
pile t ime. Second , we assume no p r o b l e m s of f inite
prec is ion. Bo th of these a s sumpt ions could l ead to
difficult ies in an ac tua l i m p l e m e n t a t i o n . W h e n e v e r the
effect ive pos i t ion of a c o m p u t a t i o n is m o v e d , as it is in
these s t reng th r educ t ion m e t h o d s , p r o p e r a t t en t ion
should be pa id to such " s a f e t y " cons ide ra t ions , lest an
u n e x p e c t e d e r ro r in t e r rup t occur . I t does no g o o d to
p roduce a fas ter vers ion of the p r o g r a m if the fas te r
vers ion is incor rec t . The i n t e r e s t ed r e a d e r can f ind an
e x p a n d e d t r e a t m e n t of safe ty in [11].

A final a s sumpt ion m a d e in using such a s t reng th
r educ t ion t echn ique is tha t it is p ro f i t ab l e . The prof i ta -
bi l i ty a s sumpt ion is b a s e d on the obse rv a t i ons tha t
code within a l oop is e x e c u t e d f r equen t ly and mul t ip l i -
ca t ions are s ignif icant ly m o r e expens ive than add i t i ons
on mos t mach ines . These a s sumpt ions a re not val id in
all cases , however . F o r e x a m p l e , if we were to r ep l ace
a mul t ip l i ca t ion on a l i t t l e -used b ranch in the l oop by
add i t i ons on m o r e f r equen t pa ths , we might signifi-
cant ly d e o p t i m i z e the c o m p i l e d code . This s i tua t ion
can be avo ided by a m o r e careful analysis of p rof i t ab i l -
i ty such as the one d e s c r i b e d in [12].

A c k n o w l e d g m e n t s . The au tho r s wish to t hank
F rances A l l e n of I B M and Jack Schwar tz of New Y o r k
Un ive r s i ty for the i r many he lpfu l sugges t ions . The
r e fe ree p r o v i d e d severa l va luab l e sugges t ions for im-
p r o v e m e n t of the f inal manusc r ip t . W e a re pa r t i cu l a r ly
gra te fu l for his c o m m e n t s on the ques t ion of safe ty ,
some of which we a d a p t e d in the s u m m a r y and conclu-
s ions.

Received October 1974, revised August 1976

References

1. Allen, F.E. Program Optimization. Annual Review of
Automatic Programming, Vol. 5, Pergamon Press, New York,
1969.
2. Cocke, J., and Schwartz, J. Programming Languages and Their
Compilers. Courant Institute of Mathematical Sciences, New York
U., New York, 1970.
3. Kennedy, K. A global flow analysis algorithm. Int. J. Comptr.
Math., Sect. A, 3 (Dec. 1971), 5-15.
4. Hecht, M.S., and Ullman, J.D. Flow graph reducibility. SlAM
J. Compmg. 1, 2 (June 1972), 188-202.
5. Kildall, G.A. A unified approach to global program
optimization. Conf. Rec. ACM Conf. on Principles of Programming
Languages, Boston, Mass., Oct. 1973, pp. 194-206.
6. Ullman, J. D. Fast algorithms for the elimination of common
subexpressions. Acta lnformatica 2 (1973), 191-213.
7. Earnest, C., Balke, K.G., and Anderson, J. Analysis of graphs
by ordering of nodes. JACM 19, 1 (Jan 1972), 23-42.
8. Allen, F.E. Control flow analysis, SIGPLAN Notices (ACM) 5,
7 (July 1970), 1-19.
9. Kennedy, K. Variable subsumption with constant folding.
SETL
York, Feb. 1974.
10. Kennedy, K. Use-definition chains with applications. Tech.
Rep. 476-093-9, Dept. Math. Sci., Rice U., Houston, Tex., April
1975.
11. Kennedy, K. Safety of code motion. Int. J. Comptr. Math.,
Sect. A, 3 (1972), 117-130.
12. Coeke, J., and Kennedy, K. Profitability computations on
program flow graphs. Tech. Rep. 476-093-3, Dept. Math. Sci.,
Rice U., Houston, Tex., May 1974.

856

P r o g r a m m i n g
Techn iques

R . L . Rives t ,* S .L . G r a h a m
E d i t o r s

Improving Programs
by the Introduction of
Recursion
R.S. Bird
University of Reading

A new technique of program transformation, called
"recursion introduction," is described and applied to
two algorithms which solve pattern matching problems.
By using recursion introduction, algorithms which ma-
nipulate a stack are first translated into recursive
algorithms in which no stack operations occur. These
algorithms are then subjected to a second transforma-
tion, a method of recursion elimination called "tabula-
tion," to produce programs with a very efficient run-
ning time. In particular, it is shown how the fast linear
pattern matching algorithm of Knuth, Morris, and
Pratt can be derived in a few steps from a simple
nonlinear stack algorithm.

