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1. Introduction 

The young field of algorithm design and analysis has 
made many contributions to computer science of both 
theoretical and practical significance. One can cite a 
number of properly designed algorithms that save users 
thousands of dollars per month when compared to naive 
algorithms for the same task (sorting and Fourier trans- 
forms are examples of such tasks). On the more theoret- 
ical side, algorithm design has shown us a number of 
counterintuitive results that are fascinating from a purely 
mathematical viewpoint (for instance, there is a faster 
way to multiply two matrices than the standard "high 
school" algorithm). In one important sense, however, the 
study of algorithms is rather unsatisfying--the field con- 
sists primarily of a scattered collection of results, without 
much underlying theory. 

Recent research has begun laying the groundwork 
for a theory, of algorithm design by identifying certain 
algorithmic methods (or paradigms) that are used in the 
solution of a wide variety of problems. Aho et al. [ 1, ch. 
2] describe a few such basic paradigms, and Weide [27] 
discusses a number of important analysis techniques in 
algorithm design. Almost all of the algorithmic para- 
digms discussed to date are at one of two extremes, 
however: Either they are so general that they cannot be 
discussed precisely, or they are so specific that they are 
useful in solving only one or two problems. In this paper 
we examine a more "middle of the road" paradigm that 
can be precisely specified and yet can also be used to 
solve many problems in its domain of applicability. We 
call this paradigm multidimensional divide-and-conquer. 

Multidimensional divide-and-conquer is applicable 
to problems dealing with collections of objects in a 
multidimensional space. In this paper we concentrate on 
problems dealing with N points in k-dimensional space. 
In a geometric setting these points might represent N 
cities in the plane (2-space) or N airplanes in 3-space. 
Statisticians often view multivariate data with k variables 
measured on N samples as N points in k-space. Yet 
another interpretation is used by researchers in database 
systems who view N records each containing k keys as 
points in a multidimensional space. An alternative for- 
malism views the points as N k-vectors; in this paper we 
use the point formalism, which aids our geometric intu- 
ition. The motivating applications for the problems dis- 
cussed later are phrased in these geometric terms. 

Multidimensional divide-and-conquer is a single al- 
gorithmic paradigm that can be used to solve many 
particular problems. It can be described roughly as fol- 
lows: to solve a problem of N points in k-space, first 
recursively solve two problems each of  N/2 points in k- 
space, and then recursively solve one problem of N points 
in (k-1)-dimensional space. In this paper we study a 
number of different algorithms and see how each can be 
viewed as an instance of multidimensional divide-and- 
conquer. There are three distinct benefits resulting from 
such a study. First, this coherent presentation enables 

Communications April 1980 
of Volume 23 
the ACM Number 4 



descriptions of  the algorithms to be communicated more 
easily. Second, by studying the algorithms as a group, 
advances made in one algorithm can be transferred to 
others in the group. Third, once the paradigm is under- 
stood, it can be used as a tool with which to attack 
unsolved research problems. Even another benefit might 
ultimately result from this study and others like it: a 
theory of  "concrete computational complexity" which 
explains why (and how) some problems can be solved 
quickly and why others cannot. 

Much previous work has been done on the problems 
to be discussed. Since most of  the work applies to only 
one problem, we mention that work when discussing the 
particular problem. Two pieces of  work, however, are 
globally applicable and are therefore mentioned (only) 
here. Dobkin and Lipton [11] describe a method for 
multidimensional searching that is radically different 
from one that we study. Although their method yields 
search times somewhat faster than those we discuss, the 
preprocessing and storage costs of  their algorithms are 
prohibitive for practical applications. Shamos [25, 26] 
has thoroughly investigated a large number of  compu- 
tational problems in plane geometry and has achieved 
many fascinating results. 

