
Space-Efficient Implementations
of Graph Search Methods

ROBERT E. TARJAN

Bell Laboratories

Several space-efficmnt implementations of the two most common and useful kinds of graph search,
namely, breadth-first search and depth-first search, are discussed. A straightforward implementation
of each method requires n bits and n + O(1) pointers of auxiliary storage, where n is the number of
vertices in the graph. We devise methods that need only 2n + m bits, of which m are read-only, where
rn is the number of edges in the graph. We save space by folding the queue or stack required by the
search into the graph representation; two of our methods for depth-first search are variants of the
Deutsch-Schorr-Waite list-marking algorithm. Our algorithms are expressed in a version of Dijkstra's
guarded command language.

Categories and Subject Descriptors: E.1 [Data]" Data Structures--graphs; E.2 [Data]: Data Storage
Representations--hnked representations, F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems--computatmns of d~screte functmns; G 2 2 [Discrete
Mathematics]: Graph theory--graph algorithms

General Terms. Algorithms, Theory

Additional Key Words and Phrases: Depth-first search, breadth-first search, list marking

1. INTRODUCTION

In th is pape r we discuss severa l space-eff ic ient i m p l e m e n t a t i o n s of the two m o s t

c o m m o n a n d useful k inds of g raph search, b r ead th - f i r s t s ea rch a n d dep th - f i r s t
sea rch [1, 6]. We a s sume t h a t the r eade r is f ami l i a r w i t h these sea rch me thods .
We res t r ic t ou r a t t e n t i o n to d i rec ted graphs, a l t h o u g h our m e t h o d s e x t e n d eas i ly
to u n d i r e c t e d graphs. Our i m p l e m e n t a t i o n s a re generic; we inv i t e the r e a d e r to
ta i lor t h e m to his or he r own appl ica t ions .

I f e is a d i rec ted edge, we d e n o t e i ts end ver t ices b y h(e), t he h e a d of e, a n d
t(e), t he tai l of e; e is d i rec ted f rom h e a d to tail. W e a s s u m e t h a t the g r a ph to be
searched is r e p r e s e n t e d by a l is t s t ruc tu re , as i l l u s t r a t ed in F igure 1. T h e
r e p r e s e n t a t i o n c o n t a i n s one n o d e for each ver tex a n d one for each edge; we
genera l ly do n o t d i s t ingu i sh b e t w e e n a node a n d the ver tex or edge i t r ep resen t s .
E a c h edge has a po in t e r to i ts tail. T h e edges o u t of a ve r tex v fo rm a s ingle l is t
wi th heade r v a n d l inks s tored in a field a (for "af ter") . T h e las t edge on the l is t
po in t s to a special node n u l l . T h i s r e p r e s e n t a t i o n does n o t s tore he a ds w i th edges.

Author's address. Bell Laboratories, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission
© 1983 ACM 0098-3500/83/0900-0326 $00.75

ACM Transactions on Mathematmal Software, Vol. 9, No 3, September 1983, Pages 326-339

Space-Efficient Implementations of Graph Search Methods • 327

t o 2

6 $

5 d 4

a g f

'1 2 5 6

b

C J

h d

i

e

Fig. 1. Representation of a graph by single
lists of outgoing edges.

Thus we require of any search implementa t ion t ha t the head of an edge e be
accessible in O(1) t ime (for use in processing e) when e is t raversed during the
search. When stat ing t ime and space bounds we use n and m to denote the
number of vert ices and edges in the graph, respectively.

For the purpose of labeling vertices as they are visited, we assume tha t all
vertices are initially unlabeled and tha t the operat ion label(v) can be used during
the search to label ver tex v. For checking whe ther a ver tex is labeled, we assume
the existence of a predicate labeled defined by labeled(v) = "v is labeled." T h e
easiest way to implement ver tex labeling is to use a bi t labeled(v), initially f a l se ,
for each vertex v; to label v, we make its bit t r u e :

procedure label(vertex v);
labeled(v) := t rue

e n d label:

In m a n y applications of g raph search, the vert ices are labeled with number s as
they are visited; in such cases the numbers can serve to identify labeled vertices,
and an extra label bit is unnecessary.

