pile time. Second, we assume no problems of finite
precision. Both of these assumptions could lead to
difficulties in an actual implementation. Whenever the
effective position of a computation is moved, as it is in
these strength reduction methods, proper attention
should be paid to such ‘“‘safety”” considerations, lest an
unexpected error interrupt occur. It does no good to
produce a faster version of the program if the faster
version is incorrect. The interested reader can find an
expanded treatment of safety in [11].

A final assumption made in using such a strength
reduction technique is that it is profitable. The profita-
bility assumption is based on the observations that
code within a loop is executed frequently and multipli-
cations are significantly more expensive than additions
on most machines. These assumptions are not valid in
all cases, however. For example, if we were to replace
a multiplication on a little-used branch in the loop by
additions on more frequent paths, we might signifi-
cantly deoptimize the compiled code. This situation
can be avoided by a more careful analysis of profitabil-
ity such as the one described in [12].
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1. Introduction

Formula manipulation is a basic activity in many
branches of mathematics, not only because of a natural
desire to express relationships in their simplest possible
terms, but also as a means to develop new insights
about the problem in hand. In computer science we
manipulate programs rather than formulas or equa-
tions, but the activity is much the same. Usually the
chief object of program transformation is to produce
not necessarily a simpler program, but at least a
program which is more efficient in an appropriate
sense, say one that uses less space or has a faster
running time.

As Knuth [8] observes, a “‘calculus” of program
transformations is gradually emerging, a set of opera-
tions which can be applied to programs without re-
thinking the specific problem each time. Among such
operations one may mention the following: doubling
up of loops, Boolean variable elimination, and a num-
ber of techniques for recursion elimination. The first
two are described in Knuth [8] and are embodied in
the linear speed-up transformation of Bird [2]; the last
is described in Bird [3] and Darlington and Burstall
[7], among others. Recursion elimination is particularly
important because so many algorithms can be ex-
pressed naturally and succinctly in recursive form,
even though this form may not be the most suitable
one for execution on a computer. Instead of using the
facilities for recursion provided by the programming
language in which the algorithm is to be represented
(always assuming, of course, that the language does
possess such a facility) and relying on the compiler to
take care of the details, the programmer can often
obtain a significant increase in efficiency by designing
his or her own implementation of recursion, specially
tailored to the given problem.

The particular technique of program transformation
to be described in this paper represents a sort of
inverse activity to recursion elimination, namely the
conscious introduction of recursion where none existed
before. For this reason, we call it recursion introduc-
tion. Although recursion makes its appearance only as
an intermediate step and is eliminated again almost
immediately, the insight gained leads to much faster
versions of the programs to which the technique can
be applied. The characteristic property of the programs
which can make use of recursion introduction is that
they manipulate a stack. The relationship between
recursion and stacks is well known; indeed it is pre-
cisely this relationship that is exploited in many meth-
ods of recursion elimination. What is not so often
appreciated is that the relationship is a complementary
one; the manipulation of a stack can be eliminated in
favor of a recursive mode of operation (see Brown,
Gries, and Szymanski [5] or Chandra [6] for a precise
formulation and proof of this result). It is this idea
which forms the basis of the technique.
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Recursion introduction would be a pointless activity
were it not for the fact that the recursion can be
eliminated again without recourse to a stack. To do
this a second transformation called tabulation is in-
voked. Briefly, tabulation is the process of reducing
the amount of work done in calculating the values of a
recursively defined function f by storing the values in a
table. In this way, each value of f is computed just
once from the recursive definition; subsequent requests
for the value are obtained simply by looking up the
table. Tabulation is thus a variant of the well-known
technique of dynamic programming, discussed in Aho,
Hopcroft, and Ullman [1]. Once the general strategy
of tabulation has been adopted, it can often be imple-
mented very efficiently by taking into account the
properties of the function under consideration. We
shall see the technique at work in Sections 3 and 4.

