
pile t ime.  Second ,  we assume no p r o b l e m s  of  f inite 
prec is ion.  Bo th  of  these  a s sumpt ions  could  l ead  to  
difficult ies in an ac tua l  i m p l e m e n t a t i o n .  W h e n e v e r  the  
effect ive pos i t ion  of  a c o m p u t a t i o n  is m o v e d ,  as it is in 
these  s t reng th  r educ t ion  m e t h o d s ,  p r o p e r  a t t en t ion  
should  be  pa id  to such " s a f e t y "  cons ide ra t ions ,  lest  an 
u n e x p e c t e d  e r ro r  in t e r rup t  occur .  I t  does  no g o o d  to 
p roduce  a fas ter  vers ion  of  the  p r o g r a m  if the  fas te r  
vers ion is incor rec t .  The  i n t e r e s t ed  r e a d e r  can f ind an 
e x p a n d e d  t r e a t m e n t  of  safe ty  in [11]. 

A final  a s sumpt ion  m a d e  in using such a s t reng th  
r educ t ion  t echn ique  is tha t  it is p ro f i t ab l e .  The  prof i ta -  
bi l i ty  a s sumpt ion  is b a s e d  on the obse rv a t i ons  tha t  
code  within a l oop  is e x e c u t e d  f r equen t ly  and  mul t ip l i -  
ca t ions  are  s ignif icant ly  m o r e  expens ive  than  add i t i ons  
on mos t  mach ines .  These  a s sumpt ions  a re  not  val id  in 
all cases ,  however .  F o r  e x a m p l e ,  if we were  to  r ep l ace  
a mul t ip l i ca t ion  on a l i t t l e -used  b ranch  in the  l oop  by  
add i t i ons  on m o r e  f r equen t  pa ths ,  we might  signifi- 
cant ly  d e o p t i m i z e  the  c o m p i l e d  code .  This  s i tua t ion  
can be  avo ided  by  a m o r e  careful  analysis  of  p rof i t ab i l -  
i ty such as the  one  d e s c r i b e d  in [12]. 

A c k n o w l e d g m e n t s .  The  au tho r s  wish to t hank  
F rances  A l l e n  of  I B M  and  Jack  Schwar tz  of  New Y o r k  
Un ive r s i ty  for  the i r  many  he lpfu l  sugges t ions .  The  
r e fe ree  p r o v i d e d  severa l  va luab l e  sugges t ions  for  im- 
p r o v e m e n t  of  the  f inal  manusc r ip t .  W e  a re  pa r t i cu l a r ly  
gra te fu l  for  his c o m m e n t s  on  the  ques t ion  of  safe ty ,  
some  of  which we a d a p t e d  in the  s u m m a r y  and  conclu-  
s ions.  
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1.  Introduct ion 

Formula manipulation is a basic activity in many 
branches of mathematics ,  not only because of a natural 
desire to express relationships in their simplest possible 
terms, but also as a means to develop new insights 
about the problem in hand. In computer  science we 
manipulate programs rather  than formulas or equa- 
tions, but the activity is much the same. Usually the 
chief object of program transformation is to produce 
not necessarily a simpler program,  but at least a 
program which is more efficient in an appropriate  
sense, say one that uses less space or has a faster 
running time. 

As Knuth [8] observes,  a "calculus" of program 
transformations is gradually emerging,  a set of opera- 
tions which can be applied to programs without re- 
thinking the specific problem each time. Among  such 
operations one may mention the following: doubling 
up of loops, Boolean variable elimination, and a num- 
ber of techniques for recursion elimination. The first 
two are described in Knuth [8] and are embodied  in 
the linear speed-up transformation of Bird [2]; the last 
is described in Bird [3] and Darlington and Burstall 
[7], among others. Recursion elimination is particularly 
important  because so many algorithms can be ex- 
pressed naturally and succinctly in recursive form, 
even though this form may not be the most suitable 
one for execution on a computer .  Instead of using the 
facilities for recursion provided by the programming 
language in which the algorithm is to be represented 
(always assuming, of course, that the language does 
possess such a facility) and relying on the compiler  to 
take care of the details, the p rogrammer  can often 
obtain a significant increase in efficiency by designing 
his or her own implementat ion of recursion, specially 
tailored to the given problem.  

