
RESEARCH CONTRIBUTIONS

Algorithms and
Data Structures Practical In-Place Merging
Daniel Sleator
Editor

BING-CHAO HUANG and MICHAEL A. LANGSTON

ABST.RACT: We present a novel, yet straightfotward
linear-time algorithm for merging two sorted lists in a fixed
amount of additional space. Constant of proportionality
estimates and empirical testing reveal that this procedure is
reasonably competitive with merge routines free to squander
unbounded additional memo y, making it particularly
attractive whenever space is a critical resource.

1. INTRODUCTION
Merging is a fundamental operation in computer pro-
gramming. Given two sorted lists whose lengths sum to
n, the obvious methods for merging them in O(n) steps
require a linear amount of extra memory as well. On
the other hand, it is easy to merge in place using only a
constant amount of additional space by heap-sorting,
but at a cost of O(n log n) time.

Hapypily, an algorithm by Kronrod [8] solves this di-
lemma by merging in both linear time and constant
extra space. Kronrod’s seminal notions of “block re-
arrangements” and “internal buffering,” which employ
O(&) blocks each of size O(A), have spawned contin-
ued study of this problem, including the work of Hor-
vath [:I], Mannila and Ukkonen [9] and Pardo [lo].

Unfortunately, all of these schemes have been fairly
complicated. More importantly, none has been shown
to be very effective in practice, primarily because of
their large linear-time constants of proportionalities.

Herein we present a fast and surprisingly simple algo-
rithm which merges in linear time and constant extra
space. We also use O(A) blocks, each of size O(A). In

This research is supported in part by the National Science Foundation under
grants ECS-8403859 and MIP-8603879. A preliminary version of a paper de-
scribing the work reported here was presented at the ACM-IEEE/CS Fall Joint
Computer Conference held at Dallas, Texas, in October 1987.

0 1988 ACM OOOl-0782/88/0300-0348 $1.50

general, this approach allows the user to employ one
block as an internal buffer to aid in rearrang:ing or oth-
erwise manipulating the other blocks in constant extra
space. Since only the contents of the buffer and the
relative order of the blocks need ever be out of se-
quence, linear time is sufficient to sort both the buffer
and the blocks (each sort involves O(A) keys) and
thereby complete the merge. As we shall show, two
major factors which make our scheme so much more
straightforward and practical than previously reported
attempts to solve this problem are these: 1) we rear-
range blocks before we initiate a merging phase and 2)
we efficiently pass the internal buffer across the list so
as to minimize unnecessary record movement.

Given today’s low cost of computer memory compo-
nents, the greatest practical significance of our result
may well lie in the processing of large external files.
For example, notice that in-place merging can be
viewed as an efficient means for increasing the effec-
tive size of internal memory when merging or merge-
sorting external files. This may result in a su’bstantial
reduction in the overall elapsed time for file processing
whenever the extra space can be utilized for more buff-
ers to increase parallelism or larger buffers to reduce
the number of I/O transfers needed.

In the next section, we present an overview of the
main ideas behind this new O(n) time and O(1) space
merging technique, with simplifying assumptions made
on the input to facilitate discussion, Section 3, which
may be skipped on a first reading, contains the O(A)
time and O(1) space implementation details necessary
to handle arbitrary inputs. In Section 4, we formally
and empirically evaluate this new merge. We demon-
strate that, for large n, its average run time exceeds that
of a standard merge, free to exploit O(n) temporary
extra memory cells, by less than a factor of two. The
final section of this presentation consists of a collection
of observations and remarks pertinent to this topic.

340 Communications of the ACM March 1988 Volume 37 Number 3

Research Contributions

2. AN OVERVIEW OF THE MAIN ALGORITHM
Let L denote a list of n records containing two sublists
to be merged, each in nondecreasing order. For the
sake of discussion, let us suppose that n is a perfect
square. Figure la illustrates such a list with n = 25.
Only record keys are listed, denoted by capital letters.
Subscripts are added to keep track of duplicate keys as
the algorithm progresses. Let us also assume that we
have been able to permute the elements of L so that &
largest-keyed records are at the front of the list (their
relative order there is immaterial), followed by the re-
mainders of the two sublists, each of which we assume,
for simplicity, now contains an integral multiple of Jt;
records in nondecreasing order. Figure lb shows our
example list in this format.