Although programs which manipulate a stack are
not, perhaps, that common (excepting the case where
the stack has been introduced specifically to eliminate
recursion), there is at least one important area in
which such algorithms are conceived. This is the area
of pattern matching. The simplest example of a pattern
matching problem is the problem of determining
whether a given string of m symbols, called a pattern,
occurs as a substring of another given string of n
symbols, called a text: As we shall see in Section 3, a
comparatively simple stack algorithm can be given to
solve this problem, one which works within O(mn)
steps. Recently, a linear time (i.e. O(m + n)) solution
has been given by Knuth, Morris, and Pratt [9]. The
discovery of the fast algorithm has an interesting his-
tory which is detailed in [9]. Briefly, the naive stack
algorithm conforms to the conditions of a theorem due
to Cook (discussed in Aho, Hopcroft, and Uliman
[1]), who showed by a fairly complicated simulation
that certain stack algorithms, no matter how long they
took to execute, could be simulated in linear time. By
pondering the details of this simulation, Knuth was
able to extract the essentials of the fast pattern match-
ing algorithm. This algorithm was later generalized so
that its running time was not dependent on the size of
the input alphabet. Cook’s theorem is important be-
cause it shows that for a variety of problems linear
solutions do exist. However, as Aho, Hopcroft, and
Ullman [1] remark, the constant factor arising from
the use of Cook’s simulation directly is quite large; so
further search for better linear solutions is necessary.
The immediate significance of recursion introduction,
as the following examples show, is that once, possibly
inefficient, stack algorithms are given, they can be
mechanically transformed into fast linear solutions for
the problem.

In Section 3 we demonstrate how the fast linear
pattern matching algorithm can be derived in a few
steps from a simple nonlinear stack algorithm. A
second example of the use of recursion introduction is
considered in Section 4, where a nonlinear stack algo-
Communications November 1977

of Volume 20
the ACM Number 11



rithm for determining whether given patterns in a set
are all different is transformed into a linear algorithm.
The next section outlines the recursion introduction
method.

2. Recursion Introduction

The basic strategy governing the conversion of
stack algorithms into recursive programs is to regard
each symbol on the stack as recording an obligation to
execute an appropriate recursive procedure. More pre-
cisely, if at some stage during the operation of a stack

algorithm P the stack contains symbols s,, 55, . . . , Su,
then the recursive program Q will be designed so that
at the corresponding stage the calls R(s,), R(sy), . . . ,

R(s,) of a recursive procedure R are waiting for future
evaluation. The definition of R is determined by the
instructions of P which process the stack symbols.
Rather than deal with the general implementation of
this strategy for an arbitrary stack algorithm, we con-
sider only the case where P is an algorithm of the form
S = empty;
A;
while S not empty do

begin z < S;

B

end;

C

in which the processing of a stack S is determined by a
single loop. Portions A and B of P may contain stack
assignments (written in the form § < x) as well as
nonstack instructions, while C may contain only the
latter type. The important point is that P may not
contain any further instructions of the form x & S.
Not only is this form of algorithm sufficient for the
purposes of the present paper, it also enables recursion
to be introduced in a straightforward fashion. The
recursive program  corresponding to P takes the
form

begin procedure R(x);

begin z := x; B* end;
A% C
end,

where A* and B* are translations of the portions A
and B, respectively, and may involve calls to the
procedure R. To see how A* is defined, suppose that

for a given vector v of variables the overall effect of A
is to carry out the operations

vi=f); SEx; SEx,; .. 3 85Ex,

so that the string x, x,—, . . . x, is added to the top of
the stack. The principle determining the construction
of A* is that A* should, in effect, carry out the
operations

v = f(v); Rxs); Rxp_y); . . . ; R(x,)

in accordance with the strategy outlined above. Exactly
the same principle operates in translating B into B*.
Since C does not contain stack instructions, we have
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C* = C. Notice that the state vector v is treated as
global to the procedure R. Once the principle of the
translation is understood, there is no need to formulate
exact rules for the construction of A* and B*, as
particular cases may best be dealt with in different
ways. For instance, in the case that B contains no
assignment to the variable z, and so only the initial
value of z is relevant to B, the instruction z := x can
be removed from the body of R and the definition

procedure R(z);
begin B* end

used instead.

The examples which follow in Sections 3 and 4
illustrate further aspects of the method and also contain
details as to how the recursion is eliminated once
again without recourse to a stack.

