
Synchronization may be applied to methods or a block of of
statements. !

17!

Synchronized instance
method!

class MyClass {!
 synchronized void aMethod() {!
 «do something»!
 }!
}!

The entire method body is the critical region.!

18!

Synchronization for the
bank account example!

This implementation is thread-safe.!

public class Account {!
 // ...!
 public synchronized boolean withdraw(long amount) {!
 if (amount <= balance) {!
 long newBalance = balance - amount;!
 balance = newBalance;!
 return true;!
 }!
 return false;!
 }!
!
 private long balance;!
}!

19!

Synchronized block !

synchronized(exp) {!
 «do something»!
}!

where exp must be of reference type.!

The statements enclosed in the synchronized block comprise
the critical region.!

20!

Locks!

The synchronization mechanism is implemented by associating each
object with a lock. !
!
A thread must obtain exclusive possession of a lock before entering a
critical region.!
!
•  !For a synchronized instance method, the lock associated with the
!receiving object this is used.!

!
•  !For a synchronized block, the lock associated with the result of
!the expression exp is used.!

21!

Synchronized instance
methods!

class MyClass {!
 synchronized void aMethod() {!
 «do something»!
 }!
!
 synchronized void anotherMethod() {!
 «do something»!
 }!
}!

The union of the bodies of the synchronized methods is
one critical region.!

22!

Release of locks!

A lock is released when the thread leaves the critical region.!
!
The lock may also be released temporarily before leaving the critical
region, when the wait method is invoked.!

23!

A bounded queue!
(implemented using a circular array) !

front! back!0!

a:!

get! put!

front!back!0!

a:!

24!

Circular array!

0!

back!

1!

put!

front!

get!

size-1!

25!

A bounded queue !
(sequential version)!

public class BoundedQueue {!
 protected Object[] a;!
 protected int front, back, size, count;!
!
 public BoundedQueue(int size) {!
 if (size > 0) {!
 this.size = size;!
 a = new Object[size];!
 back = size - 1;!
 }!
 }!
!
 public boolean isEmpty() { return count == 0; }!
 public boolean isFull() { return count == size; }!
 public int getCount() { return count; }!
 !
 // put, get!
} !

cont’d on next page!

26!

public void put(Object obj) {! !
!if (obj != null && !isFull()) {!

 ! back = (back + 1) % size;!
 a[back] = obj;!
 count++;

!} ! ! ! ! !
}!

public Object get() {!
 !if (!isEmpty()) { ! ! ! ! !

! Object result = a[front];! !
! a[front] = null;!

 ! front = (front + 1) % size;!
 ! count--;!
 ! return result;! ! ! !
 } ! ! ! ! ! !

!return null;!
}!

0!

back!

1!

put!

front!

get!

size-1!

27!

Bounded queue !
(fully synchronized version)!

public class SyncBoundedQueue extends BoundedQueue {!
 public SyncBoundedQueue(int size) { super(size); }!
!
 public synchronized boolean isEmpty() { return super.isEmpty(); }!
 public synchronized boolean isFull() { return super.isFull(); }!
 public synchronized int getCount() { return super.getCount(); }!
 public synchronized void put(Object obj) { super.put(obj); }!
 public synchronized Object get() { return super.get(); }!
}!

28!

Application example!

A typical use of the SyncBoundedQueue class is to serve as a
buffer between a producer and a consumer, both of which are threads.!

Thread!

SyncBoundedQueue!

Consumer!Producer!

29!

The Producer class!

public class Producer extends Thread {!
 protected BoundedQueue queue;!
 protected int n;!
!
 public Producer(BoundedQueue queue, int n) {!
 this.queue = queue; this.n = n;!
 }!
!
 public void run() {!
 for (int i = 0; i < n; i++) {!
 queue.put(new Integer(i));!
 System.out.println("produce: " + i);!
 try {!
 sleep((int)(Math.random() * 100));!
 } catch (InterruptedException e) {}!
 }!
 }!
}!

30!