We now view L as a series of &blocks, each of size
& We will use the leading block as an internal buffer
to aid in the merge. Our first step is to sort the & - 1
rightmost blocks so that their tails (rightmost elements)
form a nondecreasing key sequence. (A good choice for
the sort is the straight selection method as described in
Knuth [i’]. This technique is simple and will in this
setting require only O(n) key comparisons and record
exchanges.) Records within a block retain their original
relative order. See Figure lc.

BBBDDEEFGHHJA,A&BBCCEGGHII 1231*12,1,21 4512323312

-V
sublist 1 sublist 2

a) Example list L, with n - 25

H~H&IeJ1 BiBgB3D,D2 E,EzF,G,H, A A A B B C C E G G 12345 12323

-- VV’-Y--\----y-J

buffer L-v-~‘-W-J
remainder of sublist 1 remainder of sublist 2

b) Internal buffer is extracted

HHIIJAAABBBBBDDCCEGG EEFGH 2312, 123451231212323,211,

c) Blocks are sorted

FIGURE 1. Initial Rearrangement of Blocks

Next, we locate two series of elements to be merged.
The first series begins with the head (leftmost element)
of block 2 and terminates with the tail of block i, i 2 2,
where block i is the first block such that tail (i) > head
(i + 1). The second series consists solely of the elements
of block i + 1. See Figure 2a, where i = 3. We now use
the buffer to merge these two series. That is, we repeat-
edly compare the leftmost unmerged element in the
first series to the leftmost unmerged element in the
second, swapping the smaller with the leftmost buffer
element. Ties are broken in favor of the first series. In
general, the buffer may be broken into two pieces as we
merge. See Figure 2b. We halt this process when the
tail of block i has been moved to its final position. At
this point, the buffer must be in one piece, although not

on a block boundary. Block i + 1 must contain one or
more unmerged elements (as a result of the first step in
which blocks were sorted by their tails). See Figure 2c.

We now locate the next two series of elements to be
merged. This time, the first begins with the leftmost
unmerged element of block i + I and terminates as
before for some j 2 i. The second consists solely of the
elements of block j + 1. See Figure 3a, where j = 4. We
resume the merge until the tail of block j has been
moved. See Figure 3b.

HHIIJAAABB BBBDD CCEGG EEFGH 23121 1234512312123231.?11,

-+-WV

buffer <:eesr2 series 2

a) Locating the first two series of elements, i = 3

/ \

AAABBBBBCCDDDCEGGEEFGH 1234612312 23, 12213 2 3 721 1,

--v

merged

b) Merging is partially completed

AIA~A~B~B~B,B~B~C,CZD,~~ Z,HzH&J, EsG2Gs E,&F,G,H,
- v

buffer block 5

c) First two series are merged

FIGURE 2. Merging the First Two Series of Elements

We continue this process of locating series of ele-
ments and merging them until we reach a point where
only one such series exists, which we merely shift left,
leaving the buffer in the last block. See Figure 3c.
A sort of the buffer completes the merge of L. See
Figure 3d.

AAABBBBBCCDDlHHlJ EGG EEFGH 12346123121212321 323 121 11

w-v

buffer series 1 series 2

a) Locating the next two series of elements, j = 4

A 1234512312123121 A A B B B B B C C D D E E E F G2G3 J,I,HzH& G,H,
k /

buffer

b) Series is merged

AAABBBBBCCDDEEEFGGGH HzH&J,I, 123451231212312123,1

c) Last series is shifted

AAABBBBBCCDDEEEFGGGHHHIIJ f234512312,23121231t232,~

cl) Buffer is sorted, completing merge

FIGURE 3. Completing the Merge of L

March 1988 Volume 31 Number 3 Communications of the ACM 349

Research Contributions

O(:L) space suffices for this procedure, since the buffer
was internal to the list, and since only a handful of
additional pointers and counters are necessary. O(n)
time suffices as well, since the block sorting, the series
merg:ing and the buffer sorting each require at most
linear time.

This completes our overview of the central features
of this fast merging strategy, illustrating the method we
use to rearrange L by blocks and to merge the elements
of these blocks with the aid of the internal buffer. In
the next section, we provide the interested reader with
O(A) time implementation details for dealing with
lists and sublists of arbitrary sizes and for efficiently
handling the initial extraction of the internal buffer.