The particular technique of program transformation 
to be described in this paper  represents a sort of 
inverse activity to recursion elimination, namely the 
conscious introduction of recursion where none existed 
before.  For this reason, we call it recursion introduc- 
tion. Although recursion makes its appearance  only as 
an intermediate step and is eliminated again almost 
immediately,  the insight gained leads to much faster 
versions of the programs to which the technique can 
be applied. The characteristic property of the programs 
which can make use of recursion introduction is that 
they manipulate a stack. The relationship between 
recursion and stacks is well known; indeed it is pre- 
cisely this relationship that is exploited in many meth- 
ods of recursion elimination. What is not so often 
appreciated is that the relationsltip is a complementary  
one; the manipulation of a stack can be eliminated in 
favor of a recursive mode of operat ion (see Brown, 
Gries, and Szymanski [5] or Chandra [6] for a precise 
formulation and proof  of this result). It  is this idea 
which forms the basis of the technique. 
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Recursion introduction would be a pointless activity 
were it not for the fact that the recursion can be 
eliminated again without recourse to a stack. To do 
this a second transformation called tabulation is in- 
voked.  Briefly, tabulation is the process of reducing 
the amount  of work done in calculating the values of a 
recursively defined function f b y  storing the values in a 
table. In this way, each value of f is computed  just 
once f rom the recursive definition; subsequent requests 
for the value are obtained simply by looking up the 
table. Tabulation is thus a variant of the well-known 
technique of dynamic programming,  discussed in Aho,  
Hopcrof t ,  and Ullman [1]. Once the general strategy 
of tabulation has been adopted,  it can often be imple- 
mented very efficiently by taking into account the 
propert ies of the function under consideration. We 
shall see the technique at work in Sections 3 and 4. 

Although programs which manipulate a stack are 
not, perhaps,  that common (excepting the case where 
the stack has been introduced specifically to eliminate 
recursion), there is at least one important  area in 
which such algorithms are conceived. This is the area 
of pattern matching. The simplest example of a pat tern 
matching problem is the problem of determining 
whether  a given string of m symbols,  called a pattern, 
occurs as a substring of another  given string of n 
symbols, called a text: As we shall see in Section 3, a 
comparat ively simple stack algorithm can be given to 
solve this problem,  one which works within O(mn) 
steps. Recently,  a linear t ime (i.e. O(m + n)) solution 
has been given by Knuth,  Morris, and Pratt  [9]. The 
discovery of the fast algorithm has an interesting his- 
tory which is detailed in [9]. Briefly, the naive stack 
algorithm conforms to the conditions of a theorem due 
to Cook (discussed in Aho,  Hopcroft ,  and Ullman 
[1]), who showed by a fairly complicated simulation 
that certain stack algorithms, no matter  how long they 
took to execute, could be simulated in linear time. By 
pondering the details of this simulation, Knuth was 
able to extract the essentials of the fast pattern match- 
ing algorithm. This algorithm was later generalized so 
that its running time was not dependent  on the size of 
the input alphabet.  Cook ' s  theorem is important  be- 
cause it shows that for a variety of problems linear 
solutions do exist. However ,  as Aho,  Hopcrof t ,  and 
Ullman [1] remark,  the constant factor arising from 
the use of Cook 's  simulation directly is quite large; so 
further search for bet ter  linear solutions is necessary. 
The immediate  significance of recursion introduction, 
as the following examples show, is that once, possibly 
inefficient, stack algorithms are given, they can be 
mechanically t ransformed into fast linear solutions for 
the problem.  

In Section 3 we demonstra te  how the fast linear 
pattern matching algorithm can be derived in a few 
steps from a simple nonlinear stack algorithm. A 
second example of the use of recursion introduction is 
considered in Section 4, where a nonlinear stack algo- 
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rithm for determining whether  given patterns in a set 
are all different is t ransformed into a linear algorithm. 
The next section outlines the recursion introduction 
method.  

2. Recursion Introduction 

The basic strategy governing the conversion of 
stack algorithms into recursive programs is to regard 
each symbol on the stack as recording an obligation to 
execute an appropriate  recursive procedure.  More pre- 
cisely, if at some stage during the operat ion of a stack 
algorithm P the stack contains symbols sl, s2 . . . . .  s , ,  
then the recursive program Q will be designed so that 
at the corresponding stage the calls R ( s l ) ,  R ( s 2 )  . . . . .  

R ( s n )  of a recursive procedure  R are waiting for future 
evaluation. The definition of R is determined by the 
instructions of P which process the stack symbols. 
Rather  than deal with the general implementat ion of 
this strategy for an arbitrary stack algorithm, we con- 
sider only the case where P is an algorithm of the form 

S := empty; 
A; 
while S not empty do 

begin z ~ S; 