ACM Transactions on Mathematmal Software, Vol 9, No 3, September 1983

328 Robert E. Tarjan

2. BREADTH-FIRST SEARCH

During a breadth-first search, in addition to being ei ther unlabeled or labeled, a
vertex is e i ther u n s c a n n e d or scanned . Each scanned ver tex is also labeled; thus
there are only three possible vertex states: unlabeled (and unscanned), labeled
but unscanned, and scanned (and labeled). Initially the s tar t vertex of the search
is labeled but unscanned and every other ver tex is unlabeled. Th e search consists
of repeating the following step until no vertex is labeled but unscanned.

S e a r c h Step. Let v be the least-recently labeled ver tex tha t is not yet scanned.
Scan v by traversing each edge e out of v. When traversing an edge e, label t (e)
if it is unlabeled.

The edges e such tha t t (e) was unlabeled when e was t raversed define a t ree
rooted at the s tar t vertex, spanning all initially unlabeled vert ices reachable f rom
the star t vertex. (See Figure 2.) This is t rue of any kind of graph search, not just
breadth-first.

The natural way to implement breadth-first search is to maintain a queue of
the labeled bu t unscanned vertices. We call this the q u e u e vers ion of breadth-
first search. Procedure bfs below is an implementa t ion of breadth-f irs t search
writ ten in a variant of Dijkstra 's guarded command language [2], with a vertical
line I subst i tuted for Dijkstra 's box D. Input to the procedure is start , the s tar t
vertex of the search. T h e procedure uses three l ist-manipulating operations,
which we denote as follows:

Access . If q = [xl, x2, . . . , x ,] is a list and i is an integer, q(i) = x, i f i E
[1 . .n] , q(i) ffi nu l l otherwise.

Subl is t . If q = [xl, x2 Xn] is a list and i a n d j are integers, q [i . . j] is the list
[x,, x,+l xj]. If i is missing or less than 1, it has an implied value of 1.
Similarly, i f j is missing or greater than n, i t has an implied value of n. Thus, for
example, q [2 . .] -- [x2, x3, . . . , xn]. If i > j , q [i . . j] is the empty list, which we
denote by [].

Conca tena t ion . I f q -- [xl, x2, . . . , xn] and r -- [yl , y2 ym] are two lists,
their concatenat ion is

q & r -- [xl , x 2 , . . . , x ~ , y i , y 2 ym].

To carry out a search using the breadth-first search procedure, we need only
define 7abel, scan, and t raverse to perform whatever computat ions are desired.
The procedure maintains the invariant tha t queue q is a list of the labeled bu t
unscanned vertices in the order they were labeled.

p rocedure bfs (ver tex start);
v e r t e x v; e d g e e; q u e u e q;
label(start);
q = [start];
d o q # []--*

1. v, q := q(1), q[2..];
e := a(v);
do e # n u l l --,

traverse(e);
i f n o t labeled (t(e)) -->

2. label(t(e)); q := q & It(e)]
fi;

ACM Transact ions on Mathemat ica l Software, Vol 9, No 3, September 1983

Space-EfficIent Implementations of Graph Search Methods • 329

|

/ / - 7
3 . / / / /

/ / / /
I /

/ /
/

4

Fig. 2. Spanning tree generated by a breadth-first
search of graph. Vertices are labeled in the order 1, 2,
5, 6, 3, 4. Solid edges are tree edges; dashed edges are
nontree edges.

e := a(e)
od;
scan(v)

od
end bfs;

Remark 1. T h e s ta tement in line 1 is a parallel assignment tha t s imultaneously
redefines v and q.

Remark 2. Procedure bfs applies scan to the vertices in the same order as it
applies label.

The redefinitions of q on lines 1 and 2 destroy the old value of q. Thus there is
no need for list copying, and each of the queue operations takes O(1) t ime with
a proper implementat ion. For this purpose we can represent q ei ther by an array
of (at least) n - 1 positions or by a singly linked list of vertices. In e i ther case, the
running t ime of the search is O (n + m). The storage overhead for the search (not
counting storage for the graph) is n + O(1) pointers and n label bits.