The Consumer class!
!

public class Consumer extends Thread {!
 protected BoundedQueue queue;!
 protected int n;!
!
 public Consumer(BoundedQueue queue, int n) {!
 this.queue = queue; this.n = n;!
 }!
!
 public void run() {!
 for (int i = 0; i < n; i++) {!
 Object obj = queue.get();!
 if (obj != null)!
 System.out.println("\tconsume: " + obj);!
 try {!
 sleep((int)(Math.random() * 400));!
 } catch (InterruptedException e) {}!
 }!
 }!
}!

31!

public static void main(String args[]) {!
 BoundedQueue queue = new SyncBoundedQueue(5);!
 new Producer(queue, 15).start();!
 new Consumer(queue, 10).start();!
}!

Test program!

Java applications always begin with the main() method, called in a user
thread.!
 !
An application terminates when all user threads have terminated, or when
the exit method from System or Runtime is called. !

32!

Output!

The producer produces items faster than the
consumer consumes the items.!
This implementation causes items to be lost!!

produce: 0!
!consume: 0!

produce: 1!
produce: 2!
produce: 3!
produce: 4!

!consume: 1!
produce: 5!
produce: 6!
produce: 7!

!consume: 2!
produce: 8!
produce: 9!!

!consume: 3!

produce: 10!
produce: 11!
produce: 12! !

!consume: 4!
produce: 13!
produce: 14!

!consume: 5!
!consume: 6!
!consume: 8!
!consume: 10!
!consume: 13!

33!

Cooperation among threads!

Synchronization ensures mutual exclusion of two or more threads in the
critical regions. !
!
However, there is also a need for threads to cooperate.!
!
For this purpose, guarded suspension is used. A thread may be
suspended until a certain condition (guard) becomes true, at which time
its execution may be continued.!

34!

wait, notify og notifyAll!

Guarded suspension can be implemented using the the wait(), notify()
and notifyAll() methods of the Object class.!

The wait method should be invoked when a thread is temporarily unable to
continue and we want other threads to proceed. !

The notify() and notifyAll() methods should be invoked when
we want a thread to notify other threads that they may proceed.!

35!

wait!

•  !Must only be invoked in a synchronized method or a synchronized block!

•  !The thread is suspended and waits for a notify-signal!
!
• !Releases the lock associated with the receiving object !

•  !The awakened thread must reobtain the lock before it can resume at the
!point immediately following the invocation of the wait() method.!

!
•  !The variants wait(long millis) and ! ! ! ! !
!wait(long millis, int nanos) makes it possible to
!specify a maximum wait time. !!

36!

notify!

•  !Must only be invoked in a synchronized method or a
!synchronized block!

•  !Wakes up one of the suspended threads waiting on the ! !
!given object. !

•  !notifyAll() wakes up all threads waiting on a given !
!object. At most one of them proceeds.!

37!

Cooperation among
producer and consumer!

When the producer attempts to put a new item into the queue while the
queue is full, is should wait for the consumer to consume some of the
items in the queue, making room for the new item.!

When the consumer attempts to retrieve an item from the queue while
the queue is empty, it should wait for the producer to produce items and
put them into the queue.!

38!

public class BoundedQueueWithGuard extends BoundedQueue {!
 public BoundedQueueWithGuard(int size) { super(size); }!
!
 public synchronized boolean isEmpty() { return super.isEmpty(); }!
 public synchronized boolean isFull() { return super.isFull(); }!
 public synchronized int getCount() { return super.getCount(); }!
!
 public synchronized void put(Object obj) { ... }!
 public synchronized Object get() { ... }!
!
 public static void main(String args[]) {!
 BoundedQueueWithGuard queue = new BoundedQueueWithGuard(5);!
 new Producer(queue, 15).start();!
 new Consumer(queue, 10).start();!
 }!
}!

Bounded queue with guarded
suspension!

cont’d on next page!

39!

public synchronized void put(Object obj) {!
 try {!
 while (isFull())!
 wait();!
 } catch (InterruptedException e) {}!
 super.put(obj);!
 notify();!
}!

public synchronized Object get() {!
 try {!
 while (isEmpty())!
 wait();!
 } catch (InterruptedException e) {}!
 Object result = super.get();!
 notify();!
 return result;!
}!

40!

Output!

produce: 0!
!consume: 0!

produce: 1!
produce: 2!
produce: 3!
produce: 4!

!consume: 1!
produce: 5!
produce: 6!
produce: 7!

!consume: 2!
!consume: 3!

produce: 8!
produce: 9!