B 
end; 

c 

in which the processing of a stack S is determined by a 
single loop. Portions A and B of P may contain stack 
assignments (written in the form S ~ x) as well as 
nonstack instructions, while C may contain only the 
latter type.  The important  point is that P may not 
contain any further instructions of the form x ~ S. 
Not only is this form of algorithm sufficient for the 
purposes of the present paper ,  it also enables recursion 
to be introduced in a straightforward fashion. The 
recursive program Q corresponding to P takes the 
form 

begin procedure R(x);  

begin z := x ;  B* end; 
A * ;  C 

end, 

where A* and B* are translations of the portions A 
and B, respectively, and may involve calls to the 
procedure R.  To see how A* is defined, suppose that 
for a given vector v of variables the overall effect of A 
is to carry out the operat ions 

v := f ( v ) ;  S ~ x l ;  S ~ x ~ ;  . . . ; S ~ x ,  

so that the string xn xn-1 • • • x~ is added to the top of 
the stack. The principle determining the construction 
of A* is that A* should, in effect, carry out the 
operat ions 

v := f(v);  R(x,); R ( x n - ~ ) ;  • • • ; R ( x ~ )  

in accordance with the strategy outlined above.  Exactly 
the same principle operates  in translating B into B*. 
Since C does not contain stack instructions, we have 
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C* = C. Notice that the state vector v is t reated as 
global to the procedure R. Once the principle of the 
translation is understood,  there is no need to formulate 
exact rules for the construction of A* and B*, as 
particular cases may best be dealt with in different 
ways. For instance, in the case that B contains no 
assignment to the variable z, and so only the initial 
value of z is relevant to B, the instruction z := x can 
be removed  from the body of R and the definition 

procedure R(z); 
begin B* end 

used instead. 
The examples which follow in Sections 3 and 4 

illustrate further aspects of the method and also contain 
details as to how the recursion is eliminated once 
again without recourse to a stack. 

3. First Example  of  Recursion Introduction 

In this section we apply recursion introduction to 
the basic pat tern matching problem and hence derive 
the fast algorithm of Knuth,  Morris, and Pratt .  The 
problem is this: Given a pat tern of symbols p[1], p[2], 
• . . , p [ m ] ,  to determine whether  or not it matches 
some substring of a text t[1], t[2], . . . , t i n ] .  We can 
design a stack algorithm to solve this problem in the 
following way. First, the text is stored on a stack S, 
with t i l l  on top,  and a pointer  is initialized to the first 
symbol of the pat tern.  At  this stage the first pass over  
the pat tern begins (in general ,  the effect of the kth 
pass will be to determine whether  or not the pat tern 
occurs as an initial substring of t [ k ] ,  t [ k  + 1] . . . .  , 
tin]): As long as the stack is not empty ,  the top symbol 
is removed  and compared  to the current symbol of the 
pat tern,  provided such a symbol exists. If  they match,  
then the pointer  is advanced and the process repeated.  
If  they do not match,  then the stack is restored to its 
initial configuration at the beginning of the pass by 
loading the pat tern symbols to the left of the pointer .  
The first symbol on the stack is then removed,  ready 
for the next pass. If the pat tern is exhausted during a 
pass, then the algorithm stops, indicating a successful 
match; otherwise,  when all the passes have been com- 
pleted,  the algorithm stops, indicating no match.  

This description is formalized in the following pro- 
gram: 
Algorithm 1 

begin stack S; S := empty; 
j := n + 1; repeatj := j - 1; S ~ t[./] untilj = 1; 
while j ___ m and S not empty do 

beg in  x ~ S; 
i f p [ j ]  = x thenj : = j  + 1 e lse  
i f j  :k 1 then 

b e g i n S ~ x ; j  : = j  - 1; 
while j ~ 1 do 

beg in  S ~ p [ j ] ; j  : = j  - 1 end 
end 

end; 
i f j  > m t h e n  MATCH else  NO MATCH 

end 
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The first step in the process of  simplifying this 
a lgori thm is to el iminate the stack S by in t roducing 
recursion in the manner  described in Section 2. Prior  
to the stack processing loop,  the stack S is initialized 
to contain the symbols  t[1], t[2] . . . .  t i n ]  in order ,  and 
j is set to 1; so the recursive algori thm takes the form 

Algorithm 2 

j := 1; fork := 1 ton doR(t[k]); 
i f ]  > m then M A T C H  else NO M A T C H .  

The definition of  R is de te rmined  by the body  of  the 
central  loop and is given by 

procedure R(x); 
begin if] > m then goto M; 

ifpL/] = x thenj := j + 1 else 
i f]  :~ 1 then 

begin T; R(x) end 
M: end 

The first point  to note  is the presence of  the test j > 
rn. This reflects the fact that  the central  loop of  
Algor i thm 1 could equally well have been stated in the 
slightly different form 

while S not empty do 
begin x ~ S; if] > m then goto M; 

M : end 

the difference being only that  this version always 
empties  the stack before  terminat ing.  

