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1. INTRODUCTION 

In  th is  pape r  we discuss severa l  space-eff ic ient  i m p l e m e n t a t i o n s  of the  two m o s t  

c o m m o n  a n d  useful  k inds  of g raph  search,  b r ead th - f i r s t  s ea rch  a n d  dep th - f i r s t  
sea rch  [1, 6]. We  a s sume  t h a t  the  r eade r  is f ami l i a r  w i t h  these  sea rch  me thods .  
We  res t r ic t  ou r  a t t e n t i o n  to  d i rec ted  graphs,  a l t h o u g h  our  m e t h o d s  e x t e n d  eas i ly  
to u n d i r e c t e d  graphs.  Our  i m p l e m e n t a t i o n s  a re  generic;  we inv i t e  the  r e a d e r  to 
ta i lor  t h e m  to his  or he r  own  appl ica t ions .  

I f  e is a d i rec ted  edge, we d e n o t e  i ts  end  ver t ices  b y  h(e),  t he  h e a d  of e, a n d  
t(e),  t he  tai l  of e; e is d i rec ted  f rom h e a d  to tail. W e  a s s u m e  t h a t  the  g r a ph  to be 
searched  is r e p r e s e n t e d  by  a l is t  s t ruc tu re ,  as i l l u s t r a t ed  in  F igure  1. T h e  
r e p r e s e n t a t i o n  c o n t a i n s  one  n o d e  for each  ver tex  a n d  one  for each  edge; we 
genera l ly  do n o t  d i s t ingu i sh  b e t w e e n  a node  a n d  the  ver tex  or edge i t  r ep resen t s .  
E a c h  edge has  a po in t e r  to i ts  tail. T h e  edges o u t  of a ve r tex  v fo rm a s ingle  l is t  
wi th  heade r  v a n d  l inks  s tored  in  a field a (for "af ter") .  T h e  las t  edge on  the  l is t  
po in t s  to a special  node  n u l l .  T h i s  r e p r e s e n t a t i o n  does n o t  s tore  he a ds  w i th  edges. 
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Fig. 1. Representation of a graph by single 
lists of outgoing edges. 

Thus  we require of any  search implementa t ion  t ha t  the  head  of an edge e be  
accessible in O(1) t ime (for use in processing e) when  e is t raversed  during the  
search. When  stat ing t ime and space bounds  we use n and  m to denote  the  
number  of vert ices and edges in the  graph, respectively.  

For  the purpose of labeling vertices as they  are visited, we assume tha t  all 
vertices are initially unlabeled and tha t  the operat ion label(v) can be used during 
the search to label ver tex v. For  checking whe ther  a ver tex is labeled, we assume 
the existence of a predicate  labeled defined by  labeled(v) = "v is labeled."  T h e  
easiest way to implement  ver tex labeling is to use a bi t  labeled(v), initially f a l se ,  
for each vertex v; to label v, we make  its bit  t r u e :  

procedure  label(vertex v); 
labeled(v) := t rue  

e n d  label: 

In m a n y  applications of g raph  search, the vert ices are labeled with number s  as 
they are visited; in such cases the  numbers  can serve to identify labeled vertices,  
and an extra label bit is unnecessary.  

ACM Transactions on Mathematmal Software, Vol 9, No 3, September 1983 
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2. BREADTH-FIRST SEARCH 

During a breadth-first  search, in addition to being ei ther  unlabeled or labeled, a 
vertex is e i ther  u n s c a n n e d  or scanned .  Each scanned ver tex is also labeled; thus  
there are only three  possible vertex states: unlabeled (and unscanned),  labeled 
but  unscanned, and scanned (and labeled). Initially the s tar t  vertex of the  search 
is labeled but  unscanned and every other  ver tex is unlabeled. Th e  search consists 
of repeating the following step until  no vertex is labeled but  unscanned.  

S e a r c h  Step.  Let  v be the  least-recently labeled ver tex tha t  is not  yet  scanned. 
Scan v by traversing each edge e out  of v. When  traversing an edge e, label t (e) 
if it is unlabeled. 

