
Fast Network Decomposition

(Extended Abstract)

Baruch Awerbuch * Bonnie Berger t Lenore Cowen $

Abstract

This paper obtains the first deterministic

sublinear-time algorithm for network decomposi-
tion. The second contribution of this paper is

an in-depth discussion and survey of all existing

definitions of network decomposition. We also

present a new reduction that efficiently trans-

forms a weak-diameter version of the problem

to a strong one. Thus our algorithm speeds up

all alternate notions of network decomposition.

Most importantly for the network applications,

we obtain the first fast algorithm for construct-

ing a sparse neighborhood cover of a network,

thereby improving the distributed preprocessing

time for all-pairs shortest paths, load balancing,

broadcast, and bandwidth management.

● Dept. of Mathematics and Lab. for Com-

puter Science, M. I. T., Cambridge, MA 02139. Sup-

ported by Ah Force Contract TNDGAFOSR-86-

0078, ARO contract DAAL03-86-K-0171, NSF con-

tract CCR8611442, DARPA contract NOOO14-89-J-

1988, and a special grant from IBM.

t Dept. of Mathematics and Lab. for Computer

Science, M. I. T., Cambridge, MA 02139. Supported

by an NSF Postdoctoral Research Fellowship.

t Dept. of Mathematics and Lab. for Computer

Science, M. I. T., Cambridge, MA 02139. Supported

in part by DARPA contracts NOO014-87-K-0825 and

NOO014-89-J-1988, Ak Force Contract OSR-89-02171,

Army Contract DAAL-03-86-K-0171 and Navy-ONR

Contract NOO014-19-J-1698

‘Department of Applied Mathematics and Com-

puter Science, The Weizmann Institute, Rehovot

76100, Israel. Supported in part by an Allon Fellow-

ship, by a Bantrell Fellowship and by a Walter and

Elise Haas Career Development Award.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice end the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

PoDC ‘92-81921B.C.

~ 1992 ACM 0-89791-496-1/92/0008/01 69...$1.50

1 Introduction

David Peleg ~

Sparse neighborhood covers. This pa-

per is concerned with fast deterministic al-

gorithms for constructing sparse neighbor-

hood covers in the distributed network model.

Given an undirected (weighted) graph, a

neigldxwhood cover is a collection of sets of

nodes (also called clusters) which cover the

neighborhoods of all nodes in the network. A

high-quality or sparse cover (see Section 2)

is one that has an optimal tradeoff between

the diameter of each cluster and the cluster

overlap at single nodes.

The method of representing networks by

sparse neighborhood covers has recently been

identified [13, 12,3, 15] as the key to the mod-

ular design of efficient network algorithms.

Using this method as a basic building block

leads to dramatic performance improvements

for several fundamental network control prob-

lems (such as shortest paths [2], job schedul-

ing and load balancing [10], broadcast and

multicast [4], deadlock prevention [9], band-

width management in high-speed networks

[7], and database management [15]), as well

as for classical problems in sequential com-

puting (such as finding small edge cuts in

planar graphs [19] and approximate all-pairs

shortest paths [5]). In most of these appli-

cations, sparse neighborhood covers yield the

first polylogarithmic-overhead solution to the

problem. Thus, in a sense, the impact of ef-

ficient sparse neighborhood cover algorithms
on distributed computing is analogous to the

impact of efficient data structures (like bal-

anced search trees or 2-3 trees) on sequential

computation.

169

Our results. This paper presents the first

deterministic sublinear-time distributed algo-

rithm (for static synchronous networks) that

constructs a high-quality network decompo-

sition. The algorithm runs in time O(nc), for

any c > 0, improving on the best-known de-

terministic running time of O(n log n) for this

problem in [13]. We additionally show how

to efficiently transform the weak-diameter

version of the problem to a strong-diameter

sparse l-neighborhood cover (see Section 2).

We get the analogous improvement for t-

neighborhood covers, where all algorithmic

running times blow up by a factor of t. The

distributed algorithm can be adapted to a

more realistic dynamic asynchronous envi-

ronment using the existing transformer tech-

niques in [1, 13, 11]. The applications that

use sparse covers as a data structure often

run in time O(t), where t << Diam(G) s n,

in which case our improvement is particularly

significant.