Second,  note that  the definit ion of  R involves a call 
to a fur ther  as yet unspecif ied procedure  T; this proce-  
dure will be designed to simulate the stack opera t ions  
in the code 

j : = j  - 1; while] :k 1 do begin S ~ p [ j ] ; j  := j  - 1 end 

Finally, observe the terminal  call R ( x )  in the defi- 
nition of  R;  this cor responds  to the ass ignment  S ~ x 
in the central  loop.  Actual ly ,  this call can immedia te ly  
be el iminated in favor of  a direct jump to the beginning 
of  R. The  principle involved here is the simplest case 
of  recursion el imination,  namely ,  when the last action 
of  a recursive procedure  is to call itself, then that  call 
can be replaced,  after reassigning the pa rame te r  if 
necessary,  by a direct j u m p  to the first instruction of  
the p rocedure .  We shall not  pause to give a justification 
of  this principle as an excellent discussion can be found  
in Knuth  [7]. El iminat ing the call gives the following 
new definition for R:  

procedure R(x); 
begin L: i f j  > m then goto M; 

ifp[j] = x thenj := j + 1 else 
i f ]  ~ 1 then begin T; goto L end 

M: end 

We can even go one stage fur ther  and incorpora te  the 
body  of  R directly into Algor i thm 2. Af te r  simplifying 
the looping structure in an obvious  way,  we obtain the 
following version of  the algori thm: 

Algorithm 3 

j : = k : =  l; 
w h i l e k _ n  a n d j < m  do 
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begin ifp[j] = t[k] then begin/  := j + 1; k := k + 1 end 
else i f ]  = 1 then k "= k + 1 else T 

end; 
if] > m then M A T C H  else N O  M A T C H  

We are thus left with the definit ion of  T to consider.  
One  way of  defining T is as follows: 

procedure T; 
begin integer k; j := j - 1; 

i f]  4= 1 then begin k := j;  T; R(p[k]) end 
end 

To justify this definit ion, observe  that the code which 
T has to simulate places the string p[2] p[3] . . . p [ j  - 
1] on the stack and also sets j to 1. This translates in 
the recursive version to p rocedure  calls R(p[2]) . . . . .  
R ( p [ j  - 1]) which are invoked  a f t e r ]  has been set to 1. 
One  way of  achieving this is given above.  In a similar 
manner  as before ,  we can now substitute the definition 
of  R ( p [ k ] )  directly into the body  of  p rocedure  T. This 
eliminates all references to p rocedure  R;  so we are left 
with just the single recursive procedure  T. 

As  prepara t ion  for the next step, notice that  the 
effect of  T is simply to change  the value o f ] .  In o ther  
words ,  we can regard T as an assignment of  the f o r m ]  
:= f ( j )  for an appropr ia te  funct ion f .  We can even say 
what f is since its definit ion can be extracted f rom that 
of  T. We have 

function f (x ) ; 
begin integer y; 

if x = 2 then return 1 else 
heginy := f ( x  - 1); 

L: fly > m then return y else 
if ply] = p[x - 1] then return y + 1 else 
i fy  ¢ 1 then begin y := f(y); goto L end else 
return y 

end 

Al though  the definit ion of  f is given for  a general  
x ,  we are only interested in the range 2 -< x -< m,  
simply because the assignment  j := f ( j )  (i.e. p rocedure  
T) is only invoked for  2 -< j -< m.  We are guaran teed  
that  f is well defined in this range since f has been 
derived f rom a terminat ing algori thm. 

A t  this stage we apply the idea of  t a b u l a t i o n  to  
reduce  the amoun t  of  work  done  in calculating the 
values o f f .  The basic strategy is to compu te  the value 

f ( x )  f rom the recursive definit ion just once for  each x 
and store the result in a table F so that F i x ]  = f ( x ) .  

Subsequent  calculations o f f ( x )  are obta ined  simply by 
using F [ x ]  instead. Initially each entry in F is set to 
zero,  and the recursive call y := f ( y )  in the definit ion 
o f f  is replaced by the code 

if F[y] =b 0 then y := F[y] else 
begin z := f(y); F[y] := z ; y  := z end 

Since f ( x )  > 0 for x --> 2, these instructions de te rmine  
whether  or  not  the value of  f 0 ' )  has previously been 
calculated,  and,  if not ,  then the value is calculated and 
s tored in the table for  future  use. Similar instructions 
have to be defined for  the assignment  y := f ( x  - 1). 

