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ABST.RACT: We present a novel, yet straightfotward 
linear-time algorithm for merging two sorted lists in a fixed 
amount of additional space. Constant of proportionality 
estimates and empirical testing reveal that this procedure is 
reasonably competitive with merge routines free to squander 
unbounded additional memo y, making it particularly 
attractive whenever space is a critical resource. 

1. INTRODUCTION 
Merging is a fundamental operation in computer pro- 
gramming. Given two sorted lists whose lengths sum to 
n, the obvious methods for merging them in O(n) steps 
require a linear amount of extra memory as well. On 
the other hand, it is easy to merge in place using only a 
constant amount of additional space by heap-sorting, 
but at a cost of O(n log n) time. 

Hapypily, an algorithm by Kronrod [8] solves this di- 
lemma by merging in both linear time and constant 
extra space. Kronrod’s seminal notions of “block re- 
arrangements” and “internal buffering,” which employ 
O(&) blocks each of size O(A), have spawned contin- 
ued study of this problem, including the work of Hor- 
vath [:I], Mannila and Ukkonen [9] and Pardo [lo]. 

Unfortunately, all of these schemes have been fairly 
complicated. More importantly, none has been shown 
to be very effective in practice, primarily because of 
their large linear-time constants of proportionalities. 

Herein we present a fast and surprisingly simple algo- 
rithm which merges in linear time and constant extra 
space. We also use O(A) blocks, each of size O(A). In 
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general, this approach allows the user to employ one 
block as an internal buffer to aid in rearrang:ing or oth- 
erwise manipulating the other blocks in constant extra 
space. Since only the contents of the buffer and the 
relative order of the blocks need ever be out of se- 
quence, linear time is sufficient to sort both the buffer 
and the blocks (each sort involves O(A) keys) and 
thereby complete the merge. As we shall show, two 
major factors which make our scheme so much more 
straightforward and practical than previously reported 
attempts to solve this problem are these: 1) we rear- 
range blocks before we initiate a merging phase and 2) 
we efficiently pass the internal buffer across the list so 
as to minimize unnecessary record movement. 

Given today’s low cost of computer memory compo- 
nents, the greatest practical significance of our result 
may well lie in the processing of large external files. 
For example, notice that in-place merging can be 
viewed as an efficient means for increasing the effec- 
tive size of internal memory when merging or merge- 
sorting external files. This may result in a su’bstantial 
reduction in the overall elapsed time for file processing 
whenever the extra space can be utilized for more buff- 
ers to increase parallelism or larger buffers to reduce 
the number of I/O transfers needed. 

In the next section, we present an overview of the 
main ideas behind this new O(n) time and O(1) space 
merging technique, with simplifying assumptions made 
on the input to facilitate discussion, Section 3, which 
may be skipped on a first reading, contains the O(A) 
time and O(1) space implementation details necessary 
to handle arbitrary inputs. In Section 4, we formally 
and empirically evaluate this new merge. We demon- 
strate that, for large n, its average run time exceeds that 
of a standard merge, free to exploit O(n) temporary 
extra memory cells, by less than a factor of two. The 
final section of this presentation consists of a collection 
of observations and remarks pertinent to this topic. 
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2. AN OVERVIEW OF THE MAIN ALGORITHM 
Let L denote a list of n records containing two sublists 
to be merged, each in nondecreasing order. For the 
sake of discussion, let us suppose that n is a perfect 
square. Figure la illustrates such a list with n = 25. 
Only record keys are listed, denoted by capital letters. 
Subscripts are added to keep track of duplicate keys as 
the algorithm progresses. Let us also assume that we 
have been able to permute the elements of L so that & 
largest-keyed records are at the front of the list (their 
relative order there is immaterial), followed by the re- 
mainders of the two sublists, each of which we assume, 
for simplicity, now contains an integral multiple of Jt; 
records in nondecreasing order. Figure lb shows our 
example list in this format. 