Our results versus existing work. In

addition to obtaining the first deterministic

sublinear-time algorithm for high-quality net-

work decomposition, we emphasize that we

additionally produce clusters that are more

useful for applications. The definition of

sparse neighborhood covers considered here

is equivalent to that in [13], which employs a

strong notion of the diameter of a cluster (see

Section 2). The definition in [13] is related to

yet distinct from the notion of network de-

composition defined in [8, 18, 16]. Network

decomposition as utilized in [8, 18, 16, 17, 6]

employs only a weak- notion of low diameter.

This means that the network decomposition

clusters might not even be connected within

the clusters. Thus they are not sufficient to

support, for example, local routing, where the

path between two nodes in the same cluster

should consist entirely of nodes within that

cluster.

We emphasize that the new fast algorithms

in this paper speed up ail alternative no-

tions of network decomposition, including the

sparse neighborhood cover definition needed

for all the distributed applications. (See Sec-

tion 2 for precise definitions.)

Other work on related problems. The

(weak diameter, low quality) notion of “net-

work decomposition” was first defined in

[8, 18]. Awerbuch et. al. [8] gave a fast al-

gorithm for obtaining O(n’)-diameter clus-

ters, for any 6 > 0. Their algorithm re-

quires O(nC) time in the distributed case, and

O(nE) sequential operations. Unfortunately,

the construction of [8] is very inefficient in

terms of the quality of the decomposition.

Roughly speaking, the inefficiency factor is

O(n’), and this factor carries over to all but

some of the graph-theoretic applications, ren-

dering the decomposition of [8] absolutely un-

accept able in any practical context. The con-

st ruction of [8] is, however, sufficient for the

two main applications they site in that pa-

per: the maximal independent set problem

and (A + 1) coloring. This is because to con-

struct a MIS or a (A+ 1) coloring, one needs

to traverse the O(n’)-diameter clusters only

a constant number of times. The network

control applications, such as routing, online

tracking of mobile users, and all-pairs short-

est pat hs, however, need to traverse the clus-

ters many times. A higher-quality decompo-

sition is needed to avoid a large blowup in the

running time for these latter applications.

For the remainder of this paper, when we

refer to network decomposition, we mean any

of the formulations of high-quality decompo-

sition, and not the large diameter, large num-

ber of colors obtained by [8].

Subsequent to our work, Pasconesi and

Srinivasan [17] slightly reduced the run-

ning time for the poor-quality and weak-

diameter construction in [8]. While [8] ob-
tained a running time of O (n’), where c =

0(~=//@@, [17] reduced c to Z =

0(1/-). As a consequence of the bet-

ter running time achieved in [17] (smaller c)

and the techniques in this paper, the running

time of our algorithm for high-quality net-

work decomposition can be slightly improved

(see Corollary 3.4).

The randomized algorithm of Linial and

Saks [16] achieves a high-quality decomposi-

170

tion by introducing randomization. The re-

sults are stated in terms of a weak notion

of low-diameter clusters, but can be modi-

fied to produce a strong diameter decomposi-

tion as well, using, for example, the reduction

techniques in this paper (or [11]). The re-

sulting algorithm is efficient. (We comment

that the distributed algorithm is valid only

for static synchronous networks, but the ef-

ficient transformer techniques of [11] extends

it to a (more realistic) dynamic asynchronous

model.) Since we are concerned here with

using neighborhood covers as a data st ruc-

ture and running various applications on top,

a randomized solution is not acceptable in

many cases. We need a fast deterministic al-

gorithm that guarantees a good underlying

neighborhood cover.

2 Definitions

Notions of network decomposition.

We survey the different formulations of net-

work decomposition, and discuss their rela-

tions. Within each family of definitions, we

also discuss what it means to have a higli-

quality decomposition or cover, in terms of

the optimal tradeoffs between low diameter

and sparsity. The sparse neighborhood cover

formulation is the one that is useful for all the

applications. We stress that the algorithms

in this paper achieve all alternative notions

of network decomposition,

Definition 2.1 Consider a graph G whose

vertices appear in sets S1, s. The

weak distance between u, v G Si, denoted

dist~(u, v), is the length of the shortest path

between u and v in G. Namely, the path

is allowed to shortcut through vertices not in

Si. The weak diameter of Si, diam(Si) =

maXU,V6s, (di$tG(u, v))

Definition 2.2 Consider a graph G whose

vertices appear in sets SI, S’r. The

strong distance between u, v c Si, denoted

dists, (u, v), k the length of the shortest path

between u and v, on the induced subgraph S’i of

G. Namely, all vertices on the path connecting

u and v are also in Si. The strong diameter of

Si, Diam(Si) = m~,.~s, (dist~,(u, v)).