3. IMPLEMENTATION DETAILS
For the special case in which one of the sublists to be
merged has I c & elements, it is a simple matter to
perform the merge efficiently without the general pro-
cedure outlined in the last section. For example, sup-
posing the shorter sublist begins in location 1, we could
employ the “block merge forward” scheme suggested in
[lo]. We first search the longer sublist for an insertion
point For record 1. That is, we find p such that key(p) <
key(l) 5 key (p + 1). Then elements indexed from 1
through p can be circularly shifted p - I places to the
right, so that the rightmost element of the shorter sub-
list occupies position p. (Such a shift is often termed a
“rotation,” and can be efficiently achieved with three
sublist reversals.) The first element of the shorter sub-
list and all elements to its left are now in their final
position. We complete the merge by iterating this oper-
ation over the remainder of the list until one of the
sub1ist.s is exhausted. Linear time is sufficient for this

method since we have insured that elements of the
shorter sublist are moved no more than & times, and
elements of the longer sublist are moved only once. [If
the larger sublist occurs first, we can, of course, use an
analogous “block merge backwards” scheme.)

In what follows, therefore, we assume that each
sublist has at least s = L&J elements. Note that
(s + 1)' > n guarantees that the total number of s-sized
blocks is no more than s + 2. We begin by comparing
the right ends of the sublists, identifying s largest-keyed
records which are to become the internal buffer. Let A
and B, with respective sizes s1 and s2, denote these two
portions of L, where s1 + s2 = s. Let C denote s - s1 = sZ
elements immediately to the left of A. Let D denote the
shortest (possibly empty) collection of records to the
immediate left of B which, if D and B were deleted from
the second sublist, would leave that sublist with an
integral multiple of s records. Thus we can view L as a
list of s-sized blocks, except possibly for the first block
of size tl, where 0 < t, I s, and for the last block of size
tz, where 0 < tz c 2s. See Figure 4a.

We now show how to handle the rightmost block
which may have an unusual size. We swap B and C,
bringing the buffer into one block. Then we use the
buffer to merge C and D, giving block E of size ta. See
Figure 4b. If both C and D were nonempty, tlnen the tail
of E comes from either C or D, and is as large as any
nonbuffer element in L. Thus E is in its correct position
and does not need to be considered later when nonbuf-
fer blocks are sorted by their tails. If C and D (or both)
were empty, then although E’s tail may be srnaller
than one or more nonbuffer elements, it is easy to see
that E still need not be moved before the ma:in algo-
rithm commences. Therefore, in any event, 13 remains

t&lock s-block s-block . . . s-block C A s-block s-block . . . s-block D B
\. IL ” * d

sublist 1 sublist 2

a) Identifying list segments A, B, C, and D

&-block s-block s-block . . . s-block buffer s-block s-block . . . s-block E

b) Handling the rightmost Mock

F s-block s-block . . . s-block buffer G s-block.. . s-block E

c) Identifying blocks F and G

&-block s-block s-block . . s-block (s - Q-block W I s-block . . . s-block E

+\buffer 7

d) Merging F and G

H s-block s-block . . . s-block buffer I sLblock . . . s-block E

e) Finishing the leftmost block

H buffer s-btock , . . s-block] I s-block . . . s-block E

f) Ready for the main algorithm

350 Communications of the ACM

FIGURE 4. Implementation Details

March 1988 Volume 3:! Number 3

Research Contributions

where it is and its size can cause no difficulty for
the merging which begins after these blocks are
sorted.

Next, we take care of the leftmost block, but only if it
has an unusual size (that is, if t1 < s). Let F denote this
block. Let G denote the first block of the second sublist.
See Figure 42. We use the rightmost t, buffer elements
to merge F and G, giving H and 1. See Figure 4d. By
virtue of this merge of the smallest blocks in L, we can
now move H to its final position by swapping it with
the t1 buffer elements there. This also restores the
buffer. See Figure 4e.

the worst case, use at least II - 1 key comparisons and n
record moves. (Since L is not in a completely random
form when the blocks are sorted, we can take advan-
tage of its partial order to speed up this step, reducing
our figure from 3.5~ down to 3.125~ We omit the de-
tails from this presentation since they are cumbersome
and not particularly interesting in their own right. Cu-
rious readers are welcome to request additional infor-
mation from the authors.)

4.2 Observed Behavior

We now swap the buffer with 1, the first s-sized block
of L, which is either the first block of L or the one
following H. See Figure 4f. We are thus ready to per-
form the main algorithm as previously described. (No-
tice that blocks I, I and E might have to be moved to
provide the two sorted sublists that we assumed at this
point, for the ease of discussion, in Section 2. Naturally,
we do not actually move them, since E is to remain
where it is and since I and J are next sorted by their
tails anyway.)

Thus we have outlined an efficient method for hand-
ling arbitrary list and sublist sizes and for extracting
the buffer. These implementation details are of time
complexity O(A), thereby dominated by the linear
time required for the main algorithm.