Key Words and Phrases: program transformation,
optimization of programs, recursion elimination, pat-
tern matching algorithms, stacks, computational induc-
tion

CR Categories: 4.0, 4.2, 5.20, 5.24, 5.25

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

* This paper was submitted prior to the time that Rivest became
editor of the department, and editorial consideration was completed
under the former editor, G. K. Manacher.

Author's address: Department of Computer Science, University
of Reading, Whiteknights Park, Reading, Berkshire, England.

Communications November 1977
of Volume 20
the ACM Number 11

1. Introduct ion

Formula manipulation is a basic activity in many
branches of mathematics , not only because of a natural
desire to express relationships in their simplest possible
terms, but also as a means to develop new insights
about the problem in hand. In computer science we
manipulate programs rather than formulas or equa-
tions, but the activity is much the same. Usually the
chief object of program transformation is to produce
not necessarily a simpler program, but at least a
program which is more efficient in an appropriate
sense, say one that uses less space or has a faster
running time.

As Knuth [8] observes, a "calculus" of program
transformations is gradually emerging, a set of opera-
tions which can be applied to programs without re-
thinking the specific problem each time. Among such
operations one may mention the following: doubling
up of loops, Boolean variable elimination, and a num-
ber of techniques for recursion elimination. The first
two are described in Knuth [8] and are embodied in
the linear speed-up transformation of Bird [2]; the last
is described in Bird [3] and Darlington and Burstall
[7], among others. Recursion elimination is particularly
important because so many algorithms can be ex-
pressed naturally and succinctly in recursive form,
even though this form may not be the most suitable
one for execution on a computer . Instead of using the
facilities for recursion provided by the programming
language in which the algorithm is to be represented
(always assuming, of course, that the language does
possess such a facility) and relying on the compiler to
take care of the details, the p rogrammer can often
obtain a significant increase in efficiency by designing
his or her own implementat ion of recursion, specially
tailored to the given problem.

The particular technique of program transformation
to be described in this paper represents a sort of
inverse activity to recursion elimination, namely the
conscious introduction of recursion where none existed
before. For this reason, we call it recursion introduc-
tion. Although recursion makes its appearance only as
an intermediate step and is eliminated again almost
immediately, the insight gained leads to much faster
versions of the programs to which the technique can
be applied. The characteristic property of the programs
which can make use of recursion introduction is that
they manipulate a stack. The relationship between
recursion and stacks is well known; indeed it is pre-
cisely this relationship that is exploited in many meth-
ods of recursion elimination. What is not so often
appreciated is that the relationsltip is a complementary
one; the manipulation of a stack can be eliminated in
favor of a recursive mode of operat ion (see Brown,
Gries, and Szymanski [5] or Chandra [6] for a precise
formulation and proof of this result). It is this idea
which forms the basis of the technique.

857

Recursion introduction would be a pointless activity
were it not for the fact that the recursion can be
eliminated again without recourse to a stack. To do
this a second transformation called tabulation is in-
voked. Briefly, tabulation is the process of reducing
the amount of work done in calculating the values of a
recursively defined function f b y storing the values in a
table. In this way, each value of f is computed just
once f rom the recursive definition; subsequent requests
for the value are obtained simply by looking up the
table. Tabulation is thus a variant of the well-known
technique of dynamic programming, discussed in Aho,
Hopcrof t , and Ullman [1]. Once the general strategy
of tabulation has been adopted, it can often be imple-
mented very efficiently by taking into account the
propert ies of the function under consideration. We
shall see the technique at work in Sections 3 and 4.

Although programs which manipulate a stack are
not, perhaps, that common (excepting the case where
the stack has been introduced specifically to eliminate
recursion), there is at least one important area in
which such algorithms are conceived. This is the area
of pattern matching. The simplest example of a pat tern
matching problem is the problem of determining
whether a given string of m symbols, called a pattern,
occurs as a substring of another given string of n
symbols, called a text: As we shall see in Section 3, a
comparat ively simple stack algorithm can be given to
solve this problem, one which works within O(mn)
steps. Recently, a linear t ime (i.e. O(m + n)) solution
has been given by Knuth, Morris, and Pratt [9]. The
discovery of the fast algorithm has an interesting his-
tory which is detailed in [9]. Briefly, the naive stack
algorithm conforms to the conditions of a theorem due
to Cook (discussed in Aho, Hopcroft , and Ullman
[1]), who showed by a fairly complicated simulation
that certain stack algorithms, no matter how long they
took to execute, could be simulated in linear time. By
pondering the details of this simulation, Knuth was
able to extract the essentials of the fast pattern match-
ing algorithm. This algorithm was later generalized so
that its running time was not dependent on the size of
the input alphabet. Cook ' s theorem is important be-
cause it shows that for a variety of problems linear
solutions do exist. However , as Aho, Hopcrof t , and
Ullman [1] remark, the constant factor arising from
the use of Cook 's simulation directly is quite large; so
further search for bet ter linear solutions is necessary.
The immediate significance of recursion introduction,
as the following examples show, is that once, possibly
inefficient, stack algorithms are given, they can be
mechanically t ransformed into fast linear solutions for
the problem.