The problems discussed in this paper provide an 
interesting insight into the relation of  theory and practice 
in algorithm design. On the practical side, the previous 
best-known algorithms for many of  the problems we 
discuss have running time proportional to N 2 (where N 
is the number of  points). The algorithms discussed in 
this paper have running time proportional to N lg N (at 
least for low dimensional spaces). 1 To make this abstract 
difference more concrete we note that if the two algo- 
rithms were used to process sets of  1 million points on a 
1 million-instruction-per-second computer, then the N 2 
algorithm would take over 11 days, while the N lg N 
algorithm would require only 20 seconds! On the theo- 
retical side many of  the algorithms we discuss can be 
proved to be the best possible for solving their respective 
problems, and this allows us to specify precisely the 
computational complexity of  those problems. These 
problems also show us some interesting interactions be- 
tween theory and practice: Although some of  the theo- 
retically elegant algorithms of  Sections 2 and 3 are not 
suitable for implementation, they suggest certain heuris- 
tic algorithms which are currently implemented in sev- 
eral software packages. 

This paper is more concerned with expressing the 
important concepts of  multidimensional divide-and-con- 
quer than scrupulously examining the details of  partic- 
ular algorithms. For this reason we gloss over many 
(important) details of  the algorithms we discuss; the 
interested reader is referred to papers containing these 
details. In Section 2 we examine three problems centered 
around the concept of  point domination, and we develop 

~We will use lg as an abbreviation for log2 and lg k N as an 
abbreviation for (lg N) k. 

Fig. 1. Point A dominates point B. 
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multidimensional divide-and-conquer algorithms for 
solving those problems. In Section 3 we focus on prob- 
lems defined by point closeness. These two sections 
constitute the main part of  our discussion of  multidimen- 
sional divide-and-conquer. In Section 4 we survey ad- 
ditional work that has been done, and we then view the 
paradigm in retrospect in Section 5. 

2. Domination Problems 

In this section we investigate three problems defined 
in terms of  point domination. We write Ai for the ith 
coordinate of  point A and say that point A dominates 
point B if and only if Ai > Bi for all i, l _< i _< k. If  
neither point A dominates point C nor point C dominates 
point A, then A and C are said to be incomparable. It is 
clear from these definitions that the dominance relation 
defines a partial ordering on any k-dimensional point 
set. These concepts are illustrated for the case k = 2 in 
Figure I. The point A dominates the point B, and both 
of  the pairs A, C and B, C are incomparable. 

In Section 2.1 we investigate the empirical cumulative 
distribution function, which asks how many points a 
given point dominates. In Section 2.2 we study the 
related question of  whether a given point is dominated. 
In both of  these sections we discuss two distinct but 
related problems. In an all-points problem we are asked 
to calculate something about every point in a set (How 
many points does it dominate? Is it dominated?). In a 
searching problem we must organize the data into some 
structure such that future queries (How many points 
does this point dominate? Is this point dominated?) may 
be answered quickly. In Section 2.3 we examine a search- 
ing problem phrased in terms of  domination that has no 
all-points analog. 

2.1 Empirical Cumulative Distribution Functions 
Given a set S of N points we define the rank of  point 

x to be the number of  points in S dominated by x. Figure 
2 shows a point set with the rank of  each point written 
near that point. In statistics the empirical cumulative 
distribution function (ECDF) for a sample set S of  N 
elements, evaluated at point x, is just rank(x)/N. This 
quantity is the empirical analog of  the population cu- 
mulative distribution function. Because of  the intimate 
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relation between rank and ECDF, we often write ECDF 
for rank. With this notation we can state two important 
computational problems. 

(1) All-Points ECDF. Given a set S of N points in k- 
space, compute the rank of each point in the set. 

(2) ECDF Searching. Given a set S, organize it into a 
data structure such that queries of the form "what is 
the rank of point x" can be answered quickly (where 
x is not necessarily an element of S). 

The ECDF is often required in statistical applications 
because it provides a good estimate of an underlying 
distribution, given only a set of  points chosen randomly 
from that distribution. A common problem in statistics 
is hypothesis testing of the following form: Given two 
point sets, were they drawn from the same underlying 
distribution? Many important multivariate tests require 
computing the all-points ECDF problem to answer this 
question; these include the Hoeffding, multivariate Kol- 
mogorov-Smirnov, and multivariate Cramer-Von Mises 
tests. The solution to the ECDF searching problem is 
required for certain approaches to density estimation, 
which asks for an estimate of the underlying probability 
density function given a sample. These and other appli- 
cations of ECDF problems in statistics are described by 
Bentley and Shamos [9], which is the source of  the 
algorithms discussed. 

