ol

INFORMATIK

A Practical Minimum Spanning
Tree Algorithm Using the Cycle
Property

Irit Katriel, Peter Sanders and Jesper
Larsson Traff

MPI-1-2002-1-003 October 2002

\ J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Stuhlsatzenhausweg 85 66123 Saarbriicken Germany

Authors’ Addresses

Irit Katriel, Peter Sanders
Stuhlsatzenhausweg 85
Max-Planck-Institut fiir Informatik,
66123 Saarbriicken, Germany

email: {irit, sanders}@mpi-sb.mpg.de

Jesper Larsson Traff

C&C Research Laboratories, NEC Europe Ltd.,
Sankt Augustin, Germany

email: traff@ccrl-nece.de

Abstract

We present a simple new algorithm for computing minimum spanning
trees that is more than two times faster than the best previously known
algorithms (for dense, “difficult” inputs). It is of conceptual interest that
the algorithm uses the property that the heaviest edge in a cycle can be
discarded. Previously this has only been exploited in asymptotically optimal
algorithms that are considered to be impractical. An additional advantage
is that the algorithm can greatly profit from pipelined memory access.
Hence, an implementation on a vector machine is up to 13 times faster
than previous algorithms. We outline additional refinements for MSTs
of implicitly defined graphs and the use of the central data structure for
querying the heaviest edge between two nodes in the MST. The latter result
is also interesting for sparse graphs.

This work is partially supported by DFG grant SA 933/1-1.

Keywords

Minimum Spanning Tree, Minimum Spanning Forest, Algorithm Engineering

1 Introduction

Given an undirected connected graph G with n nodes, m edges and nonneg-
ative edge weights, the minimum spanning tree (MST) problem asks for a
minimum total weight subset of the edges that forms a spanning tree of G.

The current state of the art in MST algorithms shows a gap between
theory and practice. The algorithms used in practice are among the old-
est network algorithms [4, 16, 8, 13| and are all based on the partition
property: a lightest edge leaving a set of nodes can be used for an MST.
More specifically, Kruskal’s algorithm [13] is best for sparse graphs. Its run-
ning time is asymptotically dominated by the time for sorting the edges
by weight. For dense graphs (m > n), the Jarnik-Prim (JP) algorithm is
better [8, 18]. Using Fibonacci heap priority queues, its execution time is
O(nlogn +m). Using pairing heaps [5] Moret and Shapiro [15] get quite
favorable results in practice at the price of slightly worse performance guar-
antees (2(nlogn + mloglogn)).

On the theoretical side there is a randomized linear time algorithm [9] and
an almost linear time deterministic algorithm [17]. But these algorithms are
usually considered impractical because they are complicated and because the
constant factors in the execution time look unfavorable. These algorithms
complement the partition property with the cycle property: a heaviest edge
in any cycle is not needed for an MST.

In this paper we partially close this gap. We develop a simple O(nlogn + m)
expected time algorithm using the cycle property that is very fast on dense
graphs. Our experiments show that it is more than two times faster than
the JP algorithm for large dense graphs that require a large number of pri-
ority queue updates for JP. For future architectures it promises even larger
speedups because it profits from pipelining for hiding memory access latency.
An implementation on a vector machine shows a speedup by a factor of 13
for large dense graphs.

Our algorithm is a simplification of the linear time randomized algo-
rithms. Its asymptotic complexity is O(m + nlogn). When m > nlogn we
get a linear time algorithm with small constant factors. The key component
of these algorithms works as follows. Generate a smaller graph G’ by select-
ing a random sample of the edges of G. Find a minimum spanning forest 7"
of G'. Then, filter each edge e € F using the cycle property: Discard e if
it is the heaviest edge on a cycle in 7" U {e}. Finally, find the MST of the
graph that contains the edges 7' and the edges that were not filtered out.
Since MST edges were not discarded, this is also the MST of G.

Klein and Tarjan [11] prove that if the sample graph G’ is obtained by
including each edge of G independently with probability p, then the expected

number of edges that are not filtered out is bounded from above by n/p. By
setting p = v/n/m both recursively solved MST instances can be made small.
It remains to find an efficient way to implement filtering.

King [10] suggests a filtering scheme which requires an (’)(n log mT’L”) pre-
processing stage, after which the filtering can be done with O(1) time per
edge (for a total of O(m)). The preprocessing stage runs Boruvka’s [4, 16]
algorithm on the spanning tree 7" and uses the intermediate results to con-
struct a tree B that has the vertices of G as leaves such that: (1) the heaviest
edge on the path between two leaves in B is the same as the heaviest edge
between them in 7”. (2) B is a full branching tree; that is, all the leaves of B
are at the same level and each internal node has at least two sons. (3) B has
at most 2n nodes. It is then possible to apply to B Komlés’s algorithm [12]
for maximum edge weight queries on a full branching tree. This algorithm
builds a data structure of size O(n log(mT’L”)) which can be used to find the
maximum edge weight on the path between leaves u and v, denoted F'(u,v),
in constant time. A path between two leaves is divided at their least com-
mon ancestor (LCA) into two half paths and the maximum weight on each
half path is precomputed. In addition, during the preprocessing stage the
algorithm generates information with which the LCA of two leaves can be
found in constant time.