The  edges e such tha t  t (e)  was unlabeled when e was t raversed define a t ree  
rooted at the s tar t  vertex, spanning all initially unlabeled vert ices reachable  f rom 
the star t  vertex. (See Figure 2.) This  is t rue of any kind of  graph search, not  just  
breadth-first.  

The  natural  way to implement  breadth-first  search is to maintain a queue of 
the labeled bu t  unscanned vertices. We call this the q u e u e  vers ion  of breadth-  
first search. Procedure  bfs below is an implementa t ion of breadth-f irs t  search 
writ ten in a variant  of Dijkstra 's  guarded command  language [2], with a vertical 
line I subst i tuted for Dijkstra 's  box D. Input  to the procedure  is start ,  the  s tar t  
vertex of the search. T h e  procedure  uses three  l ist-manipulating operations, 
which we denote  as follows: 

Access .  If  q = [xl, x2, . . . ,  x , ]  is a list and i is an integer, q( i )  = x, i f  i E 
[1 . .n ] ,  q(i )  ffi nu l l  otherwise. 

Subl is t .  If  q = [xl, x2 . . . . .  Xn] is a list and i a n d j  are integers, q [ i . . j ]  is the list 
[x,, x,+l . . . . .  xj]. If  i is missing or less than  1, it has an implied value of 1. 
Similarly, i f j  is missing or greater  than  n, i t  has  an implied value of n. Thus,  for 
example, q [2 . . ]  -- [x2, x3, . . . ,  xn]. If  i > j ,  q [ i . . j ]  is the empty  list, which we 
denote by [ ]. 

Conca tena t ion .  I f  q -- [xl, x2, . . . ,  xn] and r -- [yl ,  y2 . . . . .  ym] are two lists, 
their  concatenat ion is 

q & r -- [xl ,  x 2 , . . . ,  x ~ , y i , y 2  . . . . .  ym]. 

To carry out  a search using the breadth-first  search procedure,  we need only 
define 7abel, scan,  and t raverse  to perform whatever  computat ions  are desired. 
The  procedure maintains the invariant  tha t  queue q is a list of the labeled bu t  
unscanned vertices in the order  they  were labeled. 

p rocedure  bfs (ver tex  start); 
v e r t e x  v; e d g e  e; q u e u e  q; 
label(start); 
q = [start]; 
d o q  # []--* 

1. v, q := q(1), q[2..]; 
e := a(v); 
do e # n u l l  --, 

traverse(e); 
i f  n o t  labeled (t(e) ) --> 

2. label(t(e)); q := q & It(e)] 
fi; 
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Fig. 2. Spanning tree generated by a breadth-first 
search of graph. Vertices are labeled in the order 1, 2, 
5, 6, 3, 4. Solid edges are tree edges; dashed edges are 
nontree edges. 

e := a(e) 
od; 
scan(v) 

od 
end bfs; 

Remark  1. T h e  s ta tement  in line 1 is a parallel assignment tha t  s imultaneously 
redefines v and q. 

Remark  2. Procedure  bfs applies scan to the vertices in the same order  as it 
applies label. 

The  redefinitions of q on lines 1 and 2 destroy the old value of q. Thus  there  is 
no need for list copying, and each of the queue operations takes O(1) t ime with 
a proper  implementat ion.  For  this purpose we can represent  q ei ther  by  an array 
of (at least) n - 1 positions or by  a singly linked list of vertices. In e i ther  case, the  
running t ime of the search is O (n + m). The  storage overhead for the  search (not 
counting storage for the graph) is n + O(1) pointers  and n label bits. 

We can eliminate the extra storage for the queue by using nu l l  pointers  at  the  
end of the edge lists to fold the queue into the graph representat ion.  T o  do this, 
we maintain a queue consisting of a single list linked by  a pointers  containing 
every labeled vertex followed by its outgoing edges. (See Figure 3.) After labeling 
a vertex, we add it to the end of the queue;  this automatical ly adds its outgoing 
edges to the queue. After scanning a vertex, we reset  the a pointer  of its last 
outgoing edge to null .  