In this section we first devote our attention to the all- 
points ECDF problem in Section 2.1.1 and then solve 
the ECDF searching problem by analogy with the all- 
points solution in Section 2.1.2. Our strategy in both 
sections is to examine solutions to the problem in increas- 
ingly higher dimensions, starting with the one-dimen- 
sional, or linear, problem. 

2.1.1 The all-points ECDF problem. In one dimen- 
sion the rank of a point x is just the number of points in 
the set less than x, so the all-points ECDF problem can 
be solved by sorting. After arranging the points in in- 
creasing order we assign the first point the rank 0, the 
second point rank 1, and so on. It is obvious that given 
the ranks we could produce such a sorted list, so we 
know that the complexity of  the one-dimensional all- 
points ECDF problem is exactly the same as sorting, 
which is well known to be O(N lg N). Thus we have 
developed an optimal algorithm for the one-dimensional 
case) The two-dimensional case is not quite as easy, 
however. To solve this problem we apply the multidi- 
mensional divide-and-conquer technique instantiated to 
two dimensions: To solve a problem of  N points in the 
plane, solve two problems of  N/2 points each in the 
plane and then solve one problem of N points on the 
line. 

Fig. 2. With each point is associated its rank. 
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Fig. 3. Operation of  Algorithm ECDF2. 

0 

1 

0 

0 

0 

A 

(a) 

B 

(b) 

0 " ' -  

0 - '  

2+2=4 

0+2=2 

0+1 =1 

(c) 

Our planar ECDF algorithm operates as follows. The 
first step is to choose some vertical line L dividing the 
point set S into two subsets A and B, each containing 
N/2 points. 3 This step is illustrated in Figure 3(a). The 
second step of our algorithm calculates for each point in 
A its rank among the points in A, and likewise the rank 
of each point in B among the points of  B. The result of 

2 If we apply the multidimensional divide-and-conquer strategy to 
the one-dimensional problem, then we achieve a sorting algorithm 
similar to quicksort (but that always partitions around the median of  
the set). We do not discuss that algorithm here. 
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a To avoid needless detail we make certain assumptions such as 
that N is even and that no pair o f  points share, x- or y-coordinates. To 
otherwise confront such detail is not particularly illuminating. 
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this is depicted in Figure 3(b). We now make an impor- 
tant observation that allows us to combine these subso- 
lutions efficiently to form a solution to the original 
problem. Since every point in A has an x-value less than 
every point in B, two facts hold: First, no point in A 
dominates any point in B, and second, a point b in B 
dominates point a in A iff the y-value of b is greater than 
the y-value of a. By the first fact we know that the ranks 
we computed for A are the correct final ranks. We are 
still faced with the reduced problem of calculating for 
every point in B the number of  points it dominates in A 
(which we add to the number of B's it dominates to get 
the fmal answer). To solve this reduced problem we use 
the second fact. I f  we project all the points in S onto the 
line L (as depicted in Figure 3(c)), then we can solve the 
reduced problem by scanning up the line L, keeping 
track of how many As we have seen, and add that 
number to the partial rank of each point in B as we pass 
that point. This counts the number of points in A with 
smaller y-values, which are exactly the points it domi- 
nates. We implement this solution algorithmically by 
sorting the As and Bs together and then scanning the 
sorted list. 

Having described the algorithm informally, we are 
now ready to give it a more precise description as Algo- 
rithm ECDF2. Algorithm ECDF2 is a recursive algo- 
rithm which is given as input a set S of N points in the 
plane and returns as its output the rank of each point. 

Algorithm ECDF2 
1. [Division Step.[ If S contains just  one element then return its rank 

as 0; otherwise proceed. 4 Choose a cut line L perpendicular to the 
x-axis such that 3[/2 points o f  S have x-value less than  L's (call this 
set of  points A) and the remainder have greater x-value (call this set 
B). Note that L is a median  x-value o f  the set. 

2. [Recursive Step.] Recursively call ECDF2(A) and ECDF2(B). After 
this step we know the true E C DF  of  all points in A. 