This general  strategy can be implemented  more  
efficiently by taking advantage  of  the proper t ies  of  f .  
It is not  too  difficult to show that  f (x)  -< x f o r x  -> 2, so 
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the value o f f ( x  + 1) depends only on the values f(2) ,  
. . . .  f ( x ) .  This means we can compute  F sequentially, 
as in the following algorithm: 

begin array F[2  : m] ;  

F[2]  := 1; 
forx := 3 t o m  do 

b e g i n y  := F[x - 1]; 

L: ifp[y] = p[x - 1] then Fix] := y + 1 e lse  
f l y  :~ 1 then 

beg in  y := F [ y ] ;  goto L end 
else  F[x] := 1 

end 
end 

Notice that the array e lement  F[1] does not exist. 
We can, however,  simplify the logic of the algorithm 
by introducing a value F[1] = 0 and constructing the 
array as follows: 

begin array F[1 : m] ;  

F[1]  := 0; F[2]  := 1; 
forx := 3 t o m  do 

b e g i n y  := Fix - 1]; 
whiley > 0 a n d p [ y ]  :~ p[x - 1] d o y  := F [ y ] ;  

F[x] := y + 1 
end 

end 

Having calculated the array F, we can replace the 
procedure call T in Algori thm 3 by the ass ignment j  := 
F[j].  This gives us the Knuth-Morris-Prat t  algorithm. 
Although we shall not prove it here,  the computat ion 
of F and the pattern matching procedure itself both 
have a running time linear in m + n, the constant 
factor being independent  of the size of the input 
alphabet.  (See [1] or [9].) 

Notice how the function f has been revealed to us 
simply by a sequence of mechanical t ransformations 
from the stack algorithm. At  no stage was it necessary 
to relate f to the particular symbols in the pat tern or 
text, even though a natural interpretation of f does 
exist (again, see [1] or [9]). Such a situation seems to 
be in the best mathematical  tradition: A purely formal 
manipulation of expressions has brought  forth new 
and unexpected relationships about  the problem under 
consideration. 

3. Second Example of Recursion Introduction 

Our second example of the use of recursion intro- 
duction deals with the problem of recognizing a se- 
quence of distinct patterns.  Given is a string c x l c x 2  

. . .  c x n c  of symbols, where each x j  is a (possibly 
empty)  string of symbols over  some alphabet  E and c 
is a symbol not in E. The problem is to determine 
whether  or not there exist j and k ,  with j :/: k,  such 
that x j  = x e .  

An algorithm which uses a stack S and a text 
pointer  j can be developed for this problem based on 
the following idea. At  stage k (1 -< k -< n) in the 
computat ion,  S is empty  and j points to the symbol c 
immediately following the pat tern xk. S is now initial- 
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ized by back-spacing j and copying the input onto S 
until a symbol c is reached. Thus S will now contain 
xkc. The pointer  j is advanced to the first symbol of 
x k + l ,  and the following process now takes place. As 
long as the top stack symbol matches the current input 
symbol,  the stack is popped  and the pointer  is ad- 
vanced. If  there is a mismatch,  the stack is restored by 
back-spacing the pointer  to the previous c while copy- 
ing each input symbol back onto S. The pointer  is then 
advanced again to the first symbol of the next pat tern,  
regarding pattern xl as following xn, and the process is 
repeated.  Clearly, the stack :must be emptied by this 
procedure because eventually we shall successfully 
match xkc against itself if no previous match were 
found. Thus the stack will be emptied either because 
we match xk against an Xm for k < m -< n, in which 
case we can immediately terminate the algorithm and 
reject the input, or because we match xk against itself. 
We know there can be no m with 1 -< m < k such that 
Xm = xk; otherwise this fact would have been detected 
at stage m.  In the case that xt~ is matched only against 
itself, the pointer  is advanced to the next c, and stage 
k + 1 is entered if k + 1 < n. If  there are no more  
stages to do, the algorithm terminates and the input is 
accepted. 

We can formalize the algorithm with the help of an 
auxiliary function tr, designed so that tr(j) gives the 
position of the first c to the right of position j .  The 
definition is 

function tr(x); 

begin repeat x := x + 1 un t i l  a[x]  - c ;  
ff x = N then return 0 else  r e t u r n  x 

end 

Here  we are supposing that the complete input text is 
stored in an array a[0], . . . , a [ N ] .  The central loop 
on which the algorithm is based can now be described 
as follows: 

Central Loop 

repeat S ~ a[j];j := j - 1 un t i l  a [ j ]  = c;  

j := tr(j)  + 1; 
while S not empty do 

begin b ~ S; 
i r a [ j ]  = b thenj := j + 1 e lse  

b e g i n S ~ b ; j  : = j -  1; 
while a[.j] ~ c do 

begin S ~ a[j];j := j - 1 end; 
j := ~(j) + 1 

end 
end; 

j : = j - 1  

For the reasons given above,  this program must always 
terminate.  If  the final value of j is equal to its initial 
value, then we must go on to the next stage of the 
computat ion,  as no proper  match was found; otherwise 
we terminate the algorithm and reject the input. The 
complete algorithm can therefore  put in the form 