We can eliminate the extra storage for the queue by using nu l l pointers at the
end of the edge lists to fold the queue into the graph representat ion. T o do this,
we maintain a queue consisting of a single list linked by a pointers containing
every labeled vertex followed by its outgoing edges. (See Figure 3.) After labeling
a vertex, we add it to the end of the queue; this automatical ly adds its outgoing
edges to the queue. After scanning a vertex, we reset the a pointer of its last
outgoing edge to null .

This method requires the ability to distinguish between a node represent ing a
vertex and a node representing an edge. We assume the existence of a predicate
edge for this purpose, defined by edge(x) = "x represents an edge." We can
implement this predicate using a read-only bit in each node. Alternatively, if
nodes have integer addresses lying in separable intervals for vertices and edges,
we can test tha t the address lies in the appropriate range, and we need no extra
storage.

Our implementat ion of this method, as follows, uses three local variables; v, the
vertex being scanned; e, the node just examined in the list; and f, the last node on
the list. We call this me thod the list version of breadth-first search.

p rocedure bfs(vertex start);
v e r t e x v; n o d e e, f;

ACM TransacUons on Mathematmal Software, Vol 9, No. 3, September 1983.

330 Robert E. Tar]an

Fig. 3. Representa t ion of graph after
labeling 1, 2, and 5 durmg space-efficient
breadth-first search.

queue
TOP

5 ~ ' ~ } ~] ~ 7 1 t ~ q ue ue
BOTTOM

6 [Z } - - ~ 7]

f := v := start;
label(start);
do a(f) ~ null --. f := a(f) od;
do v ~ n u l l --,

e := v;
do a(e) ~ null and edge(a(e)) --~

e := a(e);
traverse(e);
if not labeled (t(e)) --*

f:-- a(f) := t(e);
label(f);
do a(f) ~ null--* f := a (f) od

fi
od;
scan(v);
v :-- a(e); a(e) := n u l l

od
end bfs;

R e m a r k . T h e s ta tement " f := v := s tar t " in this procedure is a sequential
assignment of s to v and then to f.

This procedure scans each edge list twice, the first t ime mere ly to update f. We
can avoid this initial scan if the edge lists are represented as single rings instead
of single lists. In this representa t ion each vertex points to the last edge on its fist,
which in turn points to the first edge on the list. (See Figure 4a.) Our third and
last version of breadth-first search, which we call the r ing version, uses this
representation. After labeling a vertex w, we break the ring of edges out of w
between its last and first node, add w and its outgoing edges to the end of the
queue, and update f. After scanning a vertex, we repair its edge ring. (See Figure
4b). The following procedure implements this method. T h e procedure is compli-
cated by the fact tha t empty rings require special handling.

ACM Transactions on Mathematical Software, Vol 9, No 3, September 1983

Space-EfficIent Implementat=ons of Graph Search Methods • 331

, (d

2 D - - d T N

queue

1

Fig. 4. (a) Representation of graph
by rings of outgoing edges. (b) Rep-
resentation after labeling 1, 2, and 5
during space-efficient breadth-first
search.

p r o c e d u r e bfs(vertex start);
n o d e v, e, f;
v -= start;
label(start);
i fa(start) = n u l l ---> f := start
] a(start) ~ null---> f : = a(start); a(start) := a (f) ; a(f) : = n u l l

fi;
d o v ~ n u l l --->

e := v;
d o edge(a(e)) -->

e := a(e) ;
traverse(e):
i f n o t labeled (t(e)) --*

label (t(e));
a(f) := t(e);
ifa(t(e)) = n u l l - - > f : = t(e)
I a(t(e)) ~ null---> f : = a(t(e)); a(t(e)) := a (f) ; a(f) : - - n u l l

ACM Transactions on Mathematical Software, Vol. 9, No. 3, September 1983.