In Section 3 we demonstra te how the fast linear
pattern matching algorithm can be derived in a few
steps from a simple nonlinear stack algorithm. A
second example of the use of recursion introduction is
considered in Section 4, where a nonlinear stack algo-

Communications November 1977
of Volume 20
the ACM Number 11

rithm for determining whether given patterns in a set
are all different is t ransformed into a linear algorithm.
The next section outlines the recursion introduction
method.

2. Recursion Introduction

The basic strategy governing the conversion of
stack algorithms into recursive programs is to regard
each symbol on the stack as recording an obligation to
execute an appropriate recursive procedure. More pre-
cisely, if at some stage during the operat ion of a stack
algorithm P the stack contains symbols sl, s2 s , ,
then the recursive program Q will be designed so that
at the corresponding stage the calls R (s l) , R (s 2)

R (s n) of a recursive procedure R are waiting for future
evaluation. The definition of R is determined by the
instructions of P which process the stack symbols.
Rather than deal with the general implementat ion of
this strategy for an arbitrary stack algorithm, we con-
sider only the case where P is an algorithm of the form

S := empty;
A;
while S not empty do

begin z ~ S;

B
end;

c

in which the processing of a stack S is determined by a
single loop. Portions A and B of P may contain stack
assignments (written in the form S ~ x) as well as
nonstack instructions, while C may contain only the
latter type. The important point is that P may not
contain any further instructions of the form x ~ S.
Not only is this form of algorithm sufficient for the
purposes of the present paper , it also enables recursion
to be introduced in a straightforward fashion. The
recursive program Q corresponding to P takes the
form

begin procedure R(x);

begin z := x ; B* end;
A * ; C

end,

where A* and B* are translations of the portions A
and B, respectively, and may involve calls to the
procedure R. To see how A* is defined, suppose that
for a given vector v of variables the overall effect of A
is to carry out the operat ions

v := f (v) ; S ~ x l ; S ~ x ~ ; . . . ; S ~ x ,

so that the string xn xn-1 • • • x~ is added to the top of
the stack. The principle determining the construction
of A* is that A* should, in effect, carry out the
operat ions

v := f(v); R(x,); R (x n - ~) ; • • • ; R (x ~)

in accordance with the strategy outlined above. Exactly
the same principle operates in translating B into B*.
Since C does not contain stack instructions, we have

858

C* = C. Notice that the state vector v is t reated as
global to the procedure R. Once the principle of the
translation is understood, there is no need to formulate
exact rules for the construction of A* and B*, as
particular cases may best be dealt with in different
ways. For instance, in the case that B contains no
assignment to the variable z, and so only the initial
value of z is relevant to B, the instruction z := x can
be removed from the body of R and the definition

procedure R(z);
begin B* end

used instead.
The examples which follow in Sections 3 and 4

illustrate further aspects of the method and also contain
details as to how the recursion is eliminated once
again without recourse to a stack.

3. First Example of Recursion Introduction

In this section we apply recursion introduction to
the basic pat tern matching problem and hence derive
the fast algorithm of Knuth, Morris, and Pratt . The
problem is this: Given a pat tern of symbols p[1], p[2],
• . . , p [m] , to determine whether or not it matches
some substring of a text t[1], t[2], . . . , t i n] . We can
design a stack algorithm to solve this problem in the
following way. First, the text is stored on a stack S,
with t i l l on top, and a pointer is initialized to the first
symbol of the pat tern. At this stage the first pass over
the pat tern begins (in general , the effect of the kth
pass will be to determine whether or not the pat tern
occurs as an initial substring of t [k] , t [k + 1] ,
tin]): As long as the stack is not empty , the top symbol
is removed and compared to the current symbol of the
pat tern, provided such a symbol exists. If they match,
then the pointer is advanced and the process repeated.
If they do not match, then the stack is restored to its
initial configuration at the beginning of the pass by
loading the pat tern symbols to the left of the pointer .
The first symbol on the stack is then removed, ready
for the next pass. If the pat tern is exhausted during a
pass, then the algorithm stops, indicating a successful
match; otherwise, when all the passes have been com-
pleted, the algorithm stops, indicating no match.