We now view L as a series of &blocks, each of size 
& We will use the leading block as an internal buffer 
to aid in the merge. Our first step is to sort the & - 1 
rightmost blocks so that their tails (rightmost elements) 
form a nondecreasing key sequence. (A good choice for 
the sort is the straight selection method as described in 
Knuth [i’]. This technique is simple and will in this 
setting require only O(n) key comparisons and record 
exchanges.) Records within a block retain their original 
relative order. See Figure lc. 

BBBDDEEFGHHJA,A&BBCCEGGHII 1231*12,1,21 4512323312 

-V 
sublist 1 sublist 2 

a) Example list L, with n - 25 

H~H&IeJ1 BiBgB3D,D2 E,EzF,G,H, A A A B B C C E G G 12345 12323 

-- VV’-Y--\----y-J 

buffer L-v-~‘-W-J 
remainder of sublist 1 remainder of sublist 2 

b) Internal buffer is extracted 

HHIIJAAABBBBBDDCCEGG EEFGH 2312, 123451231212323,211, 

c) Blocks are sorted 

FIGURE 1. Initial Rearrangement of Blocks 

Next, we locate two series of elements to be merged. 
The first series begins with the head (leftmost element) 
of block 2 and terminates with the tail of block i, i 2 2, 
where block i is the first block such that tail (i) > head 
(i + 1). The second series consists solely of the elements 
of block i + 1. See Figure 2a, where i = 3. We now use 
the buffer to merge these two series. That is, we repeat- 
edly compare the leftmost unmerged element in the 
first series to the leftmost unmerged element in the 
second, swapping the smaller with the leftmost buffer 
element. Ties are broken in favor of the first series. In 
general, the buffer may be broken into two pieces as we 
merge. See Figure 2b. We halt this process when the 
tail of block i has been moved to its final position. At 
this point, the buffer must be in one piece, although not 

on a block boundary. Block i + 1 must contain one or 
more unmerged elements (as a result of the first step in 
which blocks were sorted by their tails). See Figure 2c. 

We now locate the next two series of elements to be 
merged. This time, the first begins with the leftmost 
unmerged element of block i + I and terminates as 
before for some j 2 i. The second consists solely of the 
elements of block j + 1. See Figure 3a, where j = 4. We 
resume the merge until the tail of block j has been 
moved. See Figure 3b. 

HHIIJAAABB BBBDD CCEGG EEFGH 23121 1234512312123231.?11, 

-+-WV 

buffer <:eesr2 series 2 

a) Locating the first two series of elements, i = 3 

/ \ 

AAABBBBBCCDDDCEGGEEFGH 1234612312 23, 12213 2 3 721 1, 

--v 

merged 

b) Merging is partially completed 

AIA~A~B~B~B,B~B~C,CZD,~~ Z,HzH&J, EsG2Gs E,&F,G,H, 
- v 

buffer block 5 

c) First two series are merged 

FIGURE 2. Merging the First Two Series of Elements 

We continue this process of locating series of ele- 
ments and merging them until we reach a point where 
only one such series exists, which we merely shift left, 
leaving the buffer in the last block. See Figure 3c. 
A sort of the buffer completes the merge of L. See 
Figure 3d. 

AAABBBBBCCDDlHHlJ EGG EEFGH 12346123121212321 323 121 11 

w-v 

buffer series 1 series 2 

a) Locating the next two series of elements, j = 4 

A 1234512312123121 A A B B B B B C C D D E E E F G2G3 J,I,HzH& G,H, 
k / 

buffer 

b) Series is merged 

AAABBBBBCCDDEEEFGGGH HzH&J,I, 123451231212312123,1 

c) Last series is shifted 

AAABBBBBCCDDEEEFGGGHHHIIJ f234512312,23121231t232,~ 

cl) Buffer is sorted, completing merge 

FIGURE 3. Completing the Merge of L 
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O(:L) space suffices for this procedure, since the buffer 
was internal to the list, and since only a handful of 
additional pointers and counters are necessary. O(n) 
time suffices as well, since the block sorting, the series 
merg:ing and the buffer sorting each require at most 
linear time. 

This completes our overview of the central features 
of this fast merging strategy, illustrating the method we 
use to rearrange L by blocks and to merge the elements 
of these blocks with the aid of the internal buffer. In 
the next section, we provide the interested reader with 
O(A) time implementation details for dealing with 
lists and sublists of arbitrary sizes and for efficiently 
handling the initial extraction of the internal buffer. 