3. First Example of Recursion Introduction

In this section we apply recursion introduction to
the basic pattern matching problem and hence derive
the fast algorithm of Knuth, Morris, and Pratt. The
problem is this: Given a pattern of symbols p[1], p[2],

., plm], to determine whether or not it matches
some substring of a text ¢[1], ([2], . . . , f[n]. We can
design a stack algorithm to solve this problem in the
following way. First, the text is stored on a stack §,
with ¢[1] on top, and a pointer is initialized to the first
symbol of the pattern. At this stage the first pass over
the pattern begins (in general, the effect of the kth
pass will be to determine whether or not the pattern
occurs as an initial substring of #k], t[k + 1], ...,
f[n]): As long as the stack is not empty, the top symbol
is removed and compared to the current symbol of the
pattern, provided such a symbol exists. If they match,
then the pointer is advanced and the process repeated.
If they do not match, then the stack is restored to its
initial configuration at the beginning of the pass by
loading the pattern symbols to the left of the pointer.
The first symbol on the stack is then removed, ready
for the next pass. If the pattern is exhausted during a
pass, then the algorithm stops, indicating a successful
match; otherwise, when all the passes have been com-
pleted, the algorithm stops, indicating no match.

This description is formalized in the following pro-
gram:

Algorithm 1

begin stack S; S = empty;
j=n+1;repeatj :=j - 1; 5§ < ¢[jjuntilj = 1;
while j < m and S not empty do

begin x < S;
if p[j] = x thenj :=j + 1 else
ifj + 1 then
begin § < x;j=j - 1;
while j # 1 do
begin S < p[jl;j=j — 1 end
end
end;
ifj > m then MATCH else NO MATCH
end
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The first step in the process of simplifying this
algorithm is to eliminate the stack § by introducing
recursion in the manner described in Section 2. Prior
to the stack processing loop, the stack S is initialized
to contain the symbols {[1], f{2], . . . {n] in order, and
j is set to 1; so the recursive algorithm takes the form

Algorithm 2

j=1;fork := 1 to n do R(t[k]);
ifj > m then MATCH else NO MATCH.

The definition of R is determined by the body of the
central loop and is given by

procedure R(x);
begin if j > m then goto M;
if p[j] = x thenj :=j + 1 else
ifj # 1 then
begin T'; R(x) end
M: end

The first point to note is the presence of the testj >
m. This reflects the fact that the central loop of
Algorithm 1 could equally well have been stated in the
slightly different form
while S not empty do

begin x < §; if j > m then goto M;

the difference being only that this version always
empties the stack before terminating.

Second, note that the definition of R involves a call
to a further as yet unspecified procedure T'; this proce-
dure will be designed to simulate the stack operations
in the code

j=j— 1, whilej # 1 do begin S < p[j];j =j —~ 1 end

Finally, observe the terminal call R(x) in the defi-
nition of R; this corresponds to the assignment § < x
in the central loop. Actually, this call can immediately
be eliminated in favor of a direct jump to the beginning
of R. The principle involved here is the simplest case
of recursion elimination, namely, when the last action
of a recursive procedure is to call itself, then that call
can be replaced, after reassigning the parameter if
necessary, by a direct jump to the first instruction of
the procedure. We shall not pause to give a justification
of this principle as an excellent discussion can be found
in Knuth [7]. Eliminating the call gives the following
new definition for R:
procedure R(x);

begin L: if j > m then goto M;
if p[j] = x thenj =j + 1 else
ifj # 1 then begin T'; goto L end
M: end

We can even go one stage further and incorporate the
body of R directly into Algorithm 2. After simplifying
the looping structure in an obvious way, we obtain the
following version of the algorithm:

Algorithm 3
j=k=1;
while Xk < n andj = m do
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begin if p[j] = «[k] then beginj :=j + 1;k =k + 1 end
elseifj = 1thenk =k + lelseT
end;
if j > m then MATCH else NO MATCH

We are thus left with the definition of T to consider.
One way of defining T is as follows:
procedure T

begin integer k;j =j — 1;

if j # 1 then begin k := j; T; R(p[k]) end

end
To justify this definition, observe that the code which
T has to simulate places the string p[2] p[3] . . . plj —
1] on the stack and also sets j to 1. This translates in
the recursive version to procedure calls R(p[2]), . . .,
R(p[j — 1]) which are invoked after j has been set to 1.
One way of achieving this is given above. In a similar
manner as before, we can now substitute the definition
of R(p[k]) directly into the body of procedure T. This
eliminates all references to procedure R; so we are left
with just the single recursive procedure T.