This description is formalized in the following pro-
gram:
Algorithm 1

begin stack S; S := empty;
j := n + 1; repeatj := j - 1; S ~ t[./] untilj = 1;
while j ___ m and S not empty do

beg in x ~ S;
i f p [j] = x thenj : = j + 1 e lse
i f j :k 1 then

b e g i n S ~ x ; j : = j - 1;
while j ~ 1 do

beg in S ~ p [j] ; j : = j - 1 end
end

end;
i f j > m t h e n MATCH else NO MATCH

end

C o m m u n i c a t i o n s N o v e m b e r 1977
of V o l u m e 20
the A C M N u m b e r 11

The first step in the process of simplifying this
a lgori thm is to el iminate the stack S by in t roducing
recursion in the manner described in Section 2. Prior
to the stack processing loop, the stack S is initialized
to contain the symbols t[1], t[2] t i n] in order , and
j is set to 1; so the recursive algori thm takes the form

Algorithm 2

j := 1; fork := 1 ton doR(t[k]);
i f] > m then M A T C H else NO M A T C H .

The definition of R is de te rmined by the body of the
central loop and is given by

procedure R(x);
begin if] > m then goto M;

ifpL/] = x thenj := j + 1 else
i f] :~ 1 then

begin T; R(x) end
M: end

The first point to note is the presence of the test j >
rn. This reflects the fact that the central loop of
Algor i thm 1 could equally well have been stated in the
slightly different form

while S not empty do
begin x ~ S; if] > m then goto M;

M : end

the difference being only that this version always
empties the stack before terminat ing.

Second, note that the definit ion of R involves a call
to a fur ther as yet unspecif ied procedure T; this proce-
dure will be designed to simulate the stack opera t ions
in the code

j : = j - 1; while] :k 1 do begin S ~ p [j] ; j := j - 1 end

Finally, observe the terminal call R (x) in the defi-
nition of R; this cor responds to the ass ignment S ~ x
in the central loop. Actual ly , this call can immedia te ly
be el iminated in favor of a direct jump to the beginning
of R. The principle involved here is the simplest case
of recursion el imination, namely , when the last action
of a recursive procedure is to call itself, then that call
can be replaced, after reassigning the pa rame te r if
necessary, by a direct j u m p to the first instruction of
the p rocedure . We shall not pause to give a justification
of this principle as an excellent discussion can be found
in Knuth [7]. El iminat ing the call gives the following
new definition for R:

procedure R(x);
begin L: i f j > m then goto M;

ifp[j] = x thenj := j + 1 else
i f] ~ 1 then begin T; goto L end

M: end

We can even go one stage fur ther and incorpora te the
body of R directly into Algor i thm 2. Af te r simplifying
the looping structure in an obvious way, we obtain the
following version of the algori thm:

Algorithm 3

j : = k : = l;
w h i l e k _ n a n d j < m do

859

begin ifp[j] = t[k] then begin/ := j + 1; k := k + 1 end
else i f] = 1 then k "= k + 1 else T

end;
if] > m then M A T C H else N O M A T C H

We are thus left with the definit ion of T to consider.
One way of defining T is as follows:

procedure T;
begin integer k; j := j - 1;

i f] 4= 1 then begin k := j; T; R(p[k]) end
end

To justify this definit ion, observe that the code which
T has to simulate places the string p[2] p[3] . . . p [j -
1] on the stack and also sets j to 1. This translates in
the recursive version to p rocedure calls R(p[2])
R (p [j - 1]) which are invoked a f t e r] has been set to 1.
One way of achieving this is given above. In a similar
manner as before , we can now substitute the definition
of R (p [k]) directly into the body of p rocedure T. This
eliminates all references to p rocedure R; so we are left
with just the single recursive procedure T.

As prepara t ion for the next step, notice that the
effect of T is simply to change the value o f] . In o ther
words , we can regard T as an assignment of the f o r m]
:= f (j) for an appropr ia te funct ion f . We can even say
what f is since its definit ion can be extracted f rom that
of T. We have

function f (x) ;
begin integer y;

if x = 2 then return 1 else
heginy := f (x - 1);

L: fly > m then return y else
if ply] = p[x - 1] then return y + 1 else
i fy ¢ 1 then begin y := f(y); goto L end else
return y

end

Al though the definit ion of f is given for a general
x , we are only interested in the range 2 -< x -< m,
simply because the assignment j := f (j) (i.e. p rocedure
T) is only invoked for 2 -< j -< m. We are guaran teed
that f is well defined in this range since f has been
derived f rom a terminat ing algori thm.

A t this stage we apply the idea of t a b u l a t i o n to
reduce the amoun t of work done in calculating the
values o f f . The basic strategy is to compu te the value

f (x) f rom the recursive definit ion just once for each x
and store the result in a table F so that F i x] = f (x) .

Subsequent calculations o f f (x) are obta ined simply by
using F [x] instead. Initially each entry in F is set to
zero, and the recursive call y := f (y) in the definit ion
o f f is replaced by the code

if F[y] =b 0 then y := F[y] else
begin z := f(y); F[y] := z ; y := z end

Since f (x) > 0 for x --> 2, these instructions de te rmine
whether or not the value of f 0 ') has previously been
calculated, and, if not , then the value is calculated and
s tored in the table for future use. Similar instructions
have to be defined for the assignment y := f (x - 1).