This  method  requires the ability to distinguish between a node represent ing a 
vertex and a node representing an edge. We assume the existence of a predicate  
edge for this purpose, defined by edge(x) = "x represents  an edge." We can 
implement  this predicate using a read-only bit in each node. Alternatively,  if 
nodes have integer addresses lying in separable intervals for vertices and edges, 
we can test  tha t  the address lies in the appropriate  range, and we need no extra  
storage. 

Our implementat ion of this method,  as follows, uses three  local variables; v, the 
vertex being scanned; e, the node just  examined in the list; and f, the  last node on 
the list. We call this me thod  the list version of breadth-first  search. 

p rocedure  bfs(vertex start); 
v e r t e x  v; n o d e  e, f; 
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Fig. 3. Representa t ion of graph after 
labeling 1, 2, and 5 durmg space-efficient 
breadth-first  search. 
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f :=  v := start; 
label(start); 
do a( f )  ~ null --. f :=  a( f )  od; 
do v ~ n u l l  --, 

e := v; 
do a(e) ~ null and edge(a(e)) --~ 

e := a(e); 
traverse(e); 
if  not  labeled (t(e) ) --* 

f:-- a( f )  := t(e); 
label(f);  
do a( f )  ~ null--* f := a ( f )  od 

fi 
od; 
scan(v); 
v :-- a(e); a(e) := n u l l  

od 
end  bfs; 

R e m a r k .  T h e  s ta tement  " f  := v := s tar t "  in this procedure  is a sequential  
assignment of s to v and then  to f. 

This  procedure  scans each edge list twice, the first t ime mere ly  to update  f. We 
can avoid this initial scan if the edge lists are represented as single rings instead 
of single lists. In this representa t ion each vertex points to the last edge on its fist, 
which in turn  points to the first edge on the list. (See Figure 4a.) Our third and 
last version of breadth-first  search, which we call the  r ing  version,  uses this 
representation.  After  labeling a vertex w, we break the ring of  edges out  of  w 
between its last and first node, add w and its outgoing edges to the end of the  
queue, and update  f. After scanning a vertex, we repair  its edge ring. (See Figure 
4b). The  following procedure  implements  this method.  T h e  procedure  is compli- 
cated by the fact tha t  empty  rings require special handling. 
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Fig. 4. (a) Representation of graph 
by rings of outgoing edges. (b) Rep- 
resentation after labeling 1, 2, and 5 
during space-efficient breadth-first 
search. 

p r o c e d u r e  bfs(vertex start); 
n o d e  v, e, f; 
v -= start; 
label(start); 
i fa(start) = n u l l  ---> f := start 
] a(start) ~ null---> f : =  a(start); a(start) := a ( f ) ;  a(f)  : = n u l l  

fi; 
d o  v ~ n u l l  ---> 

e := v; 
d o  edge(a(e) ) --> 

e := a(e) ;  
traverse(e): 
i f  n o t  labeled (t(e) ) --* 

label (t(e));  
a(f)  := t(e); 
ifa(t(e)) = n u l l - - >  f : =  t(e) 
I a(t(e)) ~ null---> f : =  a(t(e)); a(t(e)) := a ( f ) ;  a( f )  : - - n u l l  
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fi 
fi 

od; 
scan(v); 
ifv = e --, v := a(e); a(e) :ffi null 
] v ~ e ---> v, a(v) ,  a(e) := a(e),  e, a (v)  
fi  
od 

end  bfs; 

Whethe r  this or the list version of bfs runs faster  depends upon the initial 
representat ion of the graph and the lengths of the edge lists. Since convert ing 
from the single list to the ring representa t ion requires a scan of each edge list, i t  
does not  pay to perform this conversion for a single b r ead th - f r s t  search. For  
general use we prefer  the list version of bfs, since its code is more  t ransparent  and 
it will run  at  best  faster and at  worst  slightly slower than  the  ring version. If  
space is not  a problem, some implementa t ion of the queue version is best. 