As preparation for the next step, notice that the
effect of T is simply to change the value of j. In other
words, we can regard T as an assignment of the form j
= f(j) for an appropriate function f. We can even say
what f is since its definition can be extracted from that
of T. We have
function f(x);

begin integer y;

if x = 2 then return 1 else
beginy = f(x — 1);
L:ify > m then return y else

if p[y] = p[x — 1] then return y + 1 else
if y # 1 then begin y = f(y); goto L end else
return y

end

Although the definition of f is given for a general
x, we are only interested in the range 2 =< x < m,
simply because the assignment j := f(j) (i.e. procedure
T) is only invoked for 2 < j <= m. We are guaranteed
that f is well defined in this range since f has been
derived from a terminating algorithm.

At this stage we apply the idea of rabulation to
reduce the amount of work done in calculating the
values of f. The basic strategy is to compute the value
f(x) from the recursive definition just once for each x
and store the result in a table F so that F[x] = f(x).
Subsequent calculations of f(x) are obtained simply by
using F[x] instead. Initially each entry in F is set to
zero, and the recursive call y := f(y) in the definition
of f is replaced by the code

if F{y] + O then y := F[y] else
begin z := f(y); F[y] == z;y = z end

Since f(x) > 0 for x = 2, these instructions determine
whether or not the value of f(y) has previously been
calculated, and, if not, then the value is calculated and
stored in the table for future use. Similar instructions
have to be defined for the assignmenty = f(x — 1).

This general strategy can be implemented more
efficiently by taking advantage of the properties of f.
It is not too difficult to show that f(x) < x forx = 2, so
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the value of f(x + 1) depends only on the values f(2),
..., f(x). This means we can compute F sequentially,
as in the following algorithm:
begin array F[2 : m];

F[2] = 1;

forx == 3tom do

beginy == F[x — 1];
L:if p[y] = p[x — 1] then F[x] := y + 1 else

ify + 1 then
begin y := F[y]; goto L end
else F[x] =1

end
end

Notice that the array element F[1] does not exist.
We can, however, simplify the logic of the algorithm
by introducing a value F[1] = 0 and constructing the
array as follows:
begin array F[1 : m];

F[1] == 0; F[2] :== 1;
forx = 3tom do
beginy = F[x — 1];
while y > 0 and p[y] # p[x — 1] doy = F[y];
Flx]=y +1

end

end

Having calculated the array F, we can replace the
procedure call 7 in Algorithm 3 by the assignmentj :=
F[j]. This gives us the Knuth-Morris-Pratt algorithm.
Although we shall not prove it here, the computation
of F and the pattern matching procedure itself both
have a running time linear in m + n, the constant
factor being independent of the size of the input
alphabet. (See [1] or [9].)

Notice how the function f has been revealed to us
simply by a sequence of mechanical transformations
from the stack algorithm. At no stage was it necessary
to relate f to the particular symbols in the pattern or
text, even though a natural interpretation of f does
exist (again, see [1] or [9]). Such a situation seems to
be in the best mathematical tradition: A purely formal
manipulation of expressions has brought forth new
and unexpected relationships about the problem under
consideration.

3. Second Example of Recursion Introduction

Our second example of the use of recursion intro-
duction deals with the problem of recognizing a se-
quence of distinct patterns. Given is a string cx,cx,

. cx,c of symbols, where each x; is a (possibly
empty) string of symbols over some alphabet 3, and ¢
is a symbol not in 3. The problem is to determine
whether or not there exist j and k, with j # k, such
that x; = x,.