The square of a graph, G2, is defined to

be the graph G with additional edges if there

exists a w s.t. (u, w) and (w, v) are in G.

Similarly, Gt is the graph with an edge be-

tween any two vertices that are connected

by a path of length ~ t in G. The ji-

neighborhood of a vertex v c V is defined as

Nj(v) = {w [dist~(w, v) s j}. Similarly, the

j-neighborhood of a set, V, is defined to be

Nj(V) = uvEV~j(v),

We are now ready to define the alternate

notions of network decomposition. First, we

give the weak diameter definition.

Definition 2.3 For an undirected graph G =

(V, E), a (x, d, A)-decomposition is defined to

be a x-coloring of the nodes of the graph that

satisfies the following properties:

1. each color class is partitioned into an arbi-

t rary number of disjoint clusters;

2. the weak diameter of any cluster of a sin-

gle color class is at most d.

3. clusters of the same color are at least dis-

tance A+l apart.

A (x, d, A)-decomposition is said to be high-

quahty if when d = O(kA), x is at most knlfk.

We make several remarks about the Defini-

tion 2.3, which is equivalent to the definitions

in [8, 16, 17].

●

●

The high-quality decomposition as de-

fined above achieves the optimal trade-

off; there are graphs for which x must be

~(knil~) to achieve a decomposition into

clusters of diameter bounded by O(kA)

and separation A [16].

When A = 1, we will abbreviate this as a

(x, d)-decomposition. Typically, we are

most concerned with the case of a high-

quality decomposition when x and d are
both O (log n). This optimal decomposi-

tion tradeoff is not achieved in the clus-

ters of [8, 17], but is achieved by random-

ized methods in [16]. The algorithms in

171

this paper are the first to achieve the op-

timal tradeoff deterministically in sub-

linear time.

The main application known for this

structure in “symmetry-breaking”- it

can be used to construct a maximal inde-

pendent set or a A + 1 coloring fast in the

distributed domain [8, 16, 17]. In this

paper, we use the structure for symmetry

breaking as follows: the recursive algo-

rithm in Section 3 constructs a (x, d, A)-

decomposition on the power of the graph

inside the recursion first, and later uses

this to obtain a strong-diameter decom-

position.

For strong-diameter network decomposi-

tion, the definition is the same as Defini-

tion 2.3, except in Step 2, substitute strong

for weak diameter. As with the weak defi-

nition, the “high-q ualit y“ tradeoffs are opti-

mal. A strong-diameter (x, d)-decomposition

can be thought of as a generalization of the

standard graph coloring problem, where x is

the number of colors used, and the clusters

are supernodes of diameter d.

We now present the definition for sparse

neighborhood covers. Notice that this is a

strong diameter definition.

Definition 2.4 A (k, t)-neighborhood cover

is a collection of sets (also called clusters) of

nodes S1, S., with the following properties:

1. VU, 3 s.t. IV,(v) G S’i, where IV,(v) =

{u[dist~(u, v) < t}.

2. Vi, DiU~(Si) < O(kt), where

Dia~(Si) = maxu,ve~,(dist~, (~, ~)).

A (k, t)-neighborhood cover is said to be

sparse, if each node is in at most kn~ik sets.

Setting k = 1, the set of all balls of radius

t around each node is a sparse neighborhood

cover. Setting k = Diam(G)/t, the graph

G itself is a sparse neighborhood cover. In

the first case, the diameter of a ball is t,but

each node could appear in every ball. In the

second case, each node appears only in G,

but the diameter of G could be as high as

n. Setting k = log n (the typical and use-

ful setting, for all the applications), a sparse

(log n, t)-neighborhood cover is a collection

of sets Si with the following properties: the

sets cent tin all t-neighborhoods, the diame-

ter of the sets is bounded by O(t log n), and

each node is contained in at most clog n sets,

where c > 0. We remark that this bound is

tight to within a constant factor; there exist

graphs for which any (log n, t)-neighborhood

cover places some node in at least fl(log n)

sets [16]. When k = log n, we find that sparse

neighborhood covers form a useful data struc-

ture to locally represent the t-neighborhoods

of a graph.

Our new fast distributed algo-

rithm achieves deterministically a structure

which is simultaneously a (strong, and there-

fore also weak) diameter decomposition and

a sparse neighborhood cover.