332 Robert E. Taqan

fi
fi

od;
scan(v);
ifv = e --, v := a(e); a(e) :ffi null
] v ~ e ---> v, a(v) , a(e) := a(e), e, a (v)
fi
od

end bfs;

Whethe r this or the list version of bfs runs faster depends upon the initial
representat ion of the graph and the lengths of the edge lists. Since convert ing
from the single list to the ring representa t ion requires a scan of each edge list, i t
does not pay to perform this conversion for a single b r ead th - f r s t search. For
general use we prefer the list version of bfs, since its code is more t ransparent and
it will run at best faster and at worst slightly slower than the ring version. If
space is not a problem, some implementa t ion of the queue version is best.

3. DEPTH-FIRST SEARCH

We can define depth-first search recursively as follows: A depth-first search f rom
a vertex v consists of labeling v and scanning v. To scan v, we t raverse each edge
out of v. To traverse an edge e, we test whether t (e) is labeled. If t (e) is not
labeled, e is a t ree edge: we advance along e, perform a depth-f irs t search f rom
t (e) , and re t rea t along e. If t (e) is labeled, e is a n o n t r e e edge: we advance along
e and immediately re t rea t along e. (See Figure 5.)

Procedure dfs below implements this definition. Inpu t to the procedure is v,
the star t vertex of the search. To use dfs, we need only d e f n e the procedures tha t
visit vertices and advance and re t rea t along edges so tha t they perform the
desired computations. For edge processing tha t is independent of the edge type
{tree or nontree), we can use a d v a n c e and re treat ; for edge processing tha t
depends upon the edge type, we can use a d v a n c e t ree and r e t r ea t tree, a d v a n c e
non t r ee and re t rea t nontree . Normal ly we would define ei ther a d v a n c e or the
pair a d v a n c e tree, a d v a n c e n o n t r e e to be empty procedures, and similarly e i ther
re t rea t or the pair re t rea t tree, r e t rea t n o n t r e e to be empty.

p r o c e d u r e d f s (ver t ex v);
e d g e e;
label(v);
e := a(v);
do e ~ nul l - .

advance (e);
if not labeled (t (e)) ~-~

advance tree (e); dfs(t (e)); retreat tree (e)
] labeled (t (e)) -+

advance nontree (e); retreat nontree (e)
fi;
retreat (e) ;
e := a(e)

od;
scan(v)

end dfs;

R e m a r k 1. We have included in dfs separate procedures for processing t ree
and nontree edges because in many if not most applications, the processing is

ACM Transact ions on Mathematmal Software, Vol 9, No 3, September 1983

Space-Effsclent Implementations of Graph Search Methods 333

I
I

I /
/

i I / /

I /
I !
I I 4
I I

\ X
\ \

1

\ / /
/

3 ~ l /
/ /

1/ /
)./ /

/
/ /] / /

/I / /

/ /
b~

5

Fig. 5.
of graph

Spanning tree generated by a depth-first search

different for the two kinds of edges• I t is easy to insert such procedures into bfs
as well.

R e m a r k 2. Procedure dfs applies labe l to the vert ices in preorder , wi th respec t
to the spanning tree genera ted by the search, and applies s c a n to the ver t ices in
postorder.

A depth-f i rs t search takes O (n + m) t ime and O (n) space, no t count ing space
for the graph. Our first s tep in improving the space efficiency of our implemen-
ta t ion is to r emove the recursion. Procedure dfs saves two var iables per recursive
call: v, the ver tex being scanned, and e, the edge being t raversed. However , there
is no need to save v: if v is not the s ta r t vertex, the t ree edge enter ing v was saved
jus t before dfs was called on v, and v is available as the tail of this edge. T h u s we
can carry out the search using a single s tack containing the edges on the t ree
pa th f rom the s tar t ver tex to the ver tex being scanned.