An algorithm which uses a stack § and a text
pointer j can be developed for this problem based on
the following idea. At stage k (1 < k = n) in the
computation, § is empty and j points to the symbol ¢
immediately following the pattern x,. S is now initial-
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ized by back-spacing j and copying the input onto §
until a symbol ¢ is reached. Thus § will now contain
xxc. The pointer j is advanced to the first symbol of
Xr+1, and the following process now takes place. As
long as the top stack symbol matches the current input
symbol, the stack is popped and the pointer is ad-
vanced. If there is a mismatch, the stack is restored by
back-spacing the pointer to the previous ¢ while copy-
ing each input symbol back onto S. The pointer is then
advanced again to the first symbol of the next pattern,
regarding pattern x, as following x,, and the process is
repeated. Clearly, the stack must be emptied by this
procedure because eventually we shall successfully
match x;c against itself if no previous match were
found. Thus the stack will be emptied either because
we match x, against an x,, for k < m < n, in which
case we can immediately terminate the algorithm and
reject the input, or because we match x; against itself.
We know there can be no m with 1 < m < k such that
Xn = X, otherwise this fact would have been detected
at stage m. In the case that x; is matched only against
itself, the pointer is advanced to the next ¢, and stage
k + 1 is entered if k + 1 < n. If there are no more
stages to do, the algorithm terminates and the input is
accepted.

We can formalize the algorithm with the help of an
auxiliary function o, designed so that o(j) gives the
position of the first ¢ to the right of position j. The
definition is
function o(x);

begin repeat x := x + 1 until a[x] = c;

if x = N then return 0 else return x

end

Here we are supposing that the complete input text is
stored in an array q[0], . . . , a[N]. The central loop
on which the algorithm is based can now be described
as follows:

Central Loop

repeat S & afjl;j :=j — 1 until a[j] = ¢;
j=o() +1;
while S not empty do
begin b <& S;
ifa[j]=1>b thenj :=j + 1 else
begin S &b;j=j - 1;
while a[j] # ¢ do
begin § < a[jl;j :==j — 1 end;

j=o()+1
end
end;
j=j—-1

For the reasons given above, this program must always
terminate. If the final value of j is equal to its initial
value, then we must go on to the next stage of the
computation, as no proper match was found; otherwise
we terminate the algorithm and reject the input. The
complete algorithm can therefore put in the form

Algorithm 1
j=0o0);x =j;
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whilej # 0 andx = j do
begin central loop;
if x = j then beginj := o(j); x = j end
end;
if x = j then NOMATCH else MATCH

Once again, the transformation used in the previous
example is applied to reduce Algorithm 1 to a linear-
time algorithm. We replace the use of S by calls to a
recursive procedure R. If at some point during the
execution of algorithm 1 the stack contains afj,], . . .,
alj.), then, at the corresponding point during the
recursive algorithm, procedure calls R(j,), . . . , R(jn)
are waiting for evaluation. The definition of R is
extracted from the definition of central loop and is as
follows:
procedure R(k);

begin if a[j] = a[k] thenj := j + 1 else
begin T; R(k) end
end

Here T is a procedure which simulates the code

i=i-1
while 4[] # c do begin S < aj];j :=j — 1 end;
j=o() + 1.

Its definition is thus

procedure T;
begin integer k;j :=j — 1;
if a[j1 = ¢ thenj = o(j) + 1 else
begin k = j; T; R(k) end
end

T can also be used to define the appropriate simulation
of central loop, which now becomes the operations

k=j;T;Rk);j=j— 1

The full algorithm therefore takes the following
form:

Algorithm 2
j=0o0);k =j;
whilej + Oand k = j do
begin T; R(k);j ==j — 1;
if k = j then begin j = o(j); k = j end
end;
if kK = j then NOMATCH else MATCH

The explicit recursion in procedure R can be eliminated
as in Section 3 and yields the new definition

procedure R(k);
begin while a[j] # a[k] do T;
j=j+1
end

This leads to the following new definition of T

procedure T';
begin integer k;j = — 1;
if a[j] = c thenj = o(j) + 1 else
begin k = j;
repeat T until a[j] = a[k];
j=j+1
end
end

As in Section 3, we can regard T as equivalent to
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an assignment j := f(j) , where we have

function f(x);
begin integer y;
ifa[x — 1] = ¢ then return o(x — 1) + 1 else
beginy =x — 1;
repeat y := f(y) wntil a[y] = a[x — 1];
returny + 1
end
end

"At this stage the full algorithm takes the form
Algorithm 3
j=0a0);k =j;
whilej + 0 and k = j do
begin repeat j := f(j) until a[j] = a[k];
if k = j then begin j == o(j); k := j end
end;
if k = j then NOMATCH else MATCH

Looking closely at Algorithm 3, we can discover
the way to further simplification. Suppose we letj =
g(k) abbreviate the instructions

j = k; repeat j = f(j) until a[j] = a[k].
Using g we can put Algorithm 3 in the form

Algorithm 4

j=o(0);

while j + 0 and j = g(j) doj = o(j);
if j = 0 then NOMATCH else MATCH.