3 Weak Diameter Network

Decomposition

In this section, we introduce the new dis-

tributed algorithm color, which recursively

builds up a (knlfk, 2k, 1)-decomposition. It

calls on a procedure, Createflew.color,

which runs a modified version of the

Awerbuch-Peleg [14] greedy algorithm on

separate clusters.

Note that all distances in the discussion be-

low, including those in the same cluster, are

assumed to be weak distances, and the diam-

eter of the clusters is always in terms of weak

diameter (see Section 2),

Color is implicitly taking higher and

higher powers of the graph, where recall that

we define the graph Gt to be the graph in

which an edge is added between any pair of

nodes that have a path of length ~ t in G.

Notice that to implement the graph Gt in a

distributed network G, since the only edges

in the network are still the edges in the un-

derlying graph G, to look at all our neigh-

bors in the graph G~, we might have to tra-

verse pat hs of length t. Therefore the time

172

for running an algorithm on the graph Gt,

blows up by a factor of t. The crucial ob-

servation is that a (x, d, I)-decomposition on

G’ is a (x, dt, t)-decomposition on G. Choos-

ing t well at the top level of the recursion,

guarantees that nodes in different clusters

of the same color are always separated by

at least twice the maximum possible dis-

tance of their radii. We can thus use pro-

cedure Greedy .Create-Color to in parallel

recolor these separate clusters without colli-

sions. (The leader of each cluster does all the

computation for its cluster.)

The recursive algorithm has two parts:

1. Find a (x, dt, t)-decomposition, where
x = xkn~lk, d, t = 2k, on each of x dis-

joint subgraphs.

2. Merge these together by recoloring, as

just described, to get a (knl/~, 2k, l)-

decomposition.

Algorithm: Color(G)

Input: graph G = (V, E), [VI = n, and inte-

ger k >1.

Output: A (knl/k, 2k, I)-decomposition of

G.

1.

2.

3.

4.

5.

6.

Compute G2k.

If G has less than x nodes, run the Linial-

Saks [16] or Awerbuch-Peleg [14] sim-

ple greedy algorithm on G2k, and go to

step 6.

Partition nodes of G into x subsets,

VI, V= (based on the last log z bits

of node IDs, which are then discarded).

Define G~ to be the subgraph of G2k in-

duced on K.

In parallel, for i, Color(G~).

(every node of G is now colored recur-

sively)

For each v c V, color v with the color

<i, color(v) c G~>.

(this gives an xkn’lk coloring of G with

separation 2k)

7. Do sequentially, for i = 1 to knl/k,

Create-New-Color(G, i)

(this gives a kn’lk coloring of G with sep-

amtion 1)

Algorithm: Create-Neu-Color(G, i)

(this colors a constant fraction of the old-

colored nodes remaining with new color i)

Input: graph G with new and old colored

nodes such that there is a (xknl/k, (2k)2, 2k)-

decomposition on the old-colored nodes of G

and a (i – 1, 2k, 1)-decomposition on the new-

colored nodes of G

Output: graph G with new and old colored

nodes such that there is a (zknl/k, (2k)2, 2k)-

decomposition on the old-colored nodes of

G and a (i, 2k, 1)-decomposition on the new-

colored nodes of G

1. W+V.

2. Do sequentially, for j = 1 to xknl/k,

“Look at nodes with old color j“:

(a) Do in parallel for color j clusters,

●

●

●

●

Elect a leader for each cluster.

The leader learns the identities,

U, of all the nodes in W within

k distance from the border of

its cluster (i.e. this is graph G

for that cluster).

The leader calls procedure

Greedy-Create-Color(R, U),

where R is the set of old-

colored j nodes in both the

leader’s cluster and in W.

Greedy-Create-Color returns

(DR, DU). The leader colors

the nodes in DR with new color

i, and sets W + W – DU.