!consume: 4!

!consume: 5!
produce: 10!

!consume: 6!
produce: 11!
produce: 12!

!consume: 7!
!consume: 8!

produce: 13!
produce: 14!

!consume: 9!
!consume: 10!
!consume: 11!
!consume: 12!
!consume: 13!
!consume: 14!

No items are lost!

41!

Design guidelines!

The wait() method should always be called in a loop testing the
condition being waited upon. !

When a synchronized object changes its state it should usually call
the notifyAll() method. In this way all waiting threads get a
chance to check if they are able to resume their execution.!

42!

Problems with concurrency!

•  Starvation!

•  Dormancy!

•  Deadlock!

•  Premature termination!

43!

Starvation!

Some threads don’t make progress.!
!
Happens if there always exist some threads with a higher priority, or if a
thread with the same priority never releases the processor. !
!
Avoid “busy waiting”, such as

! ! ! ! ! ! ! ! ! ! ! ! !
!while (x < 2)!
! ; !// nothing!

44!

Dormancy!

A waiting thread is never awakened.!
!
Happens if a waiting thread is not notified. !
!
When in doubt, use the notifyAll() method. !

45!

Deadlock!
Two or more threads are blocked, each waiting for resources held by
another thread.!
!
It is usually caused by two or more threads competing for resources and
each thread requiring exclusive possession of those resources
simultaneously. !

synchronized(a) {!
 synchronized(b) {!
 ...!
 }!
}!

synchronized(b) {!
 synchronized(a) {!
 ...!
 }!
}!

thread1 ! thread2 !

46!

An example of deadlock !

public class DiskDrive {!
 public synchronized InputStream openFile(String fileName) { !
 ... !
 }!
!
 public synchronized void writeFile(String fileName, !
 InputStream in) { !
 ... !
 }!
!
 public synchronized void copy(DiskDrive destination, !
 String fileName) { !
 InputStream in = openFile(fileName);!
 destination.writeFile(fileName, in); !
 }!
} !

47!

Scenario!

thread1: c.copy(d, file1)! !thread2: d.copy(c, file2)!
Invoke c.copy(...) ! ! ! ! ! ! ! ! ! !

!Obtains lock of c!
! ! ! ! ! ! ! !Invoke d.copy(...)
! ! ! ! ! ! ! ! !Obtains lock of d!

Invoke c.openFile(...)!
! ! ! ! ! ! ! !Invoke d.openFile(...)!

Invoke d.writeFile(...)! ! ! ! ! ! ! ! !
!Unable to obtain lock of d !
! ! ! ! ! ! ! !Invoke c.writeFile(...)
! ! ! ! ! ! ! ! !Unable to obtain lock of c! !
! ! ! !!
! ! ! ! ! !Deadlock! !

48!

Prevention of deadlock!

The runtime system is neither able to detect nor prevent deadlocks. It is the
responsibility of the programmer to ensure that deadlock cannot occur. !

synchronized(a) {!
 synchronized(b) {!
 ...!
 }!
}!

synchronized(a) {!
 synchronized(b) {!
 ...!
 }!
}!

thread1 ! thread2 !

An often applied technique is resource ordering:!

Deadlock cannot occur!

49!

Premature termination!

When a thread is terminated before it should be, impeding the progress of
other threads. !

50!

The Thread class!

public class Thread implements Runnable {!
!public Thread(); ! ! ! ! ! ! ! ! ! ! !
!public Thread(Runnable target);!
!public Thread(String name); ! ! ! ! ! ! ! !
!public Thread(Runnable target, String name);!

 !public Thread(ThreadGroup group, String name); ! ! !
!public Thread(ThreadGroup group, Runnable target); ! !
!public Thread(ThreadGroup group, Runnable target, String name);!

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!public static final int MIN_PRIORITY = 1;! ! ! ! !
!public static final int NORM_PRIORITY = 5; ! ! ! !
!public static final int MAX_PRIORITY = 10;!

cont’d on next page!

51!

public static int activeCount(); ! ! ! !
public static void dumpStack(); ! !
public static boolean interrupted();!
public static native void sleep(long millis)! ! !

!throws InterruptedException;
public static native void sleep(long millis, int nanos)!