In Section 2 we develop a simpler filtering scheme which is based on
the order in which the JP algorithm adds nodes to the MSF of the sample
graph G'. We show that using this ordering, computing F'(u,v) reduces to
a single interval maximum query. This is significantly simpler to implement
than Komlés’s algorithm because (1) we do not need to convert the MSF of
the sample into a different tree. (2) interval maximum computation is more
structured than path maximum in a full branching tree, where nodes may
have different degrees. As a consequence, the preprocessing stage involves
computation of simpler functions and needs simpler data structures.

Interval maximum can be found in constant time by applying a standard
technique that uses precomputed tables of total size O(nlogn). The tables
store prefix minima and suffix maxima [7]. We explain how to arrange these
tables in such a way that F'(u,v) can be found using two table lookups
for finding the JP-order, one xor operation, one operation finding the most
significant nonzero bit, two table lookups in fused prefix and suffix tables and
some shifts and adds for index calculations. These operations can be executed
independently for all edges in contrast to the priority queue accesses of the
JP algorithm that have to be executed sequentially to preserve correctness.

In Section 3 and Appendix B.1 we report measurements on current high-
end microprocessors that show speedup up to a factor 3.35 compared to a
highly tuned implementation of the JP algorithm. An implementation on a

2

vector computer results in even higher speedup of up to 13.

Our algorithm is also interesting for sparse graphs when we are interested
in the all-pairs minimax shortest-paths problem [2, 6]. Details are explained
in Appendix A.3.

2 The I-Max-Filter Algorithm

In Section 2.1 we explain how finding the heaviest edge between two nodes
in an MST can be reduced to finding an interval maximum. The array used
is the edge weights of the MST stored in the order in which the edges are
added by the JP algorithm. Then in Section 2.2 we explain how this interval
maximum can be computed using one further table lookup per node, an xor
operation and a computation of the position of the most significant one-bit
in an integer. In Section 2.3 we use these components to assemble the I-Max-
Filter algorithm for computing MSTs. Appendix A presents refinements that
reduce the number of cache faults, give improved performance for implicitly
defined graphs and explain how our algorithm can be applied to the all-pairs
minimax shortest paths problem.

2.1 Reduction to Interval Maxima

The following lemma shows that by renumbering nodes according to the
order in which they are added to the MST by the JP algorithm, heaviest
edge queries can be reduced to simple interval maximum queries.

Lemma 1 Consider an MST T = ({0,... ,n— 1}, Er) where the JP algo-
rithm (JP) adds the nodes to the tree in the order 0, ..., n — 1. Let e;,
0 < i < n denote the edge used to add node i to the tree by the JP algorithm.
Let w;, denote the weight of e;. Then, for all nodes u < v, the heaviest edge
on the path from u to v in T has weight max, <, w;.

ProoF: By induction over v. The claim is trivially true for v = 1. For the
induction step we assume that the claim is true for all pairs of nodes (u, v')
with u < v' < v and show that it is also true for the pair (u,v). First note
that e, is on the path from u to v because in the JP algorithm u is inserted
before v and v is an isolated node until e, is added to the tree. Let v/ < v
denote the node at the other end of edge e,. Edge e, is heavier than all the
edges e, 11, ... €,_1 because otherwise the JP algorithm would have added
v, using e,, earlier. There are two cases to consider (see Figure 1).

Case2:V' >u

Figure 1: Illustration of the two cases of Lemma 1. The JP algorithm adds
the nodes from left to right.

Case v' < u: By the induction hypothesis, the heaviest edge on the path
from v’ to u is max, <j<, w;. Since all these edges are lighter than e,, the
maximum over w,, ... ,w, finds the correct answer w,,.
Case v' > u: By the induction hypothesis, the heaviest edge on the path
between u and v’ has weight max,«;<, w;. Hence, the heaviest edge we are
looking for has weight max {w,, max,«;j<, w;}. Maximizing over the larger
set max,«;j<, w; Will return the right answer since e, is heavier than the edges
€y 41y - - Ey—1- |
Lemma 1 also holds when we have the MSF of an unconnected graph
rather than the MST of a connected graph. When JP spans a connected
component, it selects an arbitrary node 7 and adds it to the MSF with w; =
oo. Then the interval maxima for two nodes which are in two different
components is 0o, as we would expect.

2.2 Computation of Interval Maxima

Given an array a[0] .. .a[n—1], we explain how max a[i..j] can be computed in
constant time using preprocessing time and space O(nlogn). The emphasis
is on very simple and fast queries since we are looking at applications where
many more than nlogn queries are made. To this end we develop an efficient
implementation of a basic method described in [7, Section 3.4.3] which is
a special case of the general method in [3]. This algorithm might be of

4

‘98‘98‘98‘98‘75‘75‘75‘56‘34‘52‘77‘77‘77‘77‘77‘90‘LE\IES

e
[w] =] %] o = w[s]sln]n]n]ale]n]n]=] w
SALALALALAES

“ 88‘ 56‘30‘ QB‘ 65‘65 ‘75 ’ 75‘ 52‘ 52‘ 77‘ 77‘ 74‘ 74‘ 76‘30‘ Level 1

‘ 88‘ 56‘30‘98‘ 15‘ 65 75‘56‘ 34‘ 52‘ 77‘ 41‘ 62‘ 74‘ 76‘ 80‘ Level 0
— — — — — — —

Figure 2: Example of a layers array for interval maxima. The suffix sections
are marked by an extra surrounding box.

independent interest for other applications. Slight modifications of this basic
algorithm are necessary in order to use it in the [-Max-Filter algorithm. They
will be described later. In the following, we assume that n is a power of two.
Adaption to the general case is simple by either rounding up to the next
power of two and filling the array with —oco or by introducing a few case
distinctions while initializing the data structure.