3. [Marriage Step.] We must  now fred for each point in B the number  
of  points in A it dominates (i.e., that have lesser y-value) and add 
this number  to its partial ECDF.  To do this, pool the points of  A 
and B (remembering their type) and sort them by y-value. Scan 
through this sorted list in increasing y-value, keeping track in 
A C O U N T  of  the number  of  As so far observed. Each time a B is 
observed, add the current value of  A C O U N T  to its partial ECDF.  

That Algorithm ECDF2 correctly computes the rank 
of each point in S can be established by induction, using 
the two facts mentioned above. We also use induction to 
analyze its running time on a random access computer 
by setting up a recurrence relation describing the running 
time on N points, say T(N), and then solving that recur- 
rence. To set up the recurrence we must count how many 
operations each step of the algorithm requires. Step 1 
can be solved by a fast median algorithm; we can use the 
algorithm of Blum et al. [10] to accomplish this step in 
O(N) operations. Because step 2 solves two problems of 
size N/2, its cost will be 2 T(N/2), by induction. The sort 
of step 3 requires O(N lg N) time, and the scan requires 

4 All the algorithms we will see have this test for small  input size; 
we usually omit it for brevity. 
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linear time, so the total cost of  step 3 is O(N lg N). 
Adding the costs of the three steps we find that the total 
cost of the algorithm is 

T(N) ---- O(N) + 2T(N/2) + O(N lg N) 
= 2T(N/2) + O(N lg N). 

This recurrence 5 has solution 

T(N) = O(N lg 2 N) 

so we know that the running time of  Algorithm ECDF2 
is O(N lg 2 N). 

We can make an observation that will allow us to 
speed up many multidimensional divide-and-conquer 
algorithms. In looking carefully at the analysis of Algo- 
rithm ECDF2 we see that the running time is dominated 
by the sort of step 3. To remove this cost we can sort the 
N points of S once byy-coordinate before any invocation 
of ECDF2, at a once-for-all cost of O(N lg N). After this 
we can achieve the effect of sorting (without the cost) by 
being very careful to maintain "sortedness-by-y" when 
dividing into sets A and B during step 1. After this 
modification the recurrence describing the modified al- 
gorithm becomes 

T(N) = 2T(N/2) + O(N) 

which has solution 

T(N) = O(N lg N). 

This technique is known aspresorting and has very broad 
applicability; we see that it allows us to remove a factor 
of O(lg h0 from the running time of many algorithms. 

We now turn our attention to developing an algo- 
rithm for solving the ECDF problem for N points in 3- 
space. The mult idimensional  d ivide-and-conquer  
method we use is analogous to the method used by the 
previous algorithm: To solve a problem of N points in 3- 
space we solve two problems of N/2 points in 3-space 
and then one problem of N points in 2-space. The first 
step of our algorithm chooses a cut plane P perpendicular 
to the x-axis dividing S into sets A and B of N/2 points 
each. Figure 4 illustrates this division. The second step 
then (recursively) counts for each point in A the number 
of points in A it dominates, and likewise for B. By 
reasoning analogous to that for the planar case we can 
see that since no point in A dominates any point in B, 
the final ranks of A are exactly the ranks already com- 
puted. By the same reasoning we know that a point b in 
B dominates point a in A iff b dominates a in their 
projection on P, the (y, z) plane. The third step of our 
algorithm therefore projects all points onto plane P 
(which merely involves ignoring the x-coordinates) and 
then counts for each B-point the number of A-points it 
dominates. This reduced problem, however, is just a 

5 To be precise we should also define the "boundary condition" of  
the recurrence, which is in this case T(1) = c, for some constant c. 
Since all the recurrences we will see in this paper have the same 
boundary,  we delete it for brevity. The particular value of  the constant 
does not affect the asymptotic growth rate of  the functions. 
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slightly modified version of the planar ECDF problem, 
which can be solved in O(N lg N) time. 6 The recurrence 
describing our three-dimensional algorithm is then 

T(N) = 2 T(N/2) + O(N lg iV) 

which, as we saw previously, has solution T(N) = 
O(N lg 2 N). 