This very simple statement of the algorithm suggests
that g is going to be a more useful function than f. We
can define f in terms of g as follows:

function f(x);
ifa[lx — 1] = c thenreturn o(x — 1) + 1
elsereturng(x — 1) + 1

This means that we can give a definition of g solely in
terms of g, namely,
function g(x);
begin integer y; y = x;
repeat ifa[y — 1] =ctheny :=o(y — 1) + 1
elsey :=g(y - 1) +1
until a[y] = afx];
return y
end

This recursive definition of g can be simplified by a
change of variable. If we replace y by y + 1, then the
following definition is obtained:
function g(x);
begin integer y; y = x — 1;
repeat if a[y] = ¢ then y = o(y)

else y := g(y)
until aly + 1] = afx};
returny + 1
end

We can even go one stage further. Notice that a[x]
= a[g(x)]; in particular, g[x] = c if and only if a[g(x)]
= ¢. Now we certainly have a[o(x)] = ¢ by the
definition of o, so we can remove the test a[y] = ¢
from the body of the loop and obtain the following
more efficient version:

function g(x);

Communications November 1977
of Volume 20
the ACM Number 11



begin integer y;y :=x — 1;
if a[y] = ¢ then repeat y == o(y) until o[y + 1] = a[x]
else repeat y := g(y) until aly + 1] = a[x];
returny + 1
end

As in the previous section, the next problem to be
faced is how to compute the values of g(x) for1 = x =
N by a faster process than simply using the definition
of g. Once again, the answer is to employ tabulation,
whereby the values of g are computed once only and
stored in a table for subsequent use. Tabulation can be
implemented directly, but it is instructive to see how a
more efficient version goes. What we need is the
interesting result that g in fact defines a permutation of
1,2,...,N,i.e.

(@l =gx)=N, forl=x=N, and

(b) glx) = g(y) impliesx =y, forl=x,y =N.

Of course this property of g must be proved solely
from the given definition. We outline only how to
prove (b) since (a) is reasonably straightforward. The
proof of (b) is instructive because it illustrates the use
of a general induction technique which deserves to be
more widely appreciated. This is the method of com-
putational induction, which is described fully in Morris
[11], Manna [10], and Bird [4].

Briefly stated, the idea is to consider an infinite
sequence of partial functions g, g,, . . . which repre-
sent, in a suitable sense, “approximations” to the
“limit” function g. We can then prove any property of
g by proving it for each approximation function and
passing to the limit. The sequence of approximations
is defined by taking g, to be the everywhere undefined
function, and defining g,., by exactly the same defini-
tion as g, except that recursive calls to g are replaced
by calls to g,. In the present case, this simply means
that we replace y := g(y) by y := gi(y) in the definition
of g. The result we wish to prove is the following:

(c) for all k = 0 and all x and y, if g,(x) and g,(y) are

defined and g;(x) = gi(y), thenx = y.

The proof is by induction on k. The case £k = 0 is
vacuously true since neither go(x) nor gy(y) can possibly
take defined values. For reasons of space we shall not
give the details of the straightforward induction step
except to say that the proof divides into three cases
depending on whether the symbols a[x — 1] and
a[y — 1] are both equal to c, both different from ¢, or
otherwise.

Now that we know g is a permutation of 1, 2,
..., N, the tabulation of g can be carried out effi-
ciently in an order determined by the cycle structure
of g. More precisely, we can compute the table G
which holds the values of g by the following scheme:

x =1
while x = N do
begin 1. Compute the entries G[x], G[G[x]], . .. etc., stopping
when we reach an n such thatx = G"[x];

2. Increment x to the first uncalculated value of G[x]
end
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This scheme can be refined into the following
program.