Consider a complete binary tree built on top of a so that the entries of a
are the leaves (see level 0 in Figure 2). The idea is to store an array of prefix
or suffix maxima with every internal node of the tree. Left successors store
suffix maxima. Right successors store prefix maxima. The size of an array is
proportional to the size of the subtree rooted at the corresponding node. To
compute the interval maximum maxali..j|, let v denote the least common
ancestor of a[i] and a[j]. Let u denote the left successor of v and let w denote
the right successor of v. Let u[i] denote the suffix maximum corresponding
to leaf 7 in the suffix maxima array stored in u. Correspondingly, let wj]
denote the prefix maximum corresponding to leaf j in the prefix maxima
array stored in w. Then maxa[i..j] = max(uli], w[j]).

We observed that this approach can be implemented in a very simple way
using a log(n) x n array preSuf. As can be seen in Figure 2, all suffix and
prefix arrays in one layer can be assembled in one array as follows

. max(a[2%..i]) for odd b
preSuf|f][i] = { max(ali.. (2 + 1)b — 1]) else

where b = |i/2¢].

Furthermore, the interval boundaries can be used to index the arrays. We
simply have max a[i..j] = max(preSuf[¢][i], preSuf[¢][j]) where £ = msbPos(i®
J); @ is the bit-wise exclusive-or operation and msbPos(z) = |log, 2|, which
is equal to the position of the most significant nonzero bit of z (starting at

(* Compute MST of G = ({0,... ,n—1},E) *)
Function I-Max-Filter-MST(E) : set of Edge
E' := random sample from E of size \/mn
E" := JP-MST(E")
Let jpNum|0..n — 1] denote the order
in which JP-MST added the nodes
Initialize the table preSuf]0..log n|[0..n — 1]
as described in Section 2.2
(* Filtering loop *)
forall edges e = (u,v) € E do
¢ := msbPos(jpNum[u|®jpNum[v])
if we < preSuf[/][jpNum|u]] and
we < preSuf[¢|[jpNum[v]] then
add e to E"
return JP-MST(E")

Figure 3: The I-Max-Filter algorithm

0). Layer 0 is identical to a. msbPos(z) can be computed by a table lookup®.
A further optimization stores a pointer to the array preSuf[¢] in this layer
table. As the computation is symmetric, we can conduct a table lookup with
indices %, j without knowing whether 7 < j or j < 1.

To use this data structure for the I-Max-Filter algorithm we need a small
modification since we are interested in maxima of the form max a[min(i, j) +
1..max(i, j)] without knowing which of two endpoints is the smaller. Here
we simply note that the approach still works if we redefine the suffix maxima
to exclude the first entry, i.e., preSuf[¢][i] = max(afi + 1..(2°+ 1) [i/2¢] — 1])
if [i/2¢] is even.

2.3 Putting the Pieces Together

Figure 3 summarizes the I-Max-Filter algorithm and the following Theorem
establishes its complexity.

Theorem 1 The I-Max-Filter algorithm computes MSTs in expected time
mTher + O(nlogn + v/nm) where Ty, s the time required to query the
filter about one edge.

In particular, if m = w(nlogn), the execution time is (1 + o(1))mTiter-

! Alternatively, one could inspect the exponent in a floating point representation of x.

Proor: Taking a sample can be implemented to run in constant time per
sampled element. Running JP on the sample takes time O(nlogn + v/nm)
if a Fibonacci heap (or another data structure with similar time bounds)
is used for the priority queue. The lookup tables can be computed in time
O(nlogn). The filtering loop takes time mTge,-> By the sampling lemma
explained in the introduction [11, Lemma 1], the expected number of edges
in E" is n/y/n/m = y/nm. Hence, running JP on E” takes expected time
O(nlogn + y/nm). Summing all the component execution times yields the
claimed time bound. |

3 Experimental Evaluation

The objective of this section is to demonstrate that the I-Max-Filter algo-
rithm is a serious contestant for the fastest MST algorithm for dense graphs
(m > nlogn). We compare our implementation with a fast implementa-
tion of the JP algorithm. In [15] the execution time of the JP algorithm
using different priority queues is compared and pairing heaps are found to
be the fastest on dense graphs. We took the pairing heap from their code
and combined it with a faster, array based graph representation.® This im-
plementation of JP consistently outperforms [15] and LEDA [14].

3.1 Graph Representations

One issue in comparing MST-algorithms for dense graphs is the underlying
graph representation. The JP algorithm requires a representation that allows
fast iteration over all edges that are adjacent to a given node. In a linked list
implementation each edge resides in two linked lists; one for each incident
node. In our adjacency array representation each edge is represented twice
in an array with 2m entries such that the edges adjacent to each source node
are stored contiguously. For each edge, the target node and weight is stored.
In terms of space requirements, each source and each target is stored once,
and only the weight is duplicated. A second array of size n holds for each
node a pointer to the beginning of its adjacency array.