The technique that we just used to solve the two- and 
three-dimensional problems can be extended to solve the 
general problem in k-space. The algorithm consists of  
three steps: divide into A and B, solve the subproblems 
recursively, and then patch up the partial answers in B 
by counting for each point in B the number of As it 
dominates (a (k--0-dimensional problem). The (k-1)- 
dimensional subproblem can be solved by a "bookkeep- 
ing" modification to the (k-1)-dimensional ECDF al- 
gorithm. We can describe the algorithm formally as 
Algorithm ECDFk. 

Algorithm ECDFk. 
I. Choose a ( k -  l)-dimensional cut plane P dividing S into two subsets 

A and B, each of  N/2 points. 
2. Recursively call ECDFk(A) and ECDFk(B).  After this we know the 

true ECDF of  all points in A. 
3. [For each B fmd the number  of  As it dominates.] Project the points 

of  S onto P, noting for each whether  it was an A or a B. Now solve 
the reduced problem using a modified E C D F ( k - l )  algorithm and 
add the calculated values to the partial ranks o f  B. 

To analyze the runtime of Algorithm ECDFk we 
denote its running time on a set of N points in k-space 
by T(N, k). For any fixed value of  k greater than 2, step 
l can be accomplished in O(N) time. Step 2 requires 
2T(N/2, k) time, and the recursive call of step 3 requires 
T(N, k - l )  time. Combining these we have the recurrence 

T(N, k) -- O(N) + 2T(N/2, k) + T(N, k - l ) .  

We can use as a basis for induction on k the fact that 

T(N, 2) = O(N lg N), 

as shown previously, and this establishes that 

T(N, k) -- O(N lg k-1 N). 7 

We have therefore exhibited an algorithm that solves the 
all-points ECDF problem for N points in k-space in 
O(N lg k-I N) time, for any fLxed k greater than 1. 

2.1.2 The ECDF searching problem. We now turn 
our attention to the ECDF searching problem. As in the 
all-points problem, we first investigate the one-dimen- 

6 The following "bookkeeping" operations must  be added to 
ECDF2 to enable it to solve this problem in O(N lg N) time: Relabel 
the As and Bs to be Xs and Ys, respectively. We are now given N points 
in the plane and asked to count for each Y the number  o f  )is it 
dominates. As in ECDF2,  we divide into sets A and B and solve those 
subproblems recursively. We must  now count for each Y in B the 
number  of  Xs in A it dominates; we do this by projecting only the Xs 
o f  A and the Ys of  B onto L in step 3 o f  ECDF2.  

7 We use the fact that if T(N) = 2T(N/2) + O(N lg" N), then 
T(N) = O(N lg "+1 N). A more detailed discussion of  these recurrences 
can be found in Monier [21]. 
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Fig. 4. A three-dimensional problem. 
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sional case and then examine successively higher dimen- 
sions. There are three costs associated with a search 
structure: the preprocessing time required to build the 
structure, the query time required to search a structure, 
and the storage required to represent the structure in 
memory. When analyzing a structure containing N 
points we denote these quantities by P(N), Q(N), and 
S(N), respectively. We illustrate these quantities as we 
examine the one-dimensional ECDF searching problem. 

In one dimension the ECDF searching problem asks 
us to organize N points (real numbers) such that when 
given a new point x (not necessarily in the set), we can 
quickly determine how many points x dominates. One 
of the more obvious ways of  solving the problem is the 
"sorted array" data structure. In this scheme the N points 
are sorted into increasing order and stored in an array. 
To see how many points a query point dominates we 
perform a binary search to fred the position of  that point 
in the array. This structure has been studied often (see, 
for example, Knuth [16]) and is known to have properties 

P(N) = O(N lg N), 
Q(N) = O(lg N), 
S(N) = O(N). 