This general strategy can be implemented more
efficiently by taking advantage of the proper t ies of f .
It is not too difficult to show that f (x) -< x f o r x -> 2, so

Communications November 1977
of Volume 20
the ACM Number 11

the value o f f (x + 1) depends only on the values f(2) ,
. . . . f (x) . This means we can compute F sequentially,
as in the following algorithm:

begin array F[2 : m] ;

F[2] := 1;
forx := 3 t o m do

b e g i n y := F[x - 1];

L: ifp[y] = p[x - 1] then Fix] := y + 1 e lse
f l y :~ 1 then

beg in y := F [y] ; goto L end
else F[x] := 1

end
end

Notice that the array e lement F[1] does not exist.
We can, however, simplify the logic of the algorithm
by introducing a value F[1] = 0 and constructing the
array as follows:

begin array F[1 : m] ;

F[1] := 0; F[2] := 1;
forx := 3 t o m do

b e g i n y := Fix - 1];
whiley > 0 a n d p [y] :~ p[x - 1] d o y := F [y] ;

F[x] := y + 1
end

end

Having calculated the array F, we can replace the
procedure call T in Algori thm 3 by the ass ignment j :=
F[j]. This gives us the Knuth-Morris-Prat t algorithm.
Although we shall not prove it here, the computat ion
of F and the pattern matching procedure itself both
have a running time linear in m + n, the constant
factor being independent of the size of the input
alphabet. (See [1] or [9].)

Notice how the function f has been revealed to us
simply by a sequence of mechanical t ransformations
from the stack algorithm. At no stage was it necessary
to relate f to the particular symbols in the pat tern or
text, even though a natural interpretation of f does
exist (again, see [1] or [9]). Such a situation seems to
be in the best mathematical tradition: A purely formal
manipulation of expressions has brought forth new
and unexpected relationships about the problem under
consideration.

3. Second Example of Recursion Introduction

Our second example of the use of recursion intro-
duction deals with the problem of recognizing a se-
quence of distinct patterns. Given is a string c x l c x 2

. . . c x n c of symbols, where each x j is a (possibly
empty) string of symbols over some alphabet E and c
is a symbol not in E. The problem is to determine
whether or not there exist j and k , with j :/: k, such
that x j = x e .

An algorithm which uses a stack S and a text
pointer j can be developed for this problem based on
the following idea. At stage k (1 -< k -< n) in the
computat ion, S is empty and j points to the symbol c
immediately following the pat tern xk. S is now initial-

860

ized by back-spacing j and copying the input onto S
until a symbol c is reached. Thus S will now contain
xkc. The pointer j is advanced to the first symbol of
x k + l , and the following process now takes place. As
long as the top stack symbol matches the current input
symbol, the stack is popped and the pointer is ad-
vanced. If there is a mismatch, the stack is restored by
back-spacing the pointer to the previous c while copy-
ing each input symbol back onto S. The pointer is then
advanced again to the first symbol of the next pat tern,
regarding pattern xl as following xn, and the process is
repeated. Clearly, the stack :must be emptied by this
procedure because eventually we shall successfully
match xkc against itself if no previous match were
found. Thus the stack will be emptied either because
we match xk against an Xm for k < m -< n, in which
case we can immediately terminate the algorithm and
reject the input, or because we match xk against itself.
We know there can be no m with 1 -< m < k such that
Xm = xk; otherwise this fact would have been detected
at stage m. In the case that xt~ is matched only against
itself, the pointer is advanced to the next c, and stage
k + 1 is entered if k + 1 < n. If there are no more
stages to do, the algorithm terminates and the input is
accepted.

We can formalize the algorithm with the help of an
auxiliary function tr, designed so that tr(j) gives the
position of the first c to the right of position j . The
definition is

function tr(x);

begin repeat x := x + 1 un t i l a[x] - c ;
ff x = N then return 0 else r e t u r n x

end

Here we are supposing that the complete input text is
stored in an array a[0], . . . , a [N] . The central loop
on which the algorithm is based can now be described
as follows:

Central Loop

repeat S ~ a[j];j := j - 1 un t i l a [j] = c;

j := tr(j) + 1;
while S not empty do

begin b ~ S;
i r a [j] = b thenj := j + 1 e lse

b e g i n S ~ b ; j : = j - 1;
while a[.j] ~ c do

begin S ~ a[j];j := j - 1 end;
j := ~(j) + 1

end
end;

j : = j - 1

For the reasons given above, this program must always
terminate. If the final value of j is equal to its initial
value, then we must go on to the next stage of the
computat ion, as no proper match was found; otherwise
we terminate the algorithm and reject the input. The
complete algorithm can therefore put in the form

Algorithm 1

j := ~(0); x := j;