!throws InterruptedException;!
public static native void yield();!
!
public final String getName(); ! ! !
public final int getPriority(); ! ! !
public final ThreadGroup getThreadGroup(); ! !
public void interrupt();!
public final native boolean isAlive(); ! !
public final native boolean isDaemon(); ! !
public final native boolean isInterrupted();!

cont’d on next page!

52!

!public final synchronized void join() ! ! ! ! !
 throws InterruptedException;

!public final synchronized void join(long millis)! ! ! !
 throws InterruptedException;

!public final synchronized void join(long millis, int nanos)!
! !throws InterruptedException;!

 !public void run();!
 !public final void setDaemon(boolean on);!
 !public final void setName(String name); ! ! ! !

!public final void setPriority(int newPriority);!
 !public String toString(); ! ! ! ! !
}!

53!

java.util.concurrent!

Thread pools with the Executor framework. !

An Executor can be described as a collection of threads and a
work queue of tasks waiting to get executed. The treads are
constantly running and checking the work queue for new work.!

54!

Executors!

An executor is an object that executes Runnable tasks.!
!
Separates task submission from execution policy:!
!

•  Use ! !anExecutor.execute(aRunnable)!
•  Instead of !new Thread(aRunnable).start()!

55!

Creation of Executors!

Sample ExecutorService implementations of Executors!
!

• newSingleThreadExecutor!
! A pool of one, working from an unbounded queue!

!
• newFixedThreadPool(int N)!

! A fixed pool of N, working from an unbounded queue!
!
• newCachedThreadPool!

! A variable size pool that grows as needed and shrinks when idle!
!

 • newScheduledThreadPool(int N)!
! Pool for executing tasks after a given delay, or periodically!

56!

A simple example!

class Doubler implements Runnable {!
 Doubler(int[] a, int from, int to) {!
 this.a = a;!
 this.from = from;!
 this.to = to;!
 }!
!
 private int[] a;!
 private int from, to;!
!
 public void run() {!
 for (int i = from; i <= to; i++)!
 a[i] *= 2;!
 }!
}!

cont’d on next page!

57!

A simple example (Cont’d)!

public class ExecutorExample {!
 public static void main(String[] args) {!
 int[] a = { 1, 4, 5, 6, 8, 7, 4, 3, 2 };!
 ExecutorService executor = !
 Executors.newFixedThreadPool(3);!
 executor.execute(new Doubler(a, 0, 2));!
 executor.execute(new Doubler(a, 3, 5));!
 executor.execute(new Doubler(a, 6, 8));!
 executor.shutdown();!
 while (!executor.isTerminated())!
 ;!
 for (int i = 0; i < 9; i++)!
 System.out.print(a[i] + " ");!
 System.out.println();!
 }!
}!
!

58!

Callable and Future!

In case you expect your threads to return a result you can use the
Callable interface. !
!
Callable uses generics to define the type of object which is returned. !
!
If you submit a Callable object to an executor, a Future object is
returned. To retrieve the result use the get() method.!

59!

A simple example!

class Adder implements Callable<Integer> {!
 Adder(int[] a, int from, int to) {!
 this.a = a;!
 this.from = from;!
 this.to = to;!
 }!
!
 int[] a;!
 int from, to;!
!
 public Integer call() {!
 int sum = 0;!
 for (int i = from; i <= to; i++)!
 sum += a[i];!
 return sum;!
 }!
}!
!

cont’d on next page!
60!

A simple example (Cont’d)!

public class CallableFutureExample {!
 public static void main(String[] args) {!
 int[] a = { 1, 4, 5, 6, 8, 7, 4, 3, 2 };!
 ExecutorService executor = !
 Executors.newFixedThreadPool(3);!
 List<Future<Integer>> futures = !
 new ArrayList<Future<Integer>>();!
 futures.add(executor.submit(new Adder(a, 0, 2)));!
 futures.add(executor.submit(new Adder(a, 3, 5)));!
 futures.add(executor.submit(new Adder(a, 6, 8)));!
 executor.shutdown();!
 int sum = 0;!
 for (Future<Integer> f : futures) {!
 try {!
 sum += f.get();!
 } catch(Exception e) { e.printStackTrace(); }!
 }!
 System.out.println(sum);!
 }!
}!
!