More precisely, the search uses two variables, a s tack of edges s and a cur rent
edge e, and main ta ins the following invariant: if s = [el, e2, . . . , ek], then ek, ek-1,
• . . , el is the pa th of t ree edges f rom the s ta r t ver tex {s tar t) to the ver tex v being
scanned; i f v = start , s = []. T h e edges on the s tack are exact ly those along which
an advance but not a re t rea t has t aken place. T h e edge e is e i ther the first edge
out of v along which an advance has not ye t occurred or n u l l if the search has
advanced along every edge out of v. A step of the search consists of processing
the edge e. The re are three cases, depending on whe ther e is a t ree edge, a nont ree
edge, or n u l l . The following procedure implements the search:

p rocedure dfs (ver tex start);
v e r t e x v; edge e; s tack s;
s : = [] ;
label (start);
v :-- start;
e :-~ a(start);
do e # null and not labeled(t(e))

advance tree(e)
s := [e] & s;
label(t(e));

ACM Transacttons on Mathematmal Software, Vol 9, No, 3, September 1983

334 Robert E. Taqan

v := t(e);
e := a(t (e))

I e ~ null a n d labe led(t (e)) --*
advance nontree (e);
re treat nontree (e);
e := a(e)

] e ~ n u l l a n d s ~ [] --*
e, s := s(1), s [2 . .] ;
scan(t (e)) ;
v := i f s = []---> s t a r t l s ~ [] ~ t(s(1)) fi;
retreat tree (e);
e := a(e)

od;
scan (s tart)

e n d dfs;

R e m a r k . Variable v, the vertex being scanned, is never used explicitly in the
search. If v is not used by any of the advance or retreat procedures (v is the head
of the edge along which the advance or retreat takes place), its computa t ion can
be dropped from the program.

There are three reasonable ways to implement the stack in this procedure. The
two obvious methods are to use an array of (at least) n - 1 positions or to use a
single list of edges. The latter representat ion needs one pointer per edge, for a
total of m, of which at most n - 1 are actually used. We obtain a linked
representation that needs only n pointers, one per vertex, by storing with each
vertex the tree edge entering its parent. A search using this third representat ion
has the beneficial side effect of constructing the spanning tree. The following
version of d f s uses this representation. Local variable f is the tree edge entering
the vertex being scanned; if this is the start vertex, f is null . For each vertex v,
the procedure stores the tree edge entering the parent of v in the field b (v).

procedure dfs (vertex start);
vertex v; edge e, f;
f := null
label (s tar t) ;
v := start;
e := a(start);
do e ~ n u l l a n d n o t labeled(t(e))

advance tree (e);
label(t (e));
b(t (e)) , f, v, e :=. f, e, t (e) , a (t (e))

I e ~ null and labe led(t (e)) --->
advance nontree (e);
re treat nontree (e) ;
e := a(e)

] e = n u l l a n d f ~ n u l l
e, f := f, b(t (f)) ;
scan (t (e));
v := if f = null ~ s t a r t] f ~ null ~ t (f) fi;
re treat tree (e);
e := a(e)

od;
scan (s tart)

e n d dfs;

ACM Transactions on Mathematical Software, Vol 9, No 3, September 1983

Space-Efficient Implementahons of Graph Search Methods • 335

2

v f e

2

3

f

V

(a) (b)

Fig. 6 (a) Graph representation during space-efficient depth-fLrst search just before advancing along
tree edge from vertex 4 to vertex 5. (b) Representation after advancing along tree edge from 4 to 5.

Remark. As is the previous version of dfs, this version is written so that
variable v is not needed for the search, and its computation can be dropped if
none of the advance~retreat procedures use it.

Our next step in saving space is to fold the stack into the graph representation.
We do this by extending the Deutsch-Schorr-Waite algorithm for marking a list
structure [3, 4, 5]. As in the case of breadth-f~rst search, we need the ability to
distinguish between nodes representing vertices and nodes representing edges;
we use the same predicate edge. The method uses three local variables: v, the
vertex being scanned; e, the edge being traversed; and f, the trailer, defined as
follows: if e is not the first edge out of v, then f is the edge before e out of v;
otherwise, f i s the parent of v in the spanning tree if v has a parent, nul l if v is the
start vertex. Initially v, e, and f are start, a (start), and null, respectively. The
search proceeds in the same way as in the previous version of dfs, except that it
modifies the graph representation as it goes. During the search, just before
advancing along an edge e, the edges before e out of v are linked in reverse order
via a pointers; f i s the first edge on the reversed list, and the last edge (originally
the first edge out of v) points to the parent of v. (See Figure 6a.) We say more
about the representation below.