The I-Max-Filter algorithm, on the other hand, can be implemented to
work well with any representation that allows sampling edges in time linear

2Note that it would be counterproductive to exempt the nodes in E' from filtering
because this would require an extra test for each edge or we would have to compute
E — E' explicitly during sampling.

3The original implementation [15] uses linked lists which were quite appropriate at the
time, when cache effects were less important.

in the sample size and that allows fast iteration over all edges. In particular,
it is sufficient to store each edge once. Our implementation for I-Max-Filter
uses an array in which each edge appears once as (u,v) with u < v and the
edges are sorted by source node (u).* Only for the two small graphs for which
the JP-algorithm is called it generates an adjacency array representation (see
Figure 3).

To get a fair comparison we decided that each algorithm gets the original
input in its “favorite” representation. This decision favors JP because the
conversion from an edge array to an adjacency array is much more expensive
than vice versa. Furthermore, I-Max-Filter could run on the adjacency array
representation with only a small overhead: during the sampling and filtering
stages it would use the adjacency array while ignoring edges (u, v) with u > v.

3.2 Filtering Access Pattern

In the implementation, we access the interval maxima data structure by JP
order of source node rather than by the order in which the edges happen to
be stored. In Appendix A.1 we explain why this increases the cache efficiency
of these accesses. With the graph representation we use, this access pattern
adds one irregular cache access per node, when accessing the first edge of a
node’s list. In order for the optimization to be beneficial, these n additional
irregular accesses need to be compensated by the more regular accesses to the
table. For very small densities, then, we might lose. In the results reported
here (for graphs with up to 10,000 nodes), this access sequence resulted in a
speedup of about 5 percent. For graphs with more nodes, the table is larger
and so is the impact of this heuristic. For instance, on graphs with 25,000
nodes and just over 31,000,000 edges we observed a speedup of 11 percent on
the SUN. All reported execution times are with this optimization enabled.

3.3 Implementation on Vector-Machines

A vector-machine has the capability to perform operations on vectors (in-
stead of scalars) of some fixed size (in current vector-machines 256 or 512
elements) in one instruction. Vector-instructions typically include arithmetic
and boolean operations, memory access instructions (consecutive, strided,
and indirect), and special instructions like prefix-summation and minimum
search. Vectorized memory accesses circumvent the cache. The filtering loop

4These requirements could be dropped at very small cost. In particular, I-Max-Filter
can work efficiently with a completely unsorted edge array or with an adjacency array
representation that stores each edge only in one direction. The latter only needs space for
m + n node indices and m edge weights.

of Figure 3 can readily be implemented on a vector-machine. The edges
are stored consecutively in an array and can immediately be accessed in a
vectorized loop; indirect memory access makes vectorized lookup of source
and target vertices possible. For the filtering itself, bitwise exclusive or and
two additional table lookups in the preSuf array are necessary. Using the
prefix-summation capabilities, the edges that are not filtered out are stored
consecutively in a new edge array. Also the construction of the preSuf data-
structure can be vectorized. The only possibility for vectorization in the
JP-MST algorithm is the loop that scans and updates adjacent vertices of
the vertex just added to the MST. We divide this loop into a scanning loop
which collects the adjacent vertices for which a priority queue update is
needed, and an update loop performing the actual priority queue updates.
Using prefix-summation the scanning loop can immediately be vectorized.
For the update there is little hope, unless a favorable data structure allowing
simultaneous decrease-key operations can be devised.

3.4 Graph Types

Both algorithms, JP and I-Max-Filter were implemented in C++ and com-
piled using GNU g++ version 3.0.4 with optimization level -06. We use
a SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ processors. In
Appendix B.1 we also give measurements on a Dell Precision 530 work-
station with 1.7 GHz Intel P4 Xeon processors that show similar results.
Source codes are available at http://www.mpi-sb.mpg.de/ sanders/dfg/
iMax.tgz.

We performed measurements with four different families of graphs, each
with adjustable edge density p = 2m/n(n —1). This includes all the families
in [15] that admit dense inputs. A test instance is defined by three param-
eters: the graph type, the number of nodes and the density of edges (the
number of edges is computed from these parameters). Each reported result
is the average of ten executions of the relevant algorithm; each on a differ-
ent randomly generated graph with the given parameters. Furthermore, the
[-Max-Filter algorithm is randomized because the sample graph is selected
at random. Despite the randomization, the variance of the execution times
within one test was consistently very small (less than 1 percent), hence we
only plot the averages.

Worst-Case: p-n(n—1)/2 edges are selected at random and the edges are
assigned weights that cause JP to perform as many Decrease Key operations
as possible [15].

Linear-Random: p - n(n — 1)/2 edges are selected at random. Each edge
(u,v) is assigned the weight w(u,v) = |u — v| where u and v are the integer

9

600 T T T T T T T T T
500 W i

o
1
X
300 -X>555;5<
oo L TR e X x|

IN
o
o

S

Time per edge [ns]

100 -
Prim —+—
| I—M?x ~>I<~

0 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
Edge density

Figure 4: Worst-Case graph, 10000 nodes, SUN.

Time per edge [ns]
w
o
o
T
1

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 5: Linear-Random graph, 10000 nodes, SUN.

IDs of the nodes.