3. DEPTH-FIRST SEARCH 

We can define depth-first  search recursively as follows: A depth-first  search f rom 
a vertex v consists of labeling v and scanning v. To  scan v, we t raverse  each edge 
out  of v. To  traverse an edge e, we test  whether  t ( e )  is labeled. If  t ( e )  is not  
labeled, e is a t ree  edge: we advance along e, perform a depth-f irs t  search f rom 
t (e ) ,  and re t rea t  along e. If  t ( e )  is labeled, e is a n o n t r e e  edge: we advance along 
e and immediately re t rea t  along e. (See Figure 5.) 

Procedure  dfs  below implements  this definition. Inpu t  to the procedure  is v, 
the star t  vertex of the search. To  use dfs, we need only d e f n e  the procedures  tha t  
visit vertices and advance and re t rea t  along edges so tha t  they  perform the 
desired computations.  For  edge processing tha t  is independent  of the edge type  
{tree or nontree),  we can use a d v a n c e  and re treat ;  for edge processing tha t  
depends upon the edge type, we can use a d v a n c e  t ree  and r e t r ea t  tree, a d v a n c e  
non t r ee  and re t rea t  nontree .  Normal ly  we would define ei ther  a d v a n c e  or the  
pair  a d v a n c e  tree, a d v a n c e  n o n t r e e  to be empty  procedures,  and similarly e i ther  
re t rea t  or the pair re t rea t  tree, r e t rea t  n o n t r e e  to be empty.  

p r o c e d u r e  d f s (ver t ex  v); 
e d g e  e; 
label(v); 
e := a(v); 
do  e ~ nul l  - .  

advance (e ); 
if  not  labeled (t (e ) ) ~-~ 

advance tree (e ); dfs(t (e ) ); retreat tree (e ) 
] labeled (t (e ) ) -+ 

advance nontree (e ); retreat nontree (e ) 
fi; 
retreat ( e ) ; 
e := a(e) 

od; 
scan(v) 

end dfs; 

R e m a r k  1. We have included in dfs  separate  procedures  for processing t ree  
and nontree  edges because in many  if not  most  applications, the processing is 
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Spanning tree generated by a depth-first search 

different for the  two kinds of  edges• I t  is easy to insert  such procedures  into bfs 
as well. 

R e m a r k  2. Procedure  dfs  applies labe l  to the vert ices in preorder ,  wi th  respec t  
to the spanning tree genera ted  by the search, and applies s c a n  to the  ver t ices  in 
postorder.  

A depth-f i rs t  search takes  O ( n  + m )  t ime  and O ( n )  space, no t  count ing space 
for the graph. Our first s tep in improving the  space efficiency of our  implemen-  
ta t ion is to r emove  the recursion. Procedure  dfs  saves two var iables  per  recursive 
call: v, the  ver tex being scanned, and e, the edge being t raversed.  However ,  there  
is no need to save v: if v is not  the  s ta r t  vertex, the t ree edge enter ing v was saved 
jus t  before dfs  was called on v, and v is available as the  tail of  this edge. T h u s  we 
can carry  out  the  search using a single s tack containing the  edges on the  t ree  
pa th  f rom the s tar t  ver tex to the ver tex being scanned. 