C o m m u n i c a t i o n s N o v e m b e r 1977
of V o l u m e 20
the A C M N u m b e r 11

whilej ~ 0 a n d x = j d o
begin central loop ;

i f x = j then begin j := o-(j); x := j end
end ;

i f x = j then N O M A T C H else M A T C H

Once again, the transformation used in the previous
example is applied to reduce Algorithm 1 to a linear-
time algorithm. We replace the use of S by calls to a
recursive procedure R. If at some point during the
execution of algorithm 1 the stack contains a[jl], • • • ,
a[jm], then, at the corresponding point during the
recursive algorithm, procedure calls R(j l) R(jm)
are waiting for evaluation. The definition of R is
extracted from the definition of central loop and is as
follows:
procedure R(k);

begin i f a[./] = a[k] thenj := j + 1 else

begin T; R(k) end
end

Here T is a procedure which simulates the code

j : = j - 1;
while a[./] =~ c do beg in S ~ a[j] ; j := j - 1 end ;
j := or(j) + 1.

Its definition is thus

procedure T;

begin integer k; j := j - 1;
i r a [j] = c thenj := o-(j) + 1 e lse

begin k := j; T; R(k) end
end

T can also be used to define the appropriate simulation
of central loop, which now becomes the operations

k := j ; T; R (k) ; j : = j - 1.

The full algorithm therefore takes the following
form:

Algorithm 2

j := o'(0); k :=)';

whilej=~ 0 a n d k = j d o
begin T; R (k) ; j := j - 1;

if k = j t hen beg in j := o-(j); k := j end
end;

if k = j then N O M A T C H else M A T C H

The explicit recursion in procedure R can be eliminated
as in Section 3 and yields the new definition

procedure R(k);
begin while a[]] ~ a[k] do T;

j : = j + l
end

This leads to the following new definition of T:

procedure T;

begin integer k ; j := j - 1;
i f a [j] = c then j := o-(j) + 1 else

begin k := j ;
repeat T until a[j] = a[k];

j : = j + l
end

end

As in Section 3, we can regard T as equivalent to

861

an assignment j := f(j) , where we have

function f (x) ;
beg in i n t ege r y ;

i f a[x - 1] = c then return o-(x - 1) + 1 else
beginy := x - 1;

repeat y := f (y) until a[y] = a[x - 1];
return y + 1

end
end

A t this stage the full algorithm takes the form

Algorithm 3

j := ~r(0); k := j ;
while j =~ 0 and k = j do

begin repeatj := f (j) un t i l a [j] = a [k] ;
if k = j then begin j := o-(j); k := j end

end;
i f k = j then N O M A T C H else M A T C H

Looking closely at Algorithm 3, we can discover
the way to further simplification. Suppose we let j :=
g(k) abbreviate the instructions

] := k; repeatj := f ~) until a[j] = a[k].
Using g we can put Algorithm 3 in the form

Algorithm 4

j := ~(0);
w h i l e j :~ 0 a n d j = g(j) d o j := or(j);

i f j = 0 then N O M A T C H else M A T C H .

This very simple statement of the algorithm suggests
that g is going to be a more useful function than f . We
can define f in terms of g as follows:

function f(x);
f fa[x - 1] = c then return tr(x - 1) + 1

else r e tu rn g(x - 1) + 1

This means that we can give a definition of g solely in
terms of g, namely,
function g(x) ;

begin integer y; y := x;
repeat i f a [y - 1] = c theny := tr(y - 1) + 1

e l sey : = g (y - 1) + 1
until a[y] = a[x] ;

return y
end

This recursive definition of g can be simplified by a
change of variable. If we replace y by y + 1, then the
following definition is obtained:
function g(x) ;

begin integer y ; y := x - 1;
repeat if a[y] = c then y := o-(y)

else y := g(y)
until a[y + 1] = a[x] ;
return y + 1

end

We can even go one stage further. Notice that a[x]
= a[g(x)]; in particular, a[x] = c if and only if a[g(x)]
= c. Now we certainly have a[o-(x)] = c by the
definition of o', so we can remove the test a[y] = c
from the body of the loop and obtain the following
more efficient version:

function g(x) ;

C o m m u n i c a t i o n s N o v e m b e r 1977
of V o l u m e 20
the A C M N u m b e r 11

begin integer y; y := x - 1;

if a[y] = c then repeat y := t r (y) until a[y + 1] = a[x]
else repeaty := g(y) until a[y + 1] = a [x] ;

return y + 1
end

As in the previous section, the next problem to be
faced is how to compute the values of g(x) for 1 -< x -<
N by a faster process than simply using the definition
of g. Once again, the answer is to employ tabulation,
whereby the values of g are computed once only and
stored in a table for subsequent use. Tabulation can be
implemented directly, but it is instructive to see how a
more efficient version goes. What we need is the
interesting result that g in fact defines a permutation of
1 , 2 N, i.e.

(a) l _< g(x) <_ N, f o r l - x _ < N , and
(b) g(x) =g(y) impliesx = y , f o r l _ < x , y - N .