To carry out the search, we initialize v, e, and f, perform label(v), repeat the
following step until e = nul l and v = start, and then perform some postprocessing
(described below), which includes scanning the start vertex:

General Step. Determine which one of the following three cases applies and
perform the actions listed:

Case 1: Advance along a tree edge. If e # nul l and t(e) is unlabeled:
Advance along tree edge e. Redefine a (v) to be e. Simultaneously redefine t (e)

to be f, f t o be v, and v to be t(e). Perform label(v). Redefine e to be a(v). Now
ACM Transactions on Mathematmal Software, Vol. 9, No. 3, September 1983.

336 RobertE. Ta~an

Fig. 7. Representat ion after traversing
nontree edge from 5 to 2. Variable e =
null .

v f

v is the new vertex to be scanned, e is the first edge out of v, f is the parent of v,
a(f) is the tree edge entering v, and t (a(f)) is the edge before a(f) out o f f (or the
parent of f if there is no such edge). (See Figure 6.)

Case 2: Traverse a nontree edge. If e ~ nul l and t (e) is labeled:
Advance and retreat along nontree edge e. Simultaneously redefine a (e) to be

f, f t o be e, and e to be a(e). Now e is the next edge out of v. (See Figures 6b
and 7.)

Case 3: Retreat along a tree edge. If e ffi nu l l and v ~ start:
The list of edges out of v is now completely reversed. (See Figure 8a.) Restore

it to its original form by repeating the following step until f is not an edge:
simultaneously redefine a(f) to be e, e to be f, and f to be a(f) . Now f is the
parent of v and e is the first edge out of v(or null). Redefine a(v) to be e. This
completes the restoration of the list of edges out of v. (See Figure 8b.)

Continue the step by performing scan (v). Redefine e to be a (f). Simultaneously
redefine v to be f, f t o be t(e), and t (e) to be v. This restores the representation
to its state before advancing along e. (See Figure 8c.) Retreat along tree edge e.
Simultaneously redefine a(e) to be f, f t o be e, and e to be a(e). Now e is the next
edge out of v. (See Figure 8d.)

When e ffi nul l and v = start, we complete the search by restoring the list of
edges out of start and then scanning start. The following procedure implements
this method:

procedure dfs (vertex start);
vertex v;
f := null;
label(start);
v := start;
e :ffi a(v);
do e ~ n u l l a n d n o t labeled(t(e)) --,

advance tree (e);

ACM TransacUons on Mathematmal Software, Vol 9, No. 3, September 1983

v

Space-Efficient Implementations of Graph Search Method~ • 337

(a)

2

f

v e

(b)

2

f

v e

(c)

v f e
, b4rr-+4

(d)

Fig. 8. (a) Representa t ion before re t reat ing along tree edge from 3 to 4. (Edge hs t s for 5 and 6 are
deleted for clarity.) (b) Representa t]on when scanning 4. (c) Represen ta t ion when retreat ing. (d)
Representa t ion before advancing along next edge. Variable e ffi nul l .

a(v) := e;
v, f, t (e) := t (e) , v, f;
label(v);
e := a(v)

I e ~ n u l l a n d labeled(t(e)) --~
advance nontree (e) ;
retreat nontree (e);
e, f, a (e) := a (e) , e, f

] e = n u l l a n d v ~ start-->
d o edge(f) ~ e, f, a (f) := f, a(f) , e o d ;
a(v) := e;
scan(v);
e :-- a (f) ;
v, f, t (e) := f, t(e), v;
retreat tree (e);
e, f, a(e) := a (e) , e, f

od ;
d o f ~ n u l l --* e, f, a (f) := f, a (f) , e o d ;
a (start) := e;
scan (start)

e n d dfs;

ACM Transactions on Mathematmal Software, Vol, 9, No, 3, September 1983

338 Robert E. Tarjan

Fig. 9. Array representat ion of graph

1 1

2 4

3 5

4 7

5 1 9

6 tc

t l

4

5

6

7

8

9

10

t

t 2

2 5

3 E

4

5

1

5

2

5

a

g

f

b

C

J

h

d

!

e

Remark. In this version of dfs, vertex v is needed for the search.