Uniform-Random: p-n(n—1)/2 edges are selected at random and each is
assigned an edge weight which is selected uniformly at random.
Random-Geometric:[15] Nodes are random 2D points in a 1 X y rectan-
gle for some stretch factor y > 0. Edges are between nodes with Euclidean
distance at most o and the weight of an edge is equal to the distance be-
tween its endpoints. The parameter « indirectly controls density whereas
the stretch factor y allows us to interpolate between behavior similar to class
Uniform-Random and behavior similar to class Linear-Random.

10

(2]
o
o

a
o
o

IN
o
o

N

o

o
T
|

Time per edge [ns]

w

o

o
ka1
!
1

|

=

o

=}
T
|

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 6: Uniform-Random graph, 10000 nodes, SUN.

3.5 Results on Microprocessors

Figures 4-6 show execution times per edge on the SUN for the three graph
families Worst-Case, Linear-Random and Uniform-Random for n = 10000
nodes and varying density. We can see that [-Max-Filter is up to 2.46 times
faster than JP. This is not only for the “engineered” Worst-Case instances
but also for Linear-Random graphs. The speedup is smaller for Uniform-
Random graphs. On the Pentium 4 (see Appendix B.1) JP is even faster
than I-Max-Filter on the Uniform-Random graphs. The reason is that for
“average” inputs JP needs to perform only a sublinear number of decrease-
key operations so that the part of code dominating the execution time of JP
is scanning adjacency lists and comparing the weight of each edge with the
distance of the target node from the current MST. There is no hope to be
significantly faster than that. On the other hand, we observed a speedup
of up to a factor of 3.35 on dense Worst-Case graphs. Hence, when we say
that I-Max-Filter outperforms JP this is with respect to space consumption,
simplicity of input conventions and worst-case performance guarantees rather
than average case execution time.

On very sparse graphs, I-Max-Filter is up to two times slower than JP,
because \/mn = ©(m) and as a result both the sample graph and the graph
that remains after the filtering stage are not much smaller than the original
graph. Hence, the runtime is equivalent to two runs of JP on the input.

Appendix B.2 includes similar plots for Random-Geometric graphs with
different stretch factors y. When the area from which node locations are
selected is close to a square, the behavior of the MST algorithms is similar
to that on the Uniform-Random graphs. As the stretch factor increases, the
graph becomes closer to a Linear-Random graph. This is reflected in the

11

T T T T
Prim (Scalar) —+—
1400 |- I-Max (Scalar) —->-- —
Prim (Vectorized) --k--

I-Max (Vectorized) -3

1200 |-

1000 |-

0
=
Q
S 800 |- |
[} N L
2 Rl
[} *’ S~o
E 600 [Ny .
= "X
-
400 | x e .
X
200 EI -
B g

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 7: Worst-Case graph, 10000 nodes, NEC SX-5
results, which show that the benefit from filtering increases with the stretch.

3.6 Results On A Vector Machine

Figures 7-9 show similar measurements on a NEC SX-5 vector computer.
For each of the two algorithms (JP and I-Max-Filter), runtimes per edge are
plotted for scalar as well as vectorized version. The results of the scalar code
show, once again, that JP is very fast on Uniform-Random graphs while I-
Max-Filter is faster on the difficult graphs. In addition, we can see that on
the “difficult” inputs I-Max-Filter benefits more than JP from vectorization.
This is to be expected; JP becomes less vectorizable when many decrease
key operations are performed, while the execution time of I-Max-Filter is
dominated by the filtering stage, which in turn is not sensitive to the graph
type. As a consequence, we see a speedup of up to 13 on the “difficult”
graphs 5.

5comparing the vectorized versions of JP and I-Max-Filter.

12

T T T T T T T ' '
Prim (Scalar) ——
1400 I-Max (Scalar) —->-- N
Prim (Vectorized) --k--
I-Max (Vectorized) &
1200 -]
X
1000 s *
—_— X\\ *"‘
_ - .
£ R = 3
. o s SRV
2 oo - K]
o o
g .
Q *
£ 600 |-]
Z
400]
200 F O N
e
0 5 SR s IR
H 2 FRR | — T f e RREe =
. | . A | |] 1 1 1

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 8: Linear-Random graph, 10000 nodes, NEC SX-5

T T T T T T T '
Prim (Scalar) —+—
1400 [I-Max (Scalar) -~~~ 1
Prim (Vectorized) -- - -
I-Max (Vectorized) £
1200]
X
1000 - \X\\\x]
—_— “AAX>>— D
7 Loy STV Y
Q
S 800 |-]
(]
@
[=8
(]
£ 600 |-]
=
o \M |
200 - O]
[0 1 SRR FO
(=] {22 . | - o] o
ol Frk e wwexgey

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 9: Uniform-Random graph, 10000 nodes, NEC SX-5

13

4 Conclusions

We have seen that the cycle property can be practically useful to design
improved MST algorithms for rather dense graphs. An open question is
whether we can find improved practical algorithms for sparse graphs that
use further ideas from the asymptotically best theoretical algorithms. One
issue is whether reducing the number of nodes based on Boruvka’s [4, 16]
algorithm has competitive speed. On current machines this seems a bit
unlikely for sequential internal memory algorithms. But node reduction has
great potential for parallel and external-memory implementations.

References

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional ap-
proach to external graph algorithms. Algorithmica, 32:437-458, 2002.

[2] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. Prentice
Hall, 1993.

[3] N. Alon and B. Schieber. Optimal preprocessing for answering on-line
product queries. Technical Report TR 71/87, Tel Aviv University, 1987.