Of course this property of g must be proved solely
from the given definition. We outline only how to
prove (b) since (a) is reasonably straightforward. The
proof of (b) is instructive because it illustrates the use
of a general induction technique which deserves to be
more widely appreciated. This is the method of com-
putational induction, which is described fully in Morris
[11], Manna [10], and Bird [4].

Briefly stated, the idea is to consider an infinite
sequence of partial functions go gl which repre-
sent, in a suitable sense, "approximations" to the
"limit" function g. We can then prove any property of
g by proving it for each approximation function and
passing to the limit. The sequence of approximations
is defined by taking go to be the everywhere undefined
function, and defining gk+l by exactly the same defini-
tion as g, except that recursive calls to g are replaced
by calls to gk. In the present case, this simply means
that we replace y := g(y) by y := gk(y) in the definition
of g. The result we wish to prove is the following:

(c) for all k -> 0 and all x and y , if g~(x) and gk(Y) are
defined and gk(x) = g~(y), then x = y.

The proof is by induction on k. The case k = 0 is
vacuously true since neither go(x) nor g0(Y) can possibly
take defined values. For reasons of space we shall not
give the details of the straightforward induction step
except to say that the proof divides into three cases
depending on whether the symbols a[x - 1] and
a[y - 1] are both equal to c, both different from c, or
otherwise.

Now that we know g is a permutation of 1, 2,
. . . . N, the tabulation of g can be carried out effi-
ciently in an order determined by the cycle structure
of g. More precisely, we can compute the table G
which holds the values of g by the following scheme:

x := 1;
while x --< N flu

b e g i n 1. C o m p u t e the en t r i e s G[x] , GIG[x]] e tc . , s t o p p i n g

w h e n w e r e a c h a n n such t h a t x = Gn[x] ;
2. I n c r e m e n t x to the f i rs t u n c a l c u l a t e d v a l u e o f G[x]

end

862

This scheme can be refined into the following
program.

1. a r r a y G [I : N + 1]; dear G ;

2. x : = l ;
3. w h i l e x -< N do
4. b e g i n y := z := x - 1;
5. r e p e a t it" a[y] = c then repeat y := t r (y)

until a[y + 1] = a[x]
6. else repeat y := G[y]

unt i l a[y + 1] = a [x] ;

7. G[x] := y + 1;
8. x := G[x]
9. un t i l y = z;

10. r e p e a t x := x + 1 un t i l G [x] = 0

11. end

In this program the operation dear G sets every entry
of G to zero. The element GIN + 1] = 0 serves to
terminate the search for new uncalculated values as
soon asx = N + 1.

In order to time the program, let n be the total
number of patterns in the input string, k be the number
of cycles of the permutation g, and s the size of the
alphabet of symbols over which the input string is
defined. We estimate the total contributions of each
line of the program as follows:

Line 1. (N + 1) units to clear the array.
Line 2. 1 unit.
Lines 3, 4. (3k + 1) units, as there are k cycles and so

k executions of the loop.
Lines 5 to 9. Less than (6N + 2ns) units. Note first

that the instruction G[x] := y + 1 is executed exactly
N times; this means the body of the outer loop is
executed N times and so contributes 4N units. The
loop in line 6 contributes at most 2N units since the
instruction y := G[y] cannot be executed more than
N times. The contribution of 2 ns units from line 5
is more difficult to see, but a little thought shows
that the instruction y := o-(y) (which we can count
as 1 unit as o- can itself be easily tabulated) is
executed exactly n times for each distinct symbol in
the first position of a pattern, and there may be as
many as s such symbols.

Line 10. 2N units. To see this, observe that the final
value of x on exit from the repeat loop is just the
same as it was on entry. Thus the instruction x := x
+ 1 in line 10 executed exactly N times.

Since there may be as many as N patterns, i.e. n -<
N, the running time T(N) of the tabulation of G
satisfies

T(N) <-- 9N + 3 + 2ns <- 2sN + 9N + 3.

Notice that, although T(N) = O(N), the constant of
proportionality is dependent on the size of the input
alphabet. It is straightforward to verify that the running
time of Algorithm 4 is O(N), as is the necessary
tabulation of o-. Algorithm 4 amounts to the process

C o m m u n i c a t i o n s N o v e m b e r 1 9 7 7
o f V o l u m e 2 0
the A C M N u m b e r 11

of check ing w h e t h e r or not G[j] = j for each j such
tha t a [j] = c. In fact , t ab le G gives a d d e d i n fo rma t ion
a b o u t the input s ince the pa t t e rn s xj and xk are ident ica l
jus t in the case that G[oZ(0)] = ok(0). W e have there-
fore a r r ived at the des i r ed l inear a lgo r i thm for the
or ig inal p r o b l e m .