Greedy-Create-Color is the procedure of

the Awerbuch-Peleg [14] greedy algorithm

that determines what nodes will be given the

current new color. The algorithm identifies a
constant fraction of the nodes in the cluster

R to be colored. The algorithm picks an ar-

bitrary node in It (call it a center node) and

greedily grows a ball around it of minimum

173

radius r, such that a constant fraction of the

nodes in the ball lie in the interior (i.e. are

in the ball of radius r — 1 around the center

node). It is easy to prove that there always

exists an r < Icll?l l/~ for which this condition

holds. Note that although the centers of the

balls grown out are always picked (arbitrar-

ily) from the nodes in 1?, the interiors and

borders of the balls which are then claimed,

include any of the nodes in U (not just those

in 1?) within the bidl. Then another arbitrary

node is picked, and the same thing is done,

until all nodes in R have been processed. Pro-

cedure Crest e_New-Color will then color the

interiors of the balls (set DIZ) with new color

i, and remove each entire ball from the work-

ing graph W.

Algorithm: Greedy.Create-Color(R, U)

Input: sets of nodes R and U, where B is the

set of nodes in the cluster and U is a superset

of nodes that cent ains R.

Output: (DR, Dtl). This returns a constant

fraction of the nodes in R in set DR and the

l-neighborhoods of the clusters of DR in set

DU.

l. DR~(!l; DU -@.

2. While R # 0 do

(a) S t {v} for some v c R.

(b) While IIV1(S) n UI > lRll/’lSl do

s - su (Nl(s)n U).

(c) DR + DR U S.

(d) DU +- DU u (IV,(S) (7 U).

(e) R + R - S - (N,(S) n R).

(f)u+u–s.

Lemma 3.1 If z = 26-, the

running time of the procedure Color is

#=1G+2fk (2k)2.

Proof The branching phase of the recursion

takes time T’(n) < 2kZ’’’(z)+z+z. The merge

takes time Xknltktd = z(knl/k)2(2k)2, where

Xknl/k is the number of iterations overall and

td is the number of steps per iteration. Over-

all, we have

T(n) < 2kT(n/z) + z(knl/k)2(2k)2

< (2k)10gn/ 10gz~(knl/k)2(2k)2

< n2_l G~21k (2k)2,

when z = 2=-. ❑

Theorem 3.2 There is a deterministic dis-

tributed asynchronous algorithm which given

a graph G = (V, E), finds a (knl/k, 2k, l)-

decomposition of G in

~24’l@-+2fk (2k)2 time.

Corollary 3.3 There is a deterministic dis-

tributed asynchronous algorithm which given

G = (V, E), finds a (O(logn), O(logn), l)-

decomposition of G in n
o (@i/&q

time, which is n’ for any E > 0. We remark

that the constant on the big-oh in the running

time is 3.

As a corollary to our theorem and [17], we

can obtain a slightly better running time.

Corollary 3.4 There is a deterministic dis-

tributed asynchronous algorithm which given

G = (V, E), finds a (O(logn), O(logn), l)-

decomposition of G in O(nl/@) time, which

is ne

4

The

for any c >0.

Strong Diameter Network

Decomposition

algorithm in the previous section pro-

duced a weak-diameter network decomposi-

tion. While this is a nice problem, the strong-

diameter form is the one we want in order
to successfully run most distributed applica-

tions. In this section, we give a reduction
that given a weak diameter decomposition,

constructs a structure that is simultaneously

both a strong diameter decomposition and a

sparse neighborhood cover. The algorithm

as written outputs the cover: the associated

strong decomposition consists of the interi-

ors of the clusters in the sparse neighborhood

cover.

174

We introduce an algorithm Sparse, which

takes as input a procedure Decomp, which

given a graph G = (V, E), finds a

(kn’i~, 2k, I)-decomposition of G. In actual-

it y, we will bind Decomp to procedure Color

of Section 3. Sparse first calls procedure

Decomp with G8kg. Of course, this will yield

an O(M) blowup in the running time of

Decomp, say T.

Once Decomp is called, the remaining run-

ning time for Sparse is 0(k2n2/k), times

a t blowup for traversing t-neighborhoods.

Then, in sum, Sparse is able to obtain a t-

neighborhood cover in the original graph G

in time O (MT + kztnztk). Recall that k is

typically log n.

Notice that the code for Sparse is sim-

ilar to the last pass of procedure Color

(Section 3); however, Sparse has an ad-

ditional level of complexity. To obtain a

t-neighborhood cover, we must modify the

Awerbuch-Peleg [13] coarsening algorithm,

called as a subroutine, so that we can recolor

clusters in parallel without interference.

Notation. In the algorithms below, we use

reman capital letters for names of sets, and

calligraphic letters for names of collections of

sets. In particular, corresponding to a set

W, by convention we will denote by W the

collection consisting of the sets {iV~(v) Iv <

w}.