[4] O. Boruvka. O jistém problému minimalnim. Prdace, Moravské
Prirodovedecké Spolecnosti, pages 1-58, 1926.

[5] M. L. Fredman. On the efficiency of pairing heaps and related data
structures. Journal of the ACM, 46(4):473-501, July 1999.

[6] T. C. Hu. The maximum capacity route problem. Operations Research,
9:898-900, 1961.

[7] J. J&ja. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[8] V. Jarnik. O jistém problému minimdlnim. Prdca Moravské
Prirodovédecké Spolecnosti, 6:57-63, 1930. In Czech.

[9] David Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm for finding minimum spanning trees. J. Assoc.
Comput. Mach., 42:321-329, 1995.

[10] V. King. A simpler minimum spanning tree verification algorithm. Al-
gorithmica, 18:263-270, 1997.

14

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

P. N. Klein and R. E. Tarjan. A randomized linear-time algorithm for
finding minimum spanning trees. In Proceedings of the Twenty-Sizth
Annual ACM Symposium on the Theory of Computing, pages 9-15,
Montréal, Québec, Canada, 23-25 May 1994.

J. Komlés. Linear verification for spanning trees. In IEEE, editor, 25th
annual Symposium on Foundations of Computer Science, October 24—
26, 1984, Singer Island, Florida, pages 201-206, 1109 Spring Street,
Suite 300, Silver, 1984. IEEE Computer Society Press. IEEE catalog
no. 84CH2085-9.

J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7:48-50, 1956.

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms
for constructing a minimum spanning tree. In Workshop Algorithms
and Data Structures (WADS), number 519 in LNCS, pages 400-411.
Springer, August 1991.

Nesetril, Milkova, and Nesetrilova. Otakar boruvka on minimum span-
ning tree problem: Translation of both the 1926 papers, comments,
history. DMATH: Discrete Mathematics, 233, 2001.

S. Pettie and V. Ramachandran. An optimal minimum spanning tree
algorithm. In 27th ICALP, volume 1853 of LNCS, pages 49-60. Springer,
2000.

R. C. Prim. Shortest connection networks and some generalizations.
Bell Systems Technical Journal, pages 1389-1401, November 1957.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362-391, 1983.

15

Figure 10: The active set for source node with jpNum = 1.

A Algorithmic Refinements

A.1 Cache Efficiency

By carefully selecting the order in which the edges are filtered, we can reduce
the space requirements of the interval maxima data structure from OQ(nlogn)
to O(n). Assume that the edges are stored as pairs (4, j) and that they are
sorted by source node (7). We propose to filter the edges in the order that
their source nodes were inserted by the JP algorithm.

Let the active set A; be the set of prefix and suffix arrays that can be ac-
cessed while filtering the edges (u,v) such that jpNum[u] = i (see Figure 10).
Note that each active set contains at most logn arrays corresponding to the
source node and logn arrays corresponding to the target node: from each
layer, one prefix array to the right of the source node and one suffix array
to its left are active. When filtering iterates over the edges by nondecreasing
jpNum of the source node i, each prefix or suffix array becomes active in A;
once, stays active for a while, and then becomes inactive forever. This means
that the arrays can be generated on-the-fly instead of in a preprocessing stage
such that each prefix or suffix array is generated at most once and not more
than 2n space is required at a time.

Even if the whole O(nlogn) table is calculated in a preprocessing stage,
this observation gives us a way to improve cache efficiency: filtering the edges
in the order described above reduces the irregularity of cache accessed such
that at any point in time, O(n) active entries are in cache.

A.2 TImplicitly Defined Graphs

Many applications of MSTs work with complete graphs that are defined im-
plicitly by an oracle function that returns the edge weight for any pair of
nodes [2]. In this case our algorithm can be implemented to work with
linear space: Run JP on an implicitly defined sample of the graph by pick-
ing sample edges with source v only when v is inserted into the tree. For

16

the filtering stage, we are free to iterate over the edges (u,v) such that
(jpNum[u], jpNum[v]) are visited in increasing lexicographic order. This not
only allows us to compute lookup tables just in time as described in Ap-
pendix A.1 but also means that these arrays are just scanned leading to only
O(n + n?/B) cache faults overall for cache blocks of size B. Furthermore,
the inner loop from Figure 3 can be rewritten in such a way that most values
are kept in registers. Only computing the prefix maximum for the target
node will require a single table lookup. Edges that are not filtered out are
not stored but immediately inserted into the MST of edges seen so far. Using
dynamic trees this can be implemented to run in O(n) space and O(logn)
time per opertation [1, 19]. All in all, we get an O(n?) time O(n) space
algorithm for implicitly defined graphs with very favorable constant factors.

A.3 All-Pairs Minimax Shortest Paths

A minimaz shortest path from u to v is a path P from u to v that minimizes
the weight of the heaviest edge on P. An important application of minimum
spanning trees is the observation that a minimax shortest path can be ob-
tained by taking the unique path from u to v in the minimum spanning tree
[2, 6]. In particular, the heaviest edge weight on this path can be computed
in constant time using O(nlogn + m) preprocessing time by running the JP
algorithm on the input and constructing the lookup tables described in Sec-
tions 2.1 and 2.2. Our contribution here is a very simple method with better
constant factors for the queries.