3. IMPLEMENTATION DETAILS 
For the special case in which one of the sublists to be 
merged has I c & elements, it is a simple matter to 
perform the merge efficiently without the general pro- 
cedure outlined in the last section. For example, sup- 
posing the shorter sublist begins in location 1, we could 
employ the “block merge forward” scheme suggested in 
[lo]. We first search the longer sublist for an insertion 
point For record 1. That is, we find p such that key(p) < 
key(l) 5 key (p + 1). Then elements indexed from 1 
through p can be circularly shifted p - I places to the 
right, so that the rightmost element of the shorter sub- 
list occupies position p. (Such a shift is often termed a 
“rotation,” and can be efficiently achieved with three 
sublist reversals.) The first element of the shorter sub- 
list and all elements to its left are now in their final 
position. We complete the merge by iterating this oper- 
ation over the remainder of the list until one of the 
sub1ist.s is exhausted. Linear time is sufficient for this 

method since we have insured that elements of the 
shorter sublist are moved no more than & times, and 
elements of the longer sublist are moved only once. [If 
the larger sublist occurs first, we can, of course, use an 
analogous “block merge backwards” scheme.) 

In what follows, therefore, we assume that each 
sublist has at least s = L&J elements. Note that 
(s + 1)' > n guarantees that the total number of s-sized 
blocks is no more than s + 2. We begin by comparing 
the right ends of the sublists, identifying s largest-keyed 
records which are to become the internal buffer. Let A 
and B, with respective sizes s1 and s2, denote these two 
portions of L, where s1 + s2 = s. Let C denote s - s1 = sZ 
elements immediately to the left of A. Let D denote the 
shortest (possibly empty) collection of records to the 
immediate left of B which, if D and B were deleted from 
the second sublist, would leave that sublist with an 
integral multiple of s records. Thus we can view L as a 
list of s-sized blocks, except possibly for the first block 
of size tl, where 0 < t, I s, and for the last block of size 
tz, where 0 < tz c 2s. See Figure 4a. 

We now show how to handle the rightmost block 
which may have an unusual size. We swap B and C, 
bringing the buffer into one block. Then we use the 
buffer to merge C and D, giving block E of size ta. See 
Figure 4b. If both C and D were nonempty, tlnen the tail 
of E comes from either C or D, and is as large as any 
nonbuffer element in L. Thus E is in its correct position 
and does not need to be considered later when nonbuf- 
fer blocks are sorted by their tails. If C and D (or both) 
were empty, then although E’s tail may be srnaller 
than one or more nonbuffer elements, it is easy to see 
that E still need not be moved before the ma:in algo- 
rithm commences. Therefore, in any event, 13 remains 

t&lock s-block s-block . . . s-block C A s-block s-block . . . s-block D B 
\. IL ” * d 

sublist 1 sublist 2 

a) Identifying list segments A, B, C, and D 

&-block s-block s-block . . . s-block buffer s-block s-block . . . s-block E 

b) Handling the rightmost Mock 

F s-block s-block . . . s-block buffer G s-block.. . s-block E 

c) Identifying blocks F and G 

&-block s-block s-block . . s-block (s - Q-block W I s-block . . . s-block E 

+\buffer 7 

d) Merging F and G 

H s-block s-block . . . s-block buffer I sLblock . . . s-block E 

e) Finishing the leftmost block 

H buffer s-btock , . . s-block ] I s-block . . . s-block E 

f) Ready for the main algorithm 
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where it is and its size can cause no difficulty for 
the merging which begins after these blocks are 
sorted. 