To provide a more accurate estimate of the practical
potential of our new merge procedure, we next de-
scribe the results of a series of experiments aimed at
comparing its average performance to that of a com-
mon, heavily-used merge free to take advantage of un-
bounded temporary extra storage. Suppose L contains
two sublists, the first of length I,, the second of length
I*. This fast merge works as follows. If [I 5 12, then it
moves the first sublist to temporary storage and merges
(forward) into L’s original position. Otherwise, it moves
the second sublist to temporary storage and merges
(backward) into L’s original position.

TABLE I. Observed Behavior of In-Place Strategy, A, Relative
to Memory-Dependent Procedure, B.

4. ANALYSIS AND COMPUTATIONAL
EXPERIENCE

Algorithm A’s
Average Run-Time,

List size, AVG.,, in
n Milliseconds

50 0.1991
100 0.3620
500 1.563

1,000 2.606
5.000 13.44

10,000 26.32
50,000 127.6

100,000 236.6
500,000 1152

1 ,ooo,ooo 2267

Algorithm B’s
Average Run-lime,

AVGe, in
Milliseconds

4.1 Constant of Proportionality Estimates
Key comparisons and record exchanges are generally
regarded as by far the most time consuming merging
operations used. Both require storage-to-storage instruc-
tions for most architectures. Moreover, it is possible to
count them independently from the code of any partic-
ular implementation. Therefore, their total gives a use-
ful estimate of the size of the linear-time constant of
proportionality for the merge routine we have de-
scribed.

0.0602
0.1205
0.6259
1.301
6.734

13.35
66.6

131.4
651.2

1309

AVGA/AVG,

3.307
3.004
2.529
2.157
1.996
1.972
1.913
1.617
1.769
1.747

We now proceed to derive a worst-case upper bound
on their sum. (We focus only on the main algorithm,
since extracting the buffer and other algorithmic details
described in Section 3 need only O(h) time. Similarly,
the final sort of the buffer can be accomplished in-place
with a heap sort in O(& log n) time.) Recall that s =
L&J and that there are no more than s + 2 blocks.
Using a selection sort to sort no more than s + 1 blocks
of size s requires at most s(s + 1)/Z comparisons and at
most s2 exchanges [7], summing to 1.5s’ + .5s I 1.5n +
5s. When merging series of elements, the number of
comparisons is bounded above by the number of ex-
changes. Exchanges occur only between buffer and
nonbuffer elements; nonbuffer elements are moved
only once. Thus the comparison plus exchange total for
the merging phase is at most 2(n - s).

There are several reasons for conducting an empirical
comparison of these two merge algorithms. Optimisti-
cally, we observe that, on the average, our merge
should perform even better than the worst-case key
comparison plus record exchange total derived in the
last section would suggest. Pessimistically, however, we
note that the lower-order (nonlinear) time complexity
terms may be of significance, especially for small II.
Furthermore, the space-squandering procedure can ac-
complish the merge without true record exchanges,
since it only needs to move records one at a time, not
swap pairs of them, as it executes.

Hence, we are guaranteed a worst-case grand total of
something less than 3%. This is a very reasonable
quantity indeed, especially since any merge must, in

We wrote both merge routines in Pascal for an IBM
3090-200, and timed them over large collections of lists,
with relative sublist sizes and key values uniformly
chosen at random. Table I summarizes the behavior we
observed. Let A denote our in-place strategy. Let B de-
note the fast procedure we have just described which
requires O(n) extra space. Average run-times reported

March 1988 Volume 31 Number 3 Communications of the ACM 351

Research Contributions

(AVG,A and AVGs) reflect, for each list size n, the mean
execution time each merge incurred during one
hundred experiments. (These figures, of course, ac-
count for the time spent merging only; they do not
include the great amount of time devoted to overhead
operations such as generating and sorting sublists.)

Quite naturally, other factors such as record length,
computer architecture, percentage of duplicates in a list
and so on can affect algorithmic behavior. Therefore,
the raltios we compute can only be viewed as estimates.
We conclude that the expected penalty for merging
large lists in place is less than a doubling of program
execution times. This penalty can be insignificant, es-
pecially in applications such as external file processing,
in which overall run-times are dictated by the ways in
which main memory can be used to assist in the effec-
tive minimization and concurrency of I/O operations.
We emphasize that we have implemented algorithm A
just as we have described it herein, refraining from the
temptation to “fine tune” it to make it faster. We sug-
gest that more streamlined implementations can merge
at a considerably accelerated pace.