This version of depth-first search requires the same space as the list or ring
version of breadth-first search, namely, a label bit per vertex (in cases where no
vertex numbering takes place) and a read-only bit per node (if ver tex nodes and
edge nodes can be distinguished in no o ther way). Like the list version of breadth-
first search, it scans each edge list twice; in this case, the second scan is needed
to restore the list to its original form. We can avoid the second scan by changing
the graph representat ion, as we discuss below. However, the second scan does
provide an oppor tuni ty to process the edge lists as the vertices are postvisited,
which can be used to simplify some algori thms tha t use depth-first search.

Eliminating the second scan seems to require an array representa t ion of the
graph. (See Figure 9.) Each edge is a position in an array t; t (e) is the tail of edge
e. Edges with the same head are grouped together; the set of edges out of a ver tex
v is {e la (v) <_ e < a(v + 1)}. We use out(v) = a(v + 1) - a(v) to denote the
number of edges out of v.

To carry out the search, we use the me thod suggested by Gries [3, p. 231, note
5]. The auxiliary storage needed is an increment i (v) for each ver tex v; i (v) is an
integer between 0 and out (v) (inclusive). A zero increment denotes an unlabeled
vertex; a positive increment denotes a labeled vertex. We use three local variables:
v, the vertex being scanned; e, the edge being traversed; and u, the paren t of v.
After advancing along a t ree edge e, we store e - a(v) + 1 in i (v) and
simultaneously replace v, u, and t (e) by t(e), v, and u, respectively. When we
finish the search from the new vertex v, we restore the si tuat ion by defining e to
be a(u) + i(u) - 1 and simultaneously replacing v, u, and t (e) by u, t(e), and v,
respectively. T h e n we re t rea t along e. T h e following procedure gives the details:

procedure dfs(vertex start);
ver tex u, v; edge e;
u := null;
label(start);
(i(start) := 1;)
v := start;
e := a(v);

ACM Transactions on Mathematical Software, Vol 9, No 3, September 1983

Space-Efficient Implementations of Graph Search Methods • 339

do e < a(v + 1) and i(t(e)) = 0 --*
advance tree (e);
i(v) :ffi e - a(v) + 1;
v, u, t(e) := t (e) , v, u;
label(v);
(i(v) := 1;)
e := a(v)

l e < a (v + 1) and i (t (e)) ~0--->
advance nontree (e);
retreat nontree (e);
e : f e + l

I e = a (v + 1) and v ~ start --->
scan(v);
e := a(u) + ~(u) - 1;
v, u, t(e) := u, t(e), f;
retreat tree (e);
e : - - e + l

od;
scan (start)

end dfs;

Since vertex labeling is done by updating increments, the operat ion l abe l (v)

need only perform whatever calculations are needed by the application. The two
statements "i(v) := 1" are necessary only if the graph contains loops; if not, the
s ta tement " i (v) :ffi e - a (v) + 1" provides all the increment updat ing tha t is
necessary.

We have presented a total of five versions of depth-first search. As with
breadth-first search, the best choice depends on the intended application. We
encourage the reader to experiment with these methods and adapt t hem to his or
her own needs.

ACKNOWLEDGMENT

My thanks to David Gries for an exceptionally thorough refereeing job tha t
greatly improved this paper.

REFERENCES
1. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading, Mass., 1974.
2. DIJKSTRA, E.W. A D~sc=phne of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
3. GRIES, D. The Schorr-Waite graph marking algorithm. Acta Inf. 11 (1979), 223-232.
4. KNUTH, D.E. The Art of Computer Programming, vol. 1, Fundamental Algorithms, 2nd ed.

Addison-Wesley, Reading, Mass., 1973.
5. SCHORR, H., AND WAITE, W.M. An efficient machine-independent procedure for garbage collec-

tion m various list structures. Commun. ACM 10, 8 (Aug. 1967), 501-506.
6. THORELLI, L.-E. Marking algorithms. BIT 12 (1972), 555-568.

Received August 1982; accepted March 1983

ACM Transactions on Mathematical Software, Vol. 9, No. 3, September 1983