In the two-dimensional ECDF searching problem we 
are to preprocess N points in the plane such that we can 
quickly answer queries asking the rank of a new point, 
that is, how many points lie below it and to its left. There 
are many structures that can be used to solve this prob- 
lem, but we focus on one called the ECDF tree which 
follows from the multidimensional divide-and-conquer 
paradigm (others are discussed by Bentley and Shamos 
[9]). The multidimensional divide-and-conquer method 
applied to planar search structures represents a structure 
of N points in 2-space by two substructures of  N/2 points 
in 2-space, and one substructure of  N points in 1-space. 
We now describe the top level of an ECDF tree storing 
the point set S. By analogy to the all-points algorithm, 
we choose a line L dividing S into equal sized sets A and 
B. Instead of  solving subproblems A and B, however, we 
now recursively process them into ECDF trees represent- 
ing their respective subsets. Having built these subtrees 
we are (almost) prepared to answer ECDF queries in set 
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Fig .  5. T w o  cases  o f  p l a n a r  que r i e s .  F ig .  6. C a l c u l a t i n g  v's y - r a n k  in  A.  

L 
A B 

LJ 
- - - - n . ~  

I 
I V 

I I 
I ! 
I I 

I 

I I 
I i 

0 -  . . . . .  

V 

S. The first step of  a query algorithm compares the x- 
value of  the query point with the line L; the two possible 
outcomes are illustrated in Figure 5 as points u and v. If  
the point lies to the left of  L (as u does), then we fmd its 
rank in S by recursively searching the substructure rep- 
resenting A, for it cannot dominate any point in B. I f  the 
point lies to the right of  L (as v does), then searching B 
tells how many points in B are dominated by v, but we 
still must find how many points in A are dominated by 
v. To do this we need only calculate v's y-rank in A; this 
is illustrated in Figure 6. 

We can now describe the planar ECDF tree more 
precisely. An internal node representing a set of  N points 
will contain an x-value (representing the line L), a 
pointer to a left son (representing A, the N/2 points with 
lesser x-values), a right son representing B, and an array 
of  the N/2 points of  A sorted by y-value. To build an 
ECDF tree recursively one divides the set into A and B, 
builds the subtrees representing each, and then sorts the 
elements of  A by y-value (actually by presorting). To 
search the tree recursively one first compares the x-value 
of the node with the x-value of  the query point. If  the 
query point is less, then only the left son is searched 
recursively. If  the value is greater, then the right son is 
searched recursively, a binary search is done in the sorted 
y-sequence representing A to find the query point's y- 
rank in A, and the two ranks are added together and 
returned as the result. 

To analyze this search structure we again use recur- 
rences. In counting the preprocessing cost we note that 
the recurrence describing the algorithm (with presorting) 
is 

P(N) = 2P(N/2) + O(N) 

and the solution is 

P(N) = O(U lg N). 

To store an N element set we must store two N/2 element 
sets plus one sorted list of  N/2  elements, so the recurrence 
is 

S(N) = 2S(N/2) + N/2 

which has solution 

s(_,v) = O(N lg U). 
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In analyzing the search time our recurrence will depend 
on whether the point lies in A or B, so we assume it lies 
in B and analyze its worst case. In this case we must 
make one comparison, perform a binary search in a 
structure of  size N/2, and then recursively search a 
structure of  size N/2. The cost of  this will be 

Q(N) = Q(N/2) + O(lg N) 

so we know that the worst-case cost of searching is 

Q(N) = O(lg 2 N). 

Having analyzed the performance of  the planar ECDF 
tree, we can turn our attention to higher-dimensional 
ECDF searching problems. 

A node representing an N-element ECDF tree in 3- 
space contains two subtress (each representing N/2 
points in 3-space) and a two-dimensional ECDF tree 
(representing the projection of the points in A onto the 
cut plane P). This structure is built recursively (analogous 
to the ECDF3 algorithm). The searching algorithm com- 
pares the query point's x value to the value defining the 
cut plane, and if less, searches only the left substructure. 
If the query point lies in B, then the right substructure is 
searched, and a search is done in the two-dimensional 
ECDF tree. The full k-dimensional structure is analo- 
gous: A node in this structure contains two substructures 
of N/2 points in k-space, and one substructure of  N/2 
points in (k -0-space .  The recurrences describing the 
structure containing N points in k-space are 

P(N, k) = 2P(N/2, k) + P(N/2, k -1)  + O(N), 
S(N, k) = 2S(N/2, k) + S(N/2, k - l )  + O(1), 
Q(N, k) = Q(N/2, k) + Q(N/2, k - l )  + O(1). 