This e x a m p l e has been t r e a t ed at some length
because of the many fasc ina t ing issues invo lved , and it
is wor thwhi le to s u m m a r i z e the main s teps . F i rs t , we
e m p l o y e d the idea of i n t roduc ing recurs ion to e l imina te
the s tack ope ra t i ons . Then we m a n i p u l a t e d and s impli -
f ied the resul t ing recurs ive def in i t ions to revea l , in
turn , the recurs ive funct ions f and g. Next we l o o k e d
m o r e c losely at g , saw that it was a p e r m u t a t i o n , and
used this fact in an eff ic ient t abu l a t i on of g . F ina l ly ,
we ana lyzed the resul t ing a lgor i thm to es tab l i sh its
O(N) runn ing t ime .

4. Conc lus ions

Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
2. Bird, R.S. Speeding up programs. Computer J. 17, 4 (1975),
337-339.
3. Bird, R.S. Notes on recursion elimination. To appear in Comm.
ACM.
4. Bird, R.S. Programs and Machines-An Introduction to the
Theory of Computation. John Wiley, London, 1976.
5. Brown, S., Gries, D., and Szymanski, T. Program schemes with
pushdown stoves. SIAM J. Comptng. 1 (1972), 242-268.
6. Chandra, A.K. On the properties and application of program
schemes. Ph.D. Th., Rep. No. CS-336 Comptr. Sci. Dept., Stanford
U., Stanford, Calif., 1973.
7. Darlington, J., and Burstall, R.M. A system which automatically
improves programs. Proc. 3rd Int. Conf. on Artif, Intell., Stanford
U., Stanford, Calif., 1973, pp. 479-485.
8. Knuth, D.E. Structured programming with go to statements.
Computing Surveys 6, 4 (Dec. 1974), 261-302.
9. Knuth, D.E., Morris, J.H., Jr., and Pratt, V.R. Fast pattern
matching in strings. Res. Rep. CS-74-440, Comptr. Sci. Dept.,
Stanford, U., Stanford, Calif., 1974.
10. Manna, Z. Mathematical Theory of Computation. McGraw-Hill,
New York, 1974.
11. Morris, J.H. Jr. Another recursion induction principle. Comm.
ACM 14, 5 (May 1971), 351-354.

W e are g radua l ly l ea rn ing abou t p r o g r a m ma n ipu -
la t ion , but a lot r ema ins to be d i scove red . I t is surpr is-
ing how of ten p r o g r a m s can be op t im ized , cons tan t s of
p r o p o r t i o n a l i t y can be r e d u c e d , even a sympto t i c
g rowth ra tes can s o m e t i m e s be l owered . A s Knu th
obse rves , it is i m p o r t a n t that these op t imiza t i ons are
ca r r i ed out in the source l anguage of the a lgo r i t hm,
and t he r e fo re sub jec t to the p r o g r a m m e r ' s imag ina t i on
and con t ro l . The m a n i p u l a t i o n s desc r ibed in the pres-
en t p a p e r mi r ro r very c losely the style of de r iva t ion of
m a t h e m a t i c a l fo rmulas , and we did not s tar t ou t , as no
m a t h e m a t i c i a n ever does , with the p r e c o n c e p t i o n tha t
such de r iva t ions shou ld be desc r ibed with a view to
i m m e d i a t e mechan iza t i on ; such a view wou ld severe ly
l imit the many ways in which an a lgo r i thm can be
s impl i f ied and po l i shed . A s the length of the der iva-
t ions tes t i fy , we still l ack a conven ien t s h o r t h a n d with
which to descr ibe p r o g r a m s , but this will come with a
d e e p e r unde r s t and ing a b o u t the r ight sequenc ing
mechan i sms .

The pa r t i cu la r t echn iques of p r o g r a m op t im iz a t i on
desc r ibed in this p a p e r can be v i ewed as an app l i ca t ion
of C o o k ' s t h e o r e m on two-way de t e rmin i s t i c p u s h d o w n
a u t o m a t a . I n d e e d , it a p p e a r s tha t C o o k ' s t h e o r e m
amount s to a s t a t emen t , couched in au toma ta - theo re t i c
l anguage , on the p o w e r of t abu l a t i on as an op t im iz a t i on
m e t h o d . I f this is the case , then it s eems tha t the
essent ia l ideas a re r e v e a l e d m o r e c lear ly in the o r d i n a r y
l anguage of c o m p u t e r sc ience . A u t o m a t a t heo ry may
be a useful vehic le for fo rmal iz ing ou r k n o w l e d g e of
p r o g r a m s , but this is a d e b a t a b l e po in t . W h a t is not in
d o u b t is that t heo ry and prac t ice have to be b rough t
c loser t o g e t h e r for c o m p u t e r science to advance .

Received January 1976; revised October 1976

References
1. Aho, A.V., Hopcroft, J.E., Ullman, J.D. The Design and

863 Communications November 1977
of Volume 20
the ACM Number 11