Next, we take care of the leftmost block, but only if it 
has an unusual size (that is, if t1 < s). Let F denote this 
block. Let G denote the first block of the second sublist. 
See Figure 42. We use the rightmost t, buffer elements 
to merge F and G, giving H and 1. See Figure 4d. By 
virtue of this merge of the smallest blocks in L, we can 
now move H to its final position by swapping it with 
the t1 buffer elements there. This also restores the 
buffer. See Figure 4e. 

the worst case, use at least II - 1 key comparisons and n 
record moves. (Since L is not in a completely random 
form when the blocks are sorted, we can take advan- 
tage of its partial order to speed up this step, reducing 
our figure from 3.5~ down to 3.125~ We omit the de- 
tails from this presentation since they are cumbersome 
and not particularly interesting in their own right. Cu- 
rious readers are welcome to request additional infor- 
mation from the authors.) 

4.2 Observed Behavior 

We now swap the buffer with 1, the first s-sized block 
of L, which is either the first block of L or the one 
following H. See Figure 4f. We are thus ready to per- 
form the main algorithm as previously described. (No- 
tice that blocks I, I and E might have to be moved to 
provide the two sorted sublists that we assumed at this 
point, for the ease of discussion, in Section 2. Naturally, 
we do not actually move them, since E is to remain 
where it is and since I and J are next sorted by their 
tails anyway.) 

Thus we have outlined an efficient method for hand- 
ling arbitrary list and sublist sizes and for extracting 
the buffer. These implementation details are of time 
complexity O(A), thereby dominated by the linear 
time required for the main algorithm. 

To provide a more accurate estimate of the practical 
potential of our new merge procedure, we next de- 
scribe the results of a series of experiments aimed at 
comparing its average performance to that of a com- 
mon, heavily-used merge free to take advantage of un- 
bounded temporary extra storage. Suppose L contains 
two sublists, the first of length I,, the second of length 
I*. This fast merge works as follows. If [I 5 12, then it 
moves the first sublist to temporary storage and merges 
(forward) into L’s original position. Otherwise, it moves 
the second sublist to temporary storage and merges 
(backward) into L’s original position. 

TABLE I. Observed Behavior of In-Place Strategy, A, Relative 
to Memory-Dependent Procedure, B. 

4. ANALYSIS AND COMPUTATIONAL 
EXPERIENCE 

Algorithm A’s 
Average Run-Time, 

List size, AVG.,, in 
n Milliseconds 

50 0.1991 
100 0.3620 
500 1.563 

1,000 2.606 
5.000 13.44 

10,000 26.32 
50,000 127.6 

100,000 236.6 
500,000 1152 

1 ,ooo,ooo 2267 

Algorithm B’s 
Average Run-lime, 

AVGe, in 
Milliseconds 

4.1 Constant of Proportionality Estimates 
Key comparisons and record exchanges are generally 
regarded as by far the most time consuming merging 
operations used. Both require storage-to-storage instruc- 
tions for most architectures. Moreover, it is possible to 
count them independently from the code of any partic- 
ular implementation. Therefore, their total gives a use- 
ful estimate of the size of the linear-time constant of 
proportionality for the merge routine we have de- 
scribed. 

0.0602 
0.1205 
0.6259 
1.301 
6.734 

13.35 
66.6 

131.4 
651.2 

1309 

AVGA/AVG, 

3.307 
3.004 
2.529 
2.157 
1.996 
1.972 
1.913 
1.617 
1.769 
1.747 

We now proceed to derive a worst-case upper bound 
on their sum. (We focus only on the main algorithm, 
since extracting the buffer and other algorithmic details 
described in Section 3 need only O(h) time. Similarly, 
the final sort of the buffer can be accomplished in-place 
with a heap sort in O(& log n) time.) Recall that s = 
L&J and that there are no more than s + 2 blocks. 
Using a selection sort to sort no more than s + 1 blocks 
of size s requires at most s(s + 1)/Z comparisons and at 
most s2 exchanges [7], summing to 1.5s’ + .5s I 1.5n + 
5s. When merging series of elements, the number of 
comparisons is bounded above by the number of ex- 
changes. Exchanges occur only between buffer and 
nonbuffer elements; nonbuffer elements are moved 
only once. Thus the comparison plus exchange total for 
the merging phase is at most 2(n - s). 