We can use the performance of  the two-dimensional 
structure as a basis for induction on k, and thus establish 
(for fixed values of  k) that 

P(N, k) = O(N lg k-1 N), 
S(N, k) = O(N lg k-a N), 
Q(N, k) = O(lg k N). 

It is interesting to note how faithfully the actions of  the 
multidimensional divide-and-conquer algorithms are de- 
scribed by the recurrences. Indeed, the recurrences might 
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provide a suitable definition of multidimensional divide- 
and-conquer! 

2.1.3 Summary of the ECDF problems. In our study 
of ECDF problems so far we have concentrated on 
algorithms for solving the problems without examining 
lower bounds. We saw that the one-dimensional all- 
points ECDF problem is equivalent to sorting (that is, 
one problem can be reduced to the other in linear time), 
so we know that the ECDF problem has an f~(N lg N) 
lower bound in the decision tree model of computation. 
Since the one-dimensional problem can be embedded in 
any higher-dimensional space (by simply ignoring some 
coordinates), this immediately gives an f~(N lg N) lower 
bound for the all-points problem in k-space. Lueker [20] 
has used similar methods to show that O(kN lg N) time 
is necessary and sufficient for the all-points problem in 
k-space in the decision tree model of computation. Un- 
fortunately, there do not appear to be succinct programs 
corresponding to the decision trees used in his proof. It 
therefore appears that a stronger model of computation 
than decision trees will have to be used to prove lower 
bounds on these problems; Fredman [12] has recently 
made progress in this direction. These results show that 
Algorithm ECDF2 is within a constant factor of optimal; 
whether Algorithm ECDFk is optimal in some reasona- 
ble model of computation remains an open question. 
Similar methods can be used to show a lower bound 
on the problem of ECDF searching; it requires at least 
~(lg N) time in the worst case. 

The analyses that we have seen for the ECDF algo- 
rithms have been "rough" in two respects: We have only 
considered the case that N is a power of 2, and our 
analyses were given for fLxed k as N grows large. Monier 
[21] has analyzed the algorithms in this section more 
exactly, overcoming both of the above objections. His 
analysis shows that the time taken for Algorithm ECDFk 
is given by 

T(N, k) = c(N lg *-1N)/(k-1)! + O(N lg *-z N) 

where c is an implementation-dependent constant. It is 
particularly pleasing to note that the coefficient of  the 
N lg k-1 N term is 1 / (k- l ) !  ; this function goes to zero 
very rapidly. Monier's analyses also showed that the 
leading terms of the ECDF searching structures perform- 
ances have similar coefficients (inverse factorials). 

We have now completed our study of  the ECDF 
problems per se, and it is important for us to take a 
moment to reflect on the things we have learned about 
multidimensional divide-and-conquer. The paradigm 
applies directly to all-points problems, and we state it 
here in its full generality: 

To solve a problem of N points in k-space, solve two problems of 
N/2 points each in k-space and one problem of (up to) N points in 
( k -  l)-space. 

Algorithms based on this paradigm have three major 
parts: the division, recurs&e, and marriage steps. Because 
of the recursion on dimension, an important technique 
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in developing these algorithms is to start with low-di- 
mensional problems and then successively move to 
higher dimensions. Describing an algorithm recursively 
leads to two advantages: We can describe it succinctly 
and then analyze its performance by the use of recur- 
rence relations. The recurrence used most often is 

F(N) = 2F(N/2) --]- O(N lg m N) 

which has solution O(N lg ''+1 N) for m _ 0. 
The multidimensional divide-and-conquer paradigm 

can be applied in the development of data structures as 
well as all-points algorithms. The data structure strategy 
can be described as follows: 

To store a structure representing N points in k-space, store two 
structures representing N/2 points each in k-space and one structure 
of (up to) N points in (k--l)-space. 

There are, of course, many similarities between these 
data structures and the multidimensional algorithms 
(most importantly, we use such an algorithm to build the 
structure), so the principles we enumerated above for all- 
points problems will apply to data structures as well. In 
addition to the recurrence mentioned above, the recur- 
rence 

F(N) = F(N/2) + O(lg m N) 

which has solution F(N) = O(lg m+l N) for m __ 0 arises 
often in the study of these structures. 