More  precisely, the  search uses two variables,  a s tack of edges s and  a cur rent  
edge e, and main ta ins  the following invariant:  if s = [el, e2, . . . ,  ek], then  ek, ek-1, 
• . . ,  el is the  pa th  of t ree edges f rom the s ta r t  ver tex {s tar t )  to the  ver tex  v being 
scanned; i f  v = start ,  s = [ ]. T h e  edges on the s tack are exact ly those  along which 
an advance  but  not  a re t rea t  has  t aken  place. T h e  edge e is e i ther  the  first  edge 
out  of  v along which an advance  has  not  ye t  occurred or n u l l  if the  search has  
advanced along every edge out  of  v. A step of the  search consists of  processing 
the edge e. The re  are three  cases, depending on whe ther  e is a t ree  edge, a nont ree  
edge, or n u l l .  The  following procedure  implements  the  search: 

p rocedure  dfs (ver tex start); 
v e r t e x  v; edge  e; s tack  s; 
s : =  [ ] ;  
label (start); 
v :-- start; 
e :-~ a(start); 
do e # null and not  labeled(t(e)) 

advance tree(e) 
s := [e] & s; 
label(t(e)); 
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v := t(e); 
e := a( t ( e ) )  

I e ~ null a n d  labe led( t (e ) )  --* 
advance  nontree  (e ); 
re treat  nontree  (e ); 
e := a(e)  

] e ~ n u l l  a n d  s ~ [ ] --* 
e, s := s(1), s [2 . . ] ;  
scan( t (e ) ) ;  
v := i f s  = [ ]---> s t a r t l s  ~ []  ~ t(s(1)) fi; 
retreat  tree (e); 
e := a(e )  

od; 
scan (s tart)  

e n d  dfs; 

R e m a r k .  Variable v, the vertex being scanned, is never used explicitly in the 
search. If  v is not  used by any of the advance or retreat  procedures (v is the head 
of the edge along which the advance or retreat  takes place), its computa t ion can 
be dropped from the program. 

There  are three reasonable ways to implement  the stack in this procedure.  The  
two obvious methods are to use an array of (at least) n - 1 positions or to use a 
single list of edges. The  latter representat ion needs one pointer per edge, for a 
total of m, of which at most  n - 1 are actually used. We obtain a linked 
representation that  needs only n pointers, one per vertex, by storing with each 
vertex the tree edge entering its parent.  A search using this third representat ion 
has the beneficial side effect of constructing the spanning tree. The  following 
version of d f s  uses this representation. Local variable f is the tree edge entering 
the vertex being scanned; if this is the start  vertex, f is null .  For each vertex v, 
the procedure stores the tree edge entering the parent  of v in the field b (v). 

procedure dfs (vertex start);  
vertex v; edge e, f; 
f := null 
label (s tar t ) ;  
v := start;  
e := a(start);  
do e ~ n u l l  a n d  n o t  labeled(t(e)) 

advance  tree (e ); 
label( t (e));  
b( t (e ) ) ,  f, v, e :=. f, e, t (e) ,  a ( t ( e ) )  

I e ~ null and labe led( t (e ) )  ---> 
advance  nontree  (e ); 
re treat  nontree  ( e ) ; 
e := a(e )  

] e = n u l l  a n d  f ~ n u l l  
e, f := f, b( t ( f ) ) ;  
scan (t (e)); 
v := if f =  null ~ s t a r t ] f ~  null ~ t ( f )  fi; 
re treat  tree (e ); 
e := a(e )  

od; 
scan (s tart)  

e n d  dfs; 
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Fig. 6 (a) Graph representation during space-efficient depth-fLrst search just  before advancing along 
tree edge from vertex 4 to vertex 5. (b) Representation after advancing along tree edge from 4 to 5. 

Remark. As is the previous version of dfs, this version is written so that  
variable v is not needed for the search, and its computation can be dropped if 
none of the advance~retreat procedures use it. 

Our next step in saving space is to fold the stack into the graph representation. 
We do this by extending the Deutsch-Schorr-Waite algorithm for marking a list 
structure [3, 4, 5]. As in the case of breadth-f~rst search, we need the ability to 
distinguish between nodes representing vertices and nodes representing edges; 
we use the same predicate edge. The method uses three local variables: v, the 
vertex being scanned; e, the edge being traversed; and f, the trailer, defined as 
follows: if e is not the first edge out of v, then f is the edge before e out of v; 
otherwise, f i s  the parent of v in the spanning tree if v has a parent, nul l  if v is the 
start vertex. Initially v, e, and f are start, a (start), and null, respectively. The 
search proceeds in the same way as in the previous version of dfs, except that  it 
modifies the graph representation as it goes. During the search, just before 
advancing along an edge e, the edges before e out of v are linked in reverse order 
via a pointers; f i s  the first edge on the reversed list, and the last edge (originally 
the first edge out of v) points to the parent of v. (See Figure 6a.) We say more 
about the representation below. 