Algorithm 1 

j := ~(0); x := j; 
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whilej  ~ 0 a n d x  = j d o  
begin central loop ; 

i f  x = j then begin j := o-(j); x := j end 
end ;  

i f x  = j then N O M A T C H  else M A T C H  

Once again, the transformation used in the previous 
example is applied to reduce Algorithm 1 to a linear- 
time algorithm. We replace the use of S by calls to a 
recursive procedure R. If at some point during the 
execution of algorithm 1 the stack contains a[jl], • • • , 
a[jm], then, at the corresponding point during the 
recursive algorithm, procedure calls R(j l)  . . . . .  R(jm) 
are waiting for evaluation. The definition of R is 
extracted from the definition of central loop and is as 
follows: 
procedure R(k  ); 

begin i f  a[./] = a[k] thenj  := j + 1 else  

begin T; R(k)  end 
end 

Here T is a procedure which simulates the code 

j : = j -  1; 
while a[./] =~ c do  beg in  S ~ a[ j ] ; j  := j - 1 end ;  
j := or(j) + 1. 

Its definition is thus 

procedure T; 

begin integer k; j := j - 1; 
i r a [ j ]  = c thenj  := o-(j) + 1 e lse  

begin k := j;  T; R(k)  end 
end 

T can also be used to define the appropriate simulation 
of central loop, which now becomes the operations 

k := j ;  T; R ( k ) ; j  : = j  - 1. 

The full algorithm therefore takes the following 
form: 

Algorithm 2 

j := o'(0); k := )'; 

whilej=~ 0 a n d k  = j d o  
begin T; R ( k ) ; j  := j - 1; 

if  k = j t hen  beg in  j := o-(j); k := j end 
end;  

if  k = j then N O M A  T C H  else  M A T C H  

The explicit recursion in procedure R can be eliminated 
as in Section 3 and yields the new definition 

procedure R(k);  
begin while a[]]  ~ a[k] do T; 

j : = j + l  
end 

This leads to the following new definition of T: 

procedure T; 

begin integer k ; j  := j - 1; 
i f  a [ j ]  = c then j := o-(j) + 1 else  

begin k := j ;  
repeat T until a[j] = a[k]; 

j : = j + l  
end 

end 

As in Section 3, we can regard T as equivalent to 
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an assignment j := f( j)  , where we have 

function f (x ) ; 
beg in  i n t ege r  y ;  

i f  a[x - 1] = c then return o-(x - 1) + 1 else  
beginy  := x - 1; 

repeat y := f ( y )  until a[y] = a[x - 1]; 
return y + 1 

end 
end 

A t  this stage the full algorithm takes the form 

Algorithm 3 

j := ~r(0); k := j ;  
while j =~ 0 and k = j do  

begin repeatj  := f ( j )  un t i l  a [ j ]  = a [k] ;  
if k = j then begin j := o-(j); k := j end 

end;  
i f k  = j then N O M A T C H  else  M A T C H  

Looking closely at Algorithm 3, we can discover 
the way to further simplification. Suppose we let j := 
g(k) abbreviate the instructions 

] := k; repeatj  := f ~ )  until a[j] = a[k]. 
Using g we can put Algorithm 3 in the form 

Algorithm 4 

j := ~(0); 
w h i l e j  :~ 0 a n d j  = g( j )  d o j  := or(j); 

i f j  = 0 then N O M A T C H  else  M A T C H .  

This very simple statement of the algorithm suggests 
that g is going to be a more useful function than f .  We 
can define f in terms of g as follows: 

function f(x); 
f fa[x  - 1] = c then return tr(x - 1) + 1 

else  r e tu rn  g(x - 1) + 1 

This means that we can give a definition of g solely in 
terms of g, namely, 
function g(x ) ; 

begin integer y; y := x; 
repeat i f a [ y  - 1] = c theny  := tr(y - 1) + 1 

e l sey  : = g ( y  - 1) + 1 
until a[y] = a[x] ;  

return y 
end 

This recursive definition of g can be simplified by a 
change of variable. If we replace y by y + 1, then the 
following definition is obtained: 
function g(x ) ; 

begin integer y ; y := x - 1; 
repeat if a[y]  = c then y := o-(y) 

else y := g(y)  
until a[y + 1] = a[x] ;  
return y + 1 

end 

We can even go one stage further. Notice that a[x] 
= a[g(x)]; in particular, a[x] = c if and only if a[g(x)] 
= c. Now we certainly have a[o-(x)] = c by the 
definition of o', so we can remove the test a[y] = c 
from the body of the loop and obtain the following 
more efficient version: 

function g(x ) ; 
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begin integer y; y := x - 1; 

if a[y] = c then repeat y := t r (y)  until a[y + 1] = a[x] 
else repeaty := g(y) until a[y + 1] = a [ x ] ;  

return y + 1 
end 

As in the previous section, the next problem to be 
faced is how to compute the values of g(x) for 1 -< x -< 
N by a faster process than simply using the definition 
of g. Once again, the answer is to employ tabulation, 
whereby the values of g are computed once only and 
stored in a table for subsequent use. Tabulation can be 
implemented directly, but it is instructive to see how a 
more efficient version goes. What we need is the 
interesting result that g in fact defines a permutation of 
1 , 2  . . . . .  N,  i.e. 