5. REMARKS
We have presented a relatively straightforward and ef-
ficient merging procedure which simultaneously optim-
izes both time and space (to within a constant factor).
For the sake of speed and simplicity, our algorithm is
not stable. That is, records with equal keys are not
assured of retaining their original relative order (refer
back to Figure 3d). We have, however, been able to
employ similar methods to devise a stable in-place
merge for this problem [4]. Unfortunately, this algo-
rithm is more complicated and runs somewhat slower.
Even so, it is much faster than the fastest previously
published stable in-place optimal time and space merge
[lo]. VVe have also been able to develop a stable in-
place O(n log n) sort [4], which bypasses the obvious
merge-sort implementation, and is several times faster
than any reported to date.

This general line of research has the potential to
change the way practitioners think about performing
everyday file processing. For example, we have found
that the merge routine we have presented here is
straightforward enough to be implemented by students
in an upper-divisional undergraduate computer algo-
rithms class (at Washington State University) with only
a preliminary version of this paper to use as a guide. In
fact, we believe that this would be the case for our
optimal time and space duplicate-key extraction, selec-
tion, set and multiset operations as well [5, 61.

We observe that obvious, traditional methods for
merging in linear time require that n/2 additional
memory cells be available. Even though internal stor-
age is often rather cavalierly viewed as an inexpensive
resource, it may well be that in many environments
our algorithm’s modest run-time premium is more than
offset by its avoidance of a 50 percent storage overhead
penalty. In particular, this may be the case when man-
aging c;ritical resources such as cache memory or other

relatively small, high-speed memory components. Not
only is there the immediate space savings, but the strat-
egy we employ to pass the buffer across the list keeps
active blocks near one another, thereby preserving lo-
cality of reference and potentially reducing the likeli-
hood of paging problems. (Of course, virtual memory
behavior depends on several other factors as well, and
can sometimes be surprising. See, for example, Alanko,
Erkio and Haikala [l]).

Finally, we note that other researchers are beginning
to report some initial progress related to this general
topic (see, for example, Dvorak and Durian [Z]). As
block rearrangement strategies become better known,
we believe further investigations will help to determine
their practical potential for sorting, merging and related
file-processing operations.

Acknowledgements. The authors wish to thank Donald
Knuth for suggesting this general line of investigation,
and Michael Morford for his assistance in performing
the run-time experiments whose results we have re-
ported. We also thank the anonymous referees whose
comments helped to improve the readability of this
paper.

1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

REFERENCES
Alanko. T.O., Erkio, H.H., and Haikala, I.J. Virtual memory behavior
of some sorting algorithms. IEEE Trans. on Software Engr. 10 (1984),
422-431.
Dvorak, S., and Durian. B. Towards an efficient merging. Lecture
Notes in Computer Science 233 (1986), 290-298.
Horvath, E.C. Stable sorting in asymptotically optimal time and
extra space. I. of the ACM 25 (197&I), 177-199.
Hung, B.C., and Langston, M.A. Fast stable merging and sorting in
constant extra space, Computer Science Department Technical Re-
port CS-87-170, Washington State University, 1987.
Hung, B.C., and Langeton, M.A. Stable duplicate-key extraction
with optimal time and space bounds. Acta Informaticn. to appear.
Huang, B.C., and Langston, M.A. Stable set and multiset operations
in optimal time and space, Computer Science Department Technical
Report CS-87-166, Washington State University, 1987.
Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.
Kronrod, M.A. An optimal ordering algorithm without a field of
operation (in Russian), Dok. Aknd. Nauk SSSR 186 (196!& 1X6-1258.
Manila, H., and Ukkonen, E. A simple linear-time algorithm for in
Situ ItErging. information Processing Letters 18 (1984), 2.03-208.
Pardo, L.T. Stable sorting and merging with optimal space and time
bounds. SIAM 1. Comput. 6 (1977), 351-372.

CR Categories and Subject Descriptors: D.4.3 [Operating Systems]:
File Systems Management-Maintenance; F.2.2 [Analysis Iof Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems-
Sorting and Searching; H.2.4 [Database Management]: Systems-Tram-
action Processing

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Block rearrangements, file pro-

cessing, internal buffering. in-place algorithms, optimal time and space
merging

Received 8/86; revised S/87; accepted 6/87

Authors’ Present Address: Department of Computer Science, Washing-
ton State University, Pullman, WA 99164-1210

Permission to copy without fee all or part of this material 1.s granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

352 Communications of the ACM March 1988 Volume 31 Number 3