B More Experimental Results

B.1 Results on an Intel processor

Figures 11-13 show execution time on a PC per edge for the three graph
families Worst-Case, Linear-Random, and Uniform-Random, for n = 7000
nodes and varying density (Currently this machine lacks sufficient memory
for reliable measurements with n = 10000).

B.2 Random-Geometric graphs

Figures 14-16 show execution time per edge on a PC for three families of
Random-Geometric graphs; with stretch factors y = 2,160 and 500. In the
first family, the nodes are spread in something close to a square, and the MST
algorithms behave as on the Uniform-Random graphs; JP is faster because

17

250 T T T T T ' i I
Prim —+—
I-Max ——X--
200 T]
|
z |
© 150 K]
S]
Q 7\
g
o 100 (-]
E
[~
50 | v]
R mmHKmmm sy
0 I T R T N M N N

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 11: Worst-Case graph, 7000 nodes, PC.

250 T T T T T T T T
\ Prim —+—
i I-Max --X--
I
200 .
_ \
(] 1
@ 150 [X
o 150 -
g X
. X
[}
g X
100 + -
g
= ~
50 |- e S .
TR X
0 1 1 1 1 1 1 1 1 1

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 12: Linear-Random graph, 7000 nodes, PC.

250 T T T T T T T
| Prim —+—
! I-Max --X--
U
200 & —
. \
] |
k=R X
© 150 M —
27 %
o X
g X
o
o 100 |
E %
E
0 | | | | | | | | |

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 13: Uniform-Random graph, 7000 nodes, PC.

18

250 T T T T T T T T
Prim —+—
I-Max —-X--

200

Time per edge [ns]

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 14: Random-Geometric graph, stretch factor 2, 7000 nodes, PC.

250

T T T T T T
Prim —+—
I-Max —->--

200

150

DIV R

/
/
/
X
|
/
i
X
1

100

Time per edge [ns]

50

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 15: Random-Geometric graph, stretch factor 160, 7000 nodes, PC.

there are few decrease keys operations. As y increases, the graphs become
closer to the Linear-Random family and the plots, accordingly, reflect an
increasing gain from filtering.

B.3 Larger graphs with fixed density

Figures 17 and 18 show the effect of increasing the size of a Linear-Random
graph while keeping the density fixed at 0.1. The results show again that
[-Max-Filter is faster than JP on large graphs and that I-Max-Filter bene-
fits more from the vector machine. Furthermore, these effects become more
significant as the graph size increases.

19

250 | | T T T T T T T T
, Prim —+—
‘. I-Max —-X--
]
200 t- i
o
0 |
5 1
J
o 150’*\ i
ks X
g
o 100 [1
£ ~
[~ AN
K-
s
0 L TRy]
0 TN R N N TR R R B!

01 02 03 04 05 06 07 08 09 1
Edge density

Figure 16: Random-Geometric graph, stretch factor 500, 7000 nodes, PC.

500 ———y ———r
Prim (Linear-Random) —+—
450 - I-Max (Linear-Random) --x--

Time per edge [ns]
N
o
o

100 -
50 |- —

) L ol L L
1000 10000 100000
Number of nodes

Figure 17: Linear-Random graph, density 0.1, SUN.

20

Prim (Scalar) —+—
1400 |- I-Max (Scalar) —->-- —
Prim (Vectorized) --k--
I-Max (Vectorized) -3
1200 : —
\
1000 =\ -
— o
) .
k=N
[}
< 800 -
(]
@ |
o "
)
£ 600 . -
= x
400 SN -
B
200 | B .
e
|
0 . M | . L
1000 10000 100000
Number Of Nodes

Figure 18: Linear-Random graph, density 0.1, NEC SX-5.

Graph Type Edge Density | Filter Time (sec) | Total Time (sec)
Uniform-Random | 0.5 4.75 6.26
Uniform-Random | 0.9 8.80 10.70
Linear-Random 0.5 4.56 5.90
Linear-Random 0.9 8.72 10.36
Worst-Case 0.5 4.15 5.60

Worst-Case 0.9 7.73 9.34

Table 1: Filtering time compared to other stages. All graphs are with 10000
nodes.

B.4 Lower Order Terms Of The I-Max-Filter algorithm

Table 1 shows the runtime on a SUN of the filtering stage as well as the
total running time of the I-Max-Filter algorithm, for several instances. The
difference between the two figures is the time required for generating a sample
of the edges, converting it to adjacency list form, running JP on it and after
the filter stage, converting the remaining edges into adjacency list form and
running JP on them. The results indicate that the filtering stage strongly
dominates the execution time.

21

o

INFORMATIK

Below you find

a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2002-4-002

MPI-1-2002-4-001

MPI-I-2002-2-008

MPI-I-2002-2-007

MPI-I-2002-1-008

MPI-1-2002-1-002
MPI-I-2002-1-001

MPI-1-2001-4-005

MPI-1-2001-4-004

MPI-1-2001-4-003

MPI-1-2001-4-002

MPI-1-2001-4-001

MPI-1-2001-2-006

MPI-1-2001-2-005

MPI-1-2001-2-004

MPI-1-2001-2-003

MPI-1-2001-2-002

MPI-1-2001-2-001

F. Drago, W. Martens, K. Myszkowski, ?
H. Seidel
M. Goesele Tutorial Notes ACM SM 02 A Framework for the

W. Charatonik, J. Talbot
W. Charatonik, H. Ganzinger

P. Sanders, J.L. Traff

F. Grandoni
T. Polzin, S. Vahdati

H.P.A. Lensch, M. Goesele, H. Seidel
S.W. Choi, H. Seidel

K. Daubert, W. Heidrich, J. Kautz,
J. Dischler, H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,
W. Heidrich, H. Seidel