(a) l _< g(x) <_ N, f o r l - x _ < N ,  and 
(b) g(x) =g(y)  impliesx  = y ,  f o r l _ < x , y - N .  

Of course this property of g must be proved solely 
from the given definition. We outline only how to 
prove (b) since (a) is reasonably straightforward. The 
proof of (b) is instructive because it illustrates the use 
of a general induction technique which deserves to be 
more widely appreciated. This is the method of com- 
putational induction, which is described fully in Morris 
[11], Manna [10], and Bird [4]. 

Briefly stated, the idea is to consider an infinite 
sequence of partial functions go gl . . . .  which repre- 
sent, in a suitable sense, "approximations" to the 
"limit" function g. We can then prove any property of 
g by proving it for each approximation function and 
passing to the limit. The sequence of approximations 
is defined by taking go to be the everywhere undefined 
function, and defining gk+l by exactly the same defini- 
tion as g,  except that recursive calls to g are replaced 
by calls to gk. In the present case, this simply means 
that we replace y := g(y) by y := gk(y) in the definition 
of g. The result we wish to prove is the following: 

(c) for all k -> 0 and all x and y ,  if g~(x) and gk(Y) are 
defined and gk(x) = g~(y), then x = y. 

The proof is by induction on k. The case k = 0 is 
vacuously true since neither go(x) nor g0(Y) can possibly 
take defined values. For reasons of space we shall not 
give the details of the straightforward induction step 
except to say that the proof divides into three cases 
depending on whether the symbols a[x - 1] and 
a[y - 1] are both equal to c, both different from c, or 
otherwise. 

Now that we know g is a permutation of 1, 2, 
. . . .  N,  the tabulation of g can be carried out effi- 
ciently in an order determined by the cycle structure 
of g. More precisely, we can compute the table G 
which holds the values of g by the following scheme: 

x := 1; 
while x --< N flu 

b e g i n  1. C o m p u t e  the  en t r i e s  G[x ] ,  GIG[x]] . . . .  e tc . ,  s t o p p i n g  

w h e n  w e  r e a c h  a n  n such  t h a t  x = Gn[x] ;  
2.  I n c r e m e n t  x to  the  f i rs t  u n c a l c u l a t e d  v a l u e  o f  G[x] 

end 
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This scheme can be refined into the following 
program. 

1. a r r a y  G [ I :  N + 1]; dear G ;  

2. x : = l ;  
3. w h i l e x  -< N do 
4.  b e g i n y  := z := x - 1; 
5. r e p e a t  it" a[y] = c then repeat y := t r (y)  

until a[y + 1] = a[x] 
6. else repeat y := G[y] 

unt i l  a[y + 1] = a [ x ] ;  

7. G[x] := y + 1; 
8. x := G[x] 
9. un t i l  y = z; 

10. r e p e a t  x := x + 1 un t i l  G [ x ]  = 0 

11. end 

In this program the operation dear G sets every entry 
of G to zero. The element GIN + 1] = 0 serves to 
terminate the search for new uncalculated values as 
soon asx  = N  + 1. 

In order to time the program, let n be the total 
number of patterns in the input string, k be the number 
of cycles of the permutation g, and s the size of the 
alphabet of symbols over which the input string is 
defined. We estimate the total contributions of each 
line of the program as follows: 

Line 1. (N + 1) units to clear the array. 
Line 2. 1 unit. 
Lines 3, 4. (3k + 1) units, as there are k cycles and so 

k executions of the loop. 
Lines 5 to 9. Less than (6N + 2ns) units. Note first 

that the instruction G[x] := y + 1 is executed exactly 
N times; this means the body of the outer loop is 
executed N times and so contributes 4N units. The 
loop in line 6 contributes at most 2N units since the 
instruction y := G[y] cannot be executed more than 
N times. The contribution of 2 ns units from line 5 
is more difficult to see, but a little thought shows 
that the instruction y := o-(y) (which we can count 
as 1 unit as o- can itself be easily tabulated) is 
executed exactly n times for each distinct symbol in 
the first position of a pattern, and there may be as 
many as s such symbols. 

Line 10. 2N units. To see this, observe that the final 
value of x on exit from the repeat loop is just the 
same as it was on entry. Thus the instruction x := x 
+ 1 in line 10 executed exactly N times. 

Since there may be as many as N patterns, i.e. n -< 
N, the running time T(N) of the tabulation of G 
satisfies 

T(N) <-- 9N + 3 + 2ns <- 2sN + 9N + 3. 