Algorithm: Sparse(G,Decomp)

Input: graph G = (V, E), [V! = n, and in-

teger k ~ 1, and a procedure Decomp, that

finds a (knl/k, 2k, 1)-de.composition of G.

Output: T, a sparse (k, t)-neighborhood

cover of G.

1. Decomp(G8kg).

(returns a (kn’/k, 2k, 1)-decomposition

of G8kt which is a (knl/k, 16k2t, 8kt)-

decomposition of G.)

(a)

(b)

7+0.

(T is the cover.)

Do sequentially,, for i = 1 to knl/k,

(find a kn’lk-degree t-neighborhood

cover of G.)

i.

ii.

...
111.

2/ + {Nt(v)lv E v}.
(U is the collection of all zm-

processed t-neighborhoods,)

Do sequentially, for -j = 1 to
kn~lk,

“Look at nodes with old color
.>>.

~,

A. Do in parallel for color j

clusters,

●

●

●

●

Elect a leader for each

cluster.

The leader learns the

identities, of all the t-

neighborhoods of nodes

within a 4kt distance from

the border of its cluster.

The leader calls proce-

dure Cover(7?, U) on G,

where R is the collection

of t-neighborhoods of old-

colored j nodes in both

the leader’s cluster and in

u.

Cover returns (2X?, 2X-4).

The leader colors the

nodes in 2X? with new

color i, and sets U + U –

IX?/.

74-7- UD7?

Cover is our modification of the Awerbuch-

Peleg [13] coarsening algorithm that deter-

mines what nodes will be given the current

new color. The actual code for this proce-

dure follows a description of the algorithm

below. The key to our fast simulation of their

coarsening algorithm, is that we keep track

of neighborhoods within and outside of the

old-colored j clusters separately, in order to

recolor clusters in parallel without collisions.

Procedure Cover(7?, 2/) operates in itera-

tions. Each iteration constructs one output

cluster Y c DT, by merging together some

clusters of U. The iteration begins by arbi-
trarily picking a cluster S in U n 7? and des-

ignating it as the kernel of a cluster to be

constructed next. The cluster is then repeat-

edly merged with intersecting clusters from

175

U. This is done in a layered fashion, adding

one layer at a time. At each stage, the origi-

nal cluster is viewed as the internal kernel Y

of the resulting cluster Z. The merging pro-

cess is carried repeatedly until reaching a cer-

tain sparsity condition (specifically, until the

next iteration increases the number of clus-

ters merged into Z by a factor of less than

[X?l’lk). The procedure then adds the kernel

Y of the resulting cluster Z to a collection

217. It is important to note that the newly

formed cluster consists of only the kernel Y,

and not the entire cluster Z, which cent ains

an additional “external layer” of %? clusters.

The role of this externail layer is to act as a

“protective barrier” shielding the generated

cluster Y, and providing the desired disjoint-

ness between the different clusters Y added

to ‘DT.

Throughout the process, the procedure

keeps also the “unmerged” collections ~, Z

containing the original R clusters merged into

Y and Z. At the end of the iterative process,

when Y is completed, every cluster in the col-

lection Y is added to 2V3, and every cluster

in the collection 2 is removed from U. Then

a new iteration is started. These iterations

proceed until U (1 7? is exhausted. The pro-

cedure then outputs the sets 2X?? and 2JT.

Procedure Cover is formally described in

Figure 1. Its properties are summarized by

the following lemma. We comment that our

modifications do not change the lemma.

Lemma 4.1 ([13]) Given a graph G =

(V, E),]Vl = n, a collection of clusters K! and

an integer k, the collections VT and ZIR con-

structed by Procedure Cover(R, 24) operates in

iterations. satisfy the following properties:

(1) All clusters in D%? have their t-

neighborhood contained in some cluster in

VT.

(2) Y n Y’ = 0 for every Y, Y’ E DT,

(3) I’DX?] 2 1731’-1/k, and

(4) max~,~~ Dia7n(T)

< (2k – 1) max~~~ Diam(l?).

DT +-O; DRe O
repeat

Select an arbitrary cluster S E U n??.
z + {s}
repeat

y-z

y t Useys
z+{sls~U, snY#O}.

until 121< 17?11’klYl

/#*i!./-’z

DT + DT u {Y}
~~+pxuy

until UnR=O

Output (2V?, ZYT).

Figure 1: Procedure Cover(R, u).