There are several reasons for conducting an empirical 
comparison of these two merge algorithms. Optimisti- 
cally, we observe that, on the average, our merge 
should perform even better than the worst-case key 
comparison plus record exchange total derived in the 
last section would suggest. Pessimistically, however, we 
note that the lower-order (nonlinear) time complexity 
terms may be of significance, especially for small II. 
Furthermore, the space-squandering procedure can ac- 
complish the merge without true record exchanges, 
since it only needs to move records one at a time, not 
swap pairs of them, as it executes. 

Hence, we are guaranteed a worst-case grand total of 
something less than 3%. This is a very reasonable 
quantity indeed, especially since any merge must, in 

We wrote both merge routines in Pascal for an IBM 
3090-200, and timed them over large collections of lists, 
with relative sublist sizes and key values uniformly 
chosen at random. Table I summarizes the behavior we 
observed. Let A denote our in-place strategy. Let B de- 
note the fast procedure we have just described which 
requires O(n) extra space. Average run-times reported 
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(AVG,A and AVGs) reflect, for each list size n, the mean 
execution time each merge incurred during one 
hundred experiments. (These figures, of course, ac- 
count for the time spent merging only; they do not 
include the great amount of time devoted to overhead 
operations such as generating and sorting sublists.) 

Quite naturally, other factors such as record length, 
computer architecture, percentage of duplicates in a list 
and so on can affect algorithmic behavior. Therefore, 
the raltios we compute can only be viewed as estimates. 
We conclude that the expected penalty for merging 
large lists in place is less than a doubling of program 
execution times. This penalty can be insignificant, es- 
pecially in applications such as external file processing, 
in which overall run-times are dictated by the ways in 
which main memory can be used to assist in the effec- 
tive minimization and concurrency of I/O operations. 
We emphasize that we have implemented algorithm A 
just as we have described it herein, refraining from the 
temptation to “fine tune” it to make it faster. We sug- 
gest that more streamlined implementations can merge 
at a considerably accelerated pace. 

5. REMARKS 
We have presented a relatively straightforward and ef- 
ficient merging procedure which simultaneously optim- 
izes both time and space (to within a constant factor). 
For the sake of speed and simplicity, our algorithm is 
not stable. That is, records with equal keys are not 
assured of retaining their original relative order (refer 
back to Figure 3d). We have, however, been able to 
employ similar methods to devise a stable in-place 
merge for this problem [4]. Unfortunately, this algo- 
rithm is more complicated and runs somewhat slower. 
Even so, it is much faster than the fastest previously 
published stable in-place optimal time and space merge 
[lo]. VVe have also been able to develop a stable in- 
place O(n log n) sort [4], which bypasses the obvious 
merge-sort implementation, and is several times faster 
than any reported to date. 

This general line of research has the potential to 
change the way practitioners think about performing 
everyday file processing. For example, we have found 
that the merge routine we have presented here is 
straightforward enough to be implemented by students 
in an upper-divisional undergraduate computer algo- 
rithms class (at Washington State University) with only 
a preliminary version of this paper to use as a guide. In 
fact, we believe that this would be the case for our 
optimal time and space duplicate-key extraction, selec- 
tion, set and multiset operations as well [5, 61. 

We observe that obvious, traditional methods for 
merging in linear time require that n/2 additional 
memory cells be available. Even though internal stor- 
age is often rather cavalierly viewed as an inexpensive 
resource, it may well be that in many environments 
our algorithm’s modest run-time premium is more than 
offset by its avoidance of a 50 percent storage overhead 
penalty. In particular, this may be the case when man- 
aging c;ritical resources such as cache memory or other 

relatively small, high-speed memory components. Not 
only is there the immediate space savings, but the strat- 
egy we employ to pass the buffer across the list keeps 
active blocks near one another, thereby preserving lo- 
cality of reference and potentially reducing the likeli- 
hood of paging problems. (Of course, virtual memory 
behavior depends on several other factors as well, and 
can sometimes be surprising. See, for example, Alanko, 
Erkio and Haikala [l]). 

Finally, we note that other researchers are beginning 
to report some initial progress related to this general 
topic (see, for example, Dvorak and Durian [Z]). As 
block rearrangement strategies become better known, 
we believe further investigations will help to determine 
their practical potential for sorting, merging and related 
file-processing operations. 
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