Notice that, although T(N) = O(N), the constant of 
proportionality is dependent on the size of the input 
alphabet. It is straightforward to verify that the running 
time of Algorithm 4 is O(N), as is the necessary 
tabulation of o-. Algorithm 4 amounts to the process 
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of  check ing  w h e t h e r  or  not  G[ j ]  = j for  each  j such 
tha t  a [ j ]  = c. In  fact ,  t ab le  G gives a d d e d  i n fo rma t ion  
a b o u t  the  input  s ince the pa t t e rn s  xj and  xk are  ident ica l  
jus t  in the  case that  G[oZ(0)] = ok(0). W e  have  there-  
fore  a r r ived  at the  des i r ed  l inear  a lgo r i thm for  the  
or ig inal  p r o b l e m .  

This  e x a m p l e  has  been  t r e a t ed  at some  length  
because  of  the  many  fasc ina t ing  issues invo lved ,  and  it 
is wor thwhi le  to s u m m a r i z e  the  main  s teps .  F i rs t ,  we 
e m p l o y e d  the idea  of  i n t roduc ing  recurs ion  to e l imina te  
the  s tack ope ra t i ons .  Then  we m a n i p u l a t e d  and  s impli -  
f ied the  resul t ing  recurs ive  def in i t ions  to revea l ,  in 
turn ,  the  recurs ive  funct ions  f and  g.  Next  we l o o k e d  
m o r e  c losely  at g ,  saw that  it was a p e r m u t a t i o n ,  and  
used  this fact in an eff ic ient  t abu l a t i on  of  g .  F ina l ly ,  
we ana lyzed  the  resul t ing  a lgor i thm to es tab l i sh  its 
O(N) runn ing  t ime .  
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W e  are  g radua l ly  l ea rn ing  abou t  p r o g r a m  ma n ipu -  
la t ion ,  but  a lot r ema ins  to be  d i scove red .  I t  is surpr is-  
ing how of ten  p r o g r a m s  can be  op t im ized ,  cons tan t s  of  
p r o p o r t i o n a l i t y  can be  r e d u c e d ,  even  a sympto t i c  
g rowth  ra tes  can s o m e t i m e s  be l owered .  A s  Knu th  
obse rves ,  it is i m p o r t a n t  that  these  op t imiza t i ons  are  
ca r r i ed  out  in the  source  l anguage  of  the  a lgo r i t hm,  
and t he r e fo re  sub jec t  to the  p r o g r a m m e r ' s  imag ina t i on  
and  con t ro l .  The  m a n i p u l a t i o n s  desc r ibed  in the  pres-  
en t  p a p e r  mi r ro r  very  c losely  the  style of  de r iva t ion  of  
m a t h e m a t i c a l  fo rmulas ,  and  we did not  s tar t  ou t ,  as no  
m a t h e m a t i c i a n  ever  does ,  with the  p r e c o n c e p t i o n  tha t  
such de r iva t ions  shou ld  be  desc r ibed  with a view to 
i m m e d i a t e  mechan iza t i on ;  such a view wou ld  severe ly  
l imit  the  many  ways in which an a lgo r i thm can be  
s impl i f ied  and po l i shed .  A s  the  length  of  the  der iva-  
t ions tes t i fy ,  we still l ack  a conven ien t  s h o r t h a n d  with 
which to descr ibe  p r o g r a m s ,  but  this will come  with a 
d e e p e r  unde r s t and ing  a b o u t  the  r ight  sequenc ing  
mechan i sms .  

The  pa r t i cu la r  t echn iques  of  p r o g r a m  op t im iz a t i on  
desc r ibed  in this p a p e r  can be  v i ewed  as an app l i ca t ion  
of  C o o k ' s  t h e o r e m  on two-way  de t e rmin i s t i c  p u s h d o w n  
a u t o m a t a .  I n d e e d ,  it a p p e a r s  tha t  C o o k ' s  t h e o r e m  
amount s  to a s t a t emen t ,  couched  in au toma ta - theo re t i c  
l anguage ,  on the  p o w e r  of  t abu l a t i on  as an op t im iz a t i on  
m e t h o d .  I f  this is the  case ,  then  it s eems  tha t  the  
essent ia l  ideas  a re  r e v e a l e d  m o r e  c lear ly  in the  o r d i n a r y  
l anguage  of  c o m p u t e r  sc ience .  A u t o m a t a  t heo ry  may  
be  a useful  vehic le  for  fo rmal iz ing  ou r  k n o w l e d g e  of  
p r o g r a m s ,  but  this is a d e b a t a b l e  po in t .  W h a t  is not  in 
d o u b t  is that  t heo ry  and  prac t ice  have  to be  b rough t  
c loser  t o g e t h e r  for  c o m p u t e r  science to  advance .  
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