H. Nivelle, S. Schulz

V. Sofronie-Stokkermans

H. de Nivelle

S. Vorobyov

P. Maier

U. Waldmann

Acquisition, Processing and Interactive Display of High
Quality 3D Models

Atomic Set Constraints with Projection

Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi

The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

Incrementally maintaining the number of 1-cliques

Using (sub)graphs of small width for solving the Steiner
problem

A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models
Linear One-sided Stability of MAT for Weakly Injective

Domain

Efficient Light Transport Using Precomputed Visibility

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

Image-Based Reconstruction of Spatially Varying
Materials

Proceeding of the Second International Workshop of the
Implementation of Logics

Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

A Set-Theoretic Framework for Assume-Guarantee
Reasoning

Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

MPI-I-2001-1-007

MPI-1-2001-1-006

MPI-1-2001-1-005

MPI-1-2001-1-004

MPI-I1-2001-1-003
MPI-I-2001-1-002

MPI-1-2001-1-001
MPI-I-2000-4-003

MPI-I-2000-4-002

MPI-I-2000-4-001

MPI-1-2000-2-001

MPI-1-2000-1-005

MPI-1-2000-1-004

MPI-1-2000-1-003

MPI-1-2000-1-002
MPI-1-2000-1-001

MPI-1-1999-4-001

MPI-I-1999-3-005
MPI-1-1999-3-004
MPI-1-1999-3-003

MPI-I-1999-3-002

MPI-1-1999-3-001

MPI-I-1999-2-008

MPI-1-1999-2-007
MPI-1-1999-2-006

MPI-1-1999-2-005
MPI-I-1999-2-004

MPI-I-1999-2-003

MPI-1-1999-2-001
MPI-1-1999-1-007

MPI-1-1999-1-006
MPI-1-1999-1-005
MPI-I-1999-1-004

MPI-1-1999-1-003

T. Polzin, S. Vahdati

T. Polzin, S. Vahdati
T. Polzin, S. Vahdati

S. Hert, M. Hoffmann, L. Kettner, S. Pion,
M. Seel

M. Seel
U. Meyer

P. Krysta
S.W. Choi, H. Seidel

L.P. Kobbelt, S. Bischoff, K. K&hler,
R. Schneider, M. Botsch, C. Rossl,
J. Vorsatz

J. Kautz, W. Heidrich, K. Daubert
F. Eisenbrand

M. Seel, K. Mehlhorn
K. Mehlhorn, S. Schirra
P. Fatourou

R. Beier, J. Sibeyn

E. Althaus, O. Kohlbacher, H. Lenhof,
P. Miiller

J. Haber, H. Seidel

T.A. Henzinger, J. Raskin, P. Schobbens
J. Raskin, P. Schobbens
T.A. Henzinger, J. Raskin, P. Schobbens

J. Raskin, P. Schobbens
S. Vorobyov

A. Bockmayr, F. Eisenbrand

G. Delzanno, J. Raskin

A. Nonnengart

J. Wu

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik
C. Burnikel, K. Mehlhorn, M. Seel

M. Nissen
J.F. Sibeyn
M. Nissen, K. Weihe

P. Sanders, S. Egner, J. Korst

Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

Partitioning Techniques for the Steiner Problem

On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

An Adaptable and Extensible Geometry Kernel

Implementation of Planar Nef Polyhedra

Directed Single-Source Shortest-Paths in Linear
Average-Case Time

Approximating Minimum Size 1,2-Connected Networks

Hyperbolic Hausdorff Distance for Medial Axis
Transform

Geometric Modeling Based on Polygonal Meshes

Bump Map Shadows for OpenGL Rendering

Short Vectors of Planar Lattices Via Continued
Fractions

Infimaximal Frames: A Technique for Making Lines
Look Like Segments

Generalized and improved constructive separation
bound for real algebraic expressions

Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

A Powerful Heuristic for Telephone Gossiping

A branch and cut algorithm for the optimal solution of
the side-chain placement problem

A Framework for Evaluating the Quality of Lossy Image
Compression

Axioms for Real-Time Logics
Proving a conjecture of Andreka on temporal logic

Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

The Logic of Event Clocks

New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

Cutting Planes and the Elementary Closure in Fixed
Dimension

Symbolic Representation of Upward-closed Sets

A Deductive Model Checking Approach for Hybrid
Systems

Symmetries in Logic Programs

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

Automata on DAG Representations of Finite Trees

A simple way to recognize a correct Voronoi diagram of
line segments

Integration of Graph Iterators into LEDA
Ultimate Parallel List Ranking ?

How generic language extensions enable “open-world”
desing in Java

Fast Concurrent Access to Parallel Disks

MPI-I-1999-1-002

MPI-1-1999-1-001

MPI-1-98-2-018

N.P. Boghossian, O. Kohlbacher,
H.-. Lenhof

A. Crauser, P. Ferragina

F. Eisenbrand

BALL: Biochemical Algorithms Library

A Theoretical and Experimental Study on the
Construction of Suffix Arrays in External Memory

A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