To carry out the search, we initialize v, e, and f, perform label(v), repeat the 
following step until e = nul l  and v = start, and then perform some postprocessing 
(described below), which includes scanning the start vertex: 

General Step. Determine which one of the following three cases applies and 
perform the actions listed: 

Case 1: Advance along a tree edge. If e # nul l  and t(e) is unlabeled: 
Advance along tree edge e. Redefine a (v) to be e. Simultaneously redefine t (e)  

to be f, f t o  be v, and v to be t(e). Perform label(v). Redefine e to be a(v).  Now 
ACM Transactions on Mathematmal Software, Vol. 9, No. 3, September 1983. 
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Fig. 7. Representat ion after traversing 
nontree edge from 5 to 2. Variable e = 
null .  

v f 

v is the new vertex to be scanned, e is the first edge out of v, f is the parent  of v, 
a( f )  is the tree edge entering v, and t (a( f ) )  is the edge before a( f )  out o f f  (or the 
parent of f if there is no such edge). (See Figure 6.) 

Case 2: Traverse a nontree edge. If e ~ nul l  and t (e)  is labeled: 
Advance and retreat  along nontree edge e. Simultaneously redefine a (e) to be 

f, f t o  be e, and e to be a(e).  Now e is the next edge out of v. (See Figures 6b 
and 7.) 

Case 3: Retreat  along a tree edge. If e ffi nu l l  and v ~ start: 
The list of edges out of v is now completely reversed. (See Figure 8a.) Restore 

it to its original form by repeating the following step until f is not an edge: 
simultaneously redefine a( f )  to be e, e to be f, and f to be a( f ) .  Now f is the 
parent of v and e is the first edge out of v(or null). Redefine a(v) to be e. This 
completes the restoration of the list of edges out of v. (See Figure 8b.) 

Continue the step by performing scan (v). Redefine e to be a (f). Simultaneously 
redefine v to be f, f t o  be t(e),  and t (e)  to be v. This restores the representation 
to its state before advancing along e. (See Figure 8c.) Retreat  along tree edge e. 
Simultaneously redefine a(e)  to be f, f t o  be e, and e to be a(e).  Now e is the next 
edge out of v. (See Figure 8d.) 

When e ffi nul l  and v = start, we complete the search by restoring the list of 
edges out of start and then scanning start. The following procedure implements 
this method: 

procedure dfs (vertex start); 
vertex v; 
f := null; 
label(start); 
v := start; 
e :ffi a(v); 
do e ~ n u l l  a n d  n o t  labeled(t(e)) --, 

advance tree (e); 
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(a) 
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v e 

(b) 

2 

f 

v e 

(c) 

v f e 
,  b4rr-+4  

(d) 

Fig. 8. (a) Representa t ion  before re t reat ing along tree edge from 3 to 4. (Edge hs t s  for 5 and  6 are 
deleted for clarity.) (b) Representa t ]on  when  scanning 4. (c) Represen ta t ion  when  retreat ing.  (d) 
Representa t ion  before advancing along next  edge. Variable e ffi nul l .  

a(v)  :=  e;  
v, f, t (e)  :=  t ( e ) ,  v, f; 
label(v); 
e :=  a(v)  

I e ~ n u l l  a n d  labeled(t(e))  --~ 
advance nontree ( e ) ; 
retreat  nontree (e ); 
e, f, a (e)  :=  a ( e ) ,  e, f 

] e = n u l l  a n d  v ~ start--> 
d o  edge(f)  ~ e, f, a ( f )  :=  f, a( f ) ,  e o d ;  
a(v)  :=  e; 
scan(v);  
e :-- a ( f ) ;  
v, f, t (e)  :=  f, t(e),  v; 
retreat tree (e);  
e, f, a(e)  := a ( e ) ,  e, f 

od ;  
d o  f ~ n u l l  --* e, f, a (f)  :=  f, a (f) ,  e o d ;  
a (start) :=  e;  
scan (start) 

e n d  dfs; 
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Fig. 9. Array representat ion of  graph 
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Remark.  In this version of dfs, vertex v is needed for the search. 