1. array G[1: N + 1]; clear G;
2. x=1;
3. whilex < N do
4. beginy =z =x — 1;
5. repeat if a[y] = ¢ then repeat y = o(y)
until [y + 1] = a[x]
6. else repeat y := G[y]
until afy + 1] = a[x];
7. Gix]=y + 1;
8. x = Gfx]
9. until y = z;
10. repeat x == x + 1 until G[x] = 0
11. end

In this program the operation clear G sets every entry
of G to zero. The element G[N + 1] = 0 serves to
terminate the search for new uncalculated values as
soonasx =N + 1.

In order to time the program, let n be the total
number of patterns in the input string, k be the number
of cycles of the permutation g, and s the size of the
alphabet of symbols over which the input string is
defined. We estimate the total contributions of each
line of the program as follows:

Line 1. (N + 1) units to clear the array.

Line 2. 1 unit.

Lines 3, 4. (3k + 1) units, as there are k cycles and so
k executions of the loop.

Lines 5 to 9. Less than (6N + 2ns) units. Note first
that the instruction G[x] := y + 1 is executed exactly
N times; this means the body of the outer loop is
executed N times and so contributes 4N units. The
loop in line 6 contributes at most 2N units since the
instruction y := G[y] cannot be executed more than
N times. The contribution of 2 ns units from line 5
is more difficult to see, but a little thought shows
that the instruction y := o(y) (which we can count
as 1 unit as o can itself be easily tabulated) is
executed exactly » times for each distinct symbol in
the first position of a pattern, and there may be as
many as s such symbols.

Line 10. 2N units. To see this, observe that the final
value of x on exit from the repeat loop is just the
same as it was on entry. Thus the instruction x := x
+ 1 in line 10 executed exactly N times.

Since there may be as many as N patterns, i.e. n <
N, the running time T(N) of the tabulation of G
satisfies

T(N) =9N + 3 + 2ns < 2sN + 9N + 3.

Notice that, although T(N) = O(N), the constant of
proportionality is dependent on the size of the input
alphabet. It is straightforward to verify that the running
time of Algorithm 4 is O(N), as is the necessary
tabulation of o. Algorithm 4 amounts to the process
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of checking whether or not G[j] = j for each j such
that afj] = c. In fact, table G gives added information
about the input since the patterns x; and x;, are identical
just in the case that G[o¥(0)] = ¢*(0). We have there-
fore arrived at the desired linear algorithm for the
original problem.

This example has been treated at some length
because of the many fascinating issues involved, and it
is worthwhile to summarize the main steps. First, we
employed the idea of introducing recursion to eliminate
the stack operations. Then we manipulated and simpli-
fied the resulting recursive definitions to reveal, in
turn, the recursive functions f and g. Next we looked
more closely at g, saw that it was a permutation, and
used this fact in an efficient tabulation of g. Finally,
we analyzed the resulting algorithm to establish its
O(N) running time. ‘

4. Conclusions

We are gradually learning about program manipu-
lation, but a lot remains to be discovered. It is surpris-
ing how often programs can be optimized, constants of
proportionality can be reduced, even asymptotic
growth rates can sometimes be lowered. As Knuth
observes, it is important that these optimizations are
carried out in the source language of the algorithm,
and therefore subject to the programmer’s imagination
and control. The manipulations described in the pres-
ent paper mirror very closely the style of derivation of
mathematical formulas, and we did not start out, as no
mathematician ever does, with the preconception that
such derivations should be described with a view to
immediate mechanization; such a view would severely
limit the many ways in which an algorithm can be
simplified and polished. As the length of the deriva-
tions testify, we still lack a convenient shorthand with
which to describe programs, but this will come with a
deeper understanding about the right sequencing
mechanisms.

The particular techniques of program optimization
described in this paper can be viewed as an application
of Cook’s theorem on two-way deterministic pushdown
automata. Indeed, it appears that Cook’s theorem
amounts to a statement, couched in automata-theoretic
language, on the power of tabulation as an optimization
method. If this is the case, then it seems that the
essential ideas are revealed more clearly in the ordinary
language of computer science. Automata theory may
be a useful vehicle for formalizing our knowledge of
programs, but this is a debatable point. What is not in
doubt is that theory and practice have to be brought
closer together for computer science to advance.
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