Presorting is a technique applicable to both multidi- 
mensional divide-and-conquer algorithms and data 
structures. By sorting data once-for-all before a recursive 
algorithm is initially invoked (and then keeping the data 
sorted as we divide into subproblems), we can avoid the 
repetitive cost of sorting. This technique often saves 
factors of O(lg N). One might hope that presorting could 
in some way be used many times to save multiple factors 
of O(lg N), but the author doubts that this can be 
achieved. 

Having made these general observations about our 
primary algorithm design tool, we are ready to apply it 
to the solution of other problems. Because we have 
examined the ECDF algorithms in some detail and the 
algorithms that we will soon examine are so similar, our 
discussion of those algorithms will not be so precise; their 
details can be deduced by analogy with the algorithms 
of this section. 

2.2 Maxima 
In this section we investigate problems dealing with 

maximal elements, or maxima, of point sets. A point is 
said to be a maximum of a set if there is no other point 
that dominates it. In Figure 7 we illustrate a planar point 
set with the maxima of the set circled. We are interested 
in two types of  maxima problems: the all-points problem 
(given a set, fmd all the maxima) and the searching 
problem (preprocess a set to answer queries asking if a 
new point is a maximum of the set). The problem of 
computing maxima arises in many diverse applications. 
Suppose, for example, that we have a set of programs for 
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Fig. 7. Maxima are circled. Fig. 8. Maxima of A are circled; B's are squared. 
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performing the same task rated on the two dimensions 
of space efficiency and time efficiency. If  we plot these 
measures as points in the x-y plane, then a point (pro- 
gram) dominates another only if it is more space efficient 
and more time efficient. The maximal programs of the 
set are the only ones we might consider for use, because 
any other program is dominated by one of the maxima. 
In general, if we are seeking to maximize some multi- 
variate goodness function (monotone in all variables) 
over some finite point set, then it suffices to consider 
only maxima of the set. This observation can signifi- 
cantly decrease the cost of optimization if many optimi- 
zations are to be performed. Such computation is com- 
mon in econometric problems. 

Problems about maxima are very similar to problems 
about ECDFs. If  we define the negation of point set A 
(written -A)  to consist of each of the points of  A multi- 
plied by -1 ,  then a point is a maximum of A if and only 
if its rank in -A  is zero (for if it is dominated by no 
points in A, then it dominates no points in -A).  By this 
observation we can solve the all-points maxima problem 
in O(N lg k-I N) time and the maxima searching problem 
with similar preprocessing time and space and O(lg k N) 
query time, by using the ECDF algorithms of  Section 
2.1. In this section we investigate a different multidimen- 
sional divide-and-conquer algorithm that allows us to 
reduce those cost functions by a factor of  O(lg N). The 
all-points maxima algorithm we will see is due to Kung 
et al. [17] (although our presentation is less complicated 
than theirs). The searching structure of this section is 
described here for the first time. Although the algorithms 
that we will see are similar to the ECDF algorithms of 
the last section in many respects, they do have some 
interesting expected-time properties that the ECDF al- 
gorithms do not have. Having made these introductory 
comments, we can now turn our attention to the maxima 
problems, investigating first the all-points problem and 
then the searching problem. 

The maximum of N points on a line is just the 
maximum element of the set, which can be found in 
exactly N-1  comparisons. Computing the maxima of N 
points in the plane is just a bit more difficult. Looking at 
Figure 7, we notice that the maxima (circled) are increas- 
ing upward as the point set is scanned right to left. This 
suggests an algorithm: Sort the points into increasing x- 
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order and then scan that sorted list right to left, observing 
successive "highest y-values so far observed" and mark- 
ing those as maxima. It is easy to prove that this algo- 
rithm gives exactly the maxima, for a point is maximal 
if and only if all points with greater x-values (before it 
on the list) have lesser y-values. The computational cost 
of the algorithm will be O(N lg N) for the sort and then 
O(N) for the scan. (So note that if we have presorted 
the list, then the total time for finding the maxima is 
linear.) 