This  version of depth-first  search requires the same space as the list or ring 
version of  breadth-first  search, namely,  a label bit  per  vertex (in cases where no 
vertex numbering takes place) and a read-only bit  per  node (if ver tex nodes and 
edge nodes can be distinguished in no o ther  way). Like the list version of  breadth-  
first search, it scans each edge list twice; in this case, the second scan is needed 
to restore the list to its original form. We can avoid the second scan by changing 
the graph representat ion,  as we discuss below. However,  the second scan does 
provide an oppor tuni ty  to process the edge lists as the vertices are postvisited, 
which can be used to simplify some algori thms tha t  use depth-first  search. 

Eliminating the second scan seems to require an array representa t ion  of  the 
graph. (See Figure 9.) Each  edge is a position in an array t; t (e)  is the tail of  edge 
e. Edges with the same head are grouped together;  the  set of edges out  of a ver tex 
v is {e la ( v )  <_ e < a(v  + 1)}. We use out(v)  = a(v  + 1) - a(v)  to denote  the  
number  of edges out  of v. 

To  carry out  the search, we use the me thod  suggested by  Gries [3, p. 231, note  
5]. The  auxiliary storage needed is an increment  i (v) for each ver tex v; i (v) is an 
integer between 0 and out (v) (inclusive). A zero increment  denotes  an unlabeled 
vertex; a positive increment  denotes  a labeled vertex. We use three  local variables: 
v, the vertex being scanned; e, the edge being traversed; and u, the paren t  of  v. 
After advancing along a t ree  edge e, we store e - a(v)  + 1 in i (v)  and 
simultaneously replace v, u, and t (e)  by t(e),  v, and u, respectively. When  we 
finish the search from the new vertex v, we restore the  si tuat ion by defining e to 
be a(u)  + i(u) - 1 and simultaneously replacing v, u, and t (e)  by u, t(e),  and v, 
respectively. T h e n  we re t rea t  along e. T h e  following procedure  gives the  details: 

procedure dfs(vertex start); 
ver tex  u, v; edge e; 
u := null; 
label(start); 
(i(start) := 1;) 
v := start; 
e := a(v); 
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do e < a(v + 1) and i(t(e)) = 0 --* 
advance tree (e); 
i(v) :ffi e -  a(v) + 1; 
v, u, t(e) := t (e) ,  v, u; 
label(v); 
(i(v) := 1;) 
e := a(v) 

l e < a ( v +  1) and i ( t ( e ) )  ~0---> 
advance nontree (e); 
retreat nontree (e ); 
e : f e + l  

I e = a (v + 1) and v ~ start ---> 
scan(v); 
e := a(u) + ~(u) - 1; 
v, u, t(e)  := u, t(e), f; 
retreat tree ( e ); 
e : - - e + l  

od; 
scan (start) 

end dfs; 

Since vertex labeling is done by updating increments, the operat ion l abe l ( v )  

need only perform whatever  calculations are needed by the application. The  two 
statements  "i(v) := 1" are necessary only if the graph contains loops; if not, the 
s ta tement  " i (v )  :ffi e - a ( v )  + 1" provides all the increment  updat ing tha t  is 
necessary. 

We have presented a total  of five versions of depth-first  search. As with 
breadth-first  search, the best choice depends on the intended application. We 
encourage the reader to experiment with these methods  and adapt  t hem to his or 
her own needs. 
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