Theorem 4.2 There is a deterministic dis-

tributed algorithm, e.g. Sparse(G,Color),

that given a graph G = (V, E), IV[= n, and

integers k, t ~ 1, constructs a &neighborhood

0(-/ @ time in thecover of G in kztn

asynchronous model, where each node is in at

most O(knl/~) clusters, and the maximum clus-

ter diameter is O(kt).

Finally, we remark that if we color only

the interiors of the new color i clusters, the

above construction produces a strong diame-

ter high-quality network decomposition from

a weak diameter high-quality network decom-

position, as well as a sparse neighborhood

cover. This is because our construction is

such that each node in the cover lies in pre-

cisely one new-colored interior.

5 Acknowledgment

Thanks to Tom Leighton for helpful discus-
sions.

References

[1] Y. Afek, B. Awerbuch, and E. Gafni.

Applying static network protocols to dy-

namic networks. In Proc. 28th IEEE

Symp. on Foundations of Computer Sci-

ence, pages 358–370, Oct. 1987.

176

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Y. Afek and M. Ricklin. Sparser: A

paradigm for running distributed algo-

rithms. Unpublished manuscript, 1991.

Y, Afek and M. Riklin. Sparser: A

paradigm for running distributed algo-

rithms. J. of Algorithms, 1991. Accepted

for publication.

B. Awerbuch, A. Baratz, and D. Pe-

leg. Efficient broadcast and light-weight

spanners. Unpublished manuscript, Nov.

1991.

B. Awerbuch, B. Berger, L, Cowen, and

D. Peleg. Fast deterministic cover al-

gorthms. Unpublished manuscript, Nov.

1991.

B. Awerbuch, B. Berger, L. Cowen, and

D. Peleg. Low-diamter graph decompo-

sition is in NC. In Proc. 3 ‘rd Scandi-

navian Workshop on Algorithm Theory,

July 1992. to appear.

B. Awerbuch, I. Cidon, I. Gopal, M. Ka-

plan, and S. Kutten. Distributed con-

trol for paris. In Proc. 9th ACM Symp.

on Principles of Distributed Computing,

pages 145-160, 1990.

B. Awerbuch, A. Goldberg, M. Luby,

and S. Plotkin. Network decomposition

and locality in distributed computation.

In Proc. 30th IEEE Symp. on Founda-

tions of Computer Science, May 1989.

B. Awerbuch, S. Kutten, and D. Peleg.

On buffer-economical store-and-forward

deadlock prevention. In Proc. of the

1991 INFOCOM, 1991.

B. Awerbuch, S. Kutten, and D. Peleg.

Online load balancing in a distributed

network. In Proc. 21th ACM Symp. on

Theory of Computing, pages 571-580,

1992.

B. Awerbuch, B. Patt, D. Peleg, and
M. Saks. Adapting to asynchronous

dynamic networks with polylogarithmic

overhead. In Proc. 21th ACM Symp.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

177

on Theory of Computing, pages 557–570,

1992.

B, Awerbuch and D. Peleg. Network syn-

chronization with polylogarithmic over-

head. In Pmt. 31st IEEE Symp. on

Foundations of Computer Science, pages

514-522, 1990.

B. Awerbuch and D. Peleg. Sparse par-

titions. In Proc. t?lst IEEE Syrnp. on

Foundations of Computer Science, pages

503-513, 1990.

B. Awerbuch and D. Peleg. Routing with

polynomial communication-space trade-

off. SIAM J. Disc. Math, 5(2):151–162,

1992,

Y. Bartal, A. Fiat, and Y. Rabani. Com-

petitive algorithms for distributed data

management. In Proc. 21th ACM Symp.

on Theory of Computing, pages 39–50,

1992.

N. Linial and M. Saks. Decompos-

ing graphs into regions of small diam-

eter, In Proc. 2nd ACM-SIAM Symp.

on Discrete Algorithms, pages 320–330.

ACM/SIAM, Jan. 1991.

A. Pasconesi and A. Srinivasan. Im-

proved algorithms for network decom-

positions. In Proc. 21th ACM Symp.

on Theory of Computing, pages 581–592,

1992.

D. Peleg. Dist ante-preserving dis-

tributed directories and efficient routing

schemes. unpublished manuscript, 1989.

S. Rae. Finding small edge cuts in pla-

nar graphs. In Proc. 21th ACM Symp.

on Theory of Computing, pages 229–240,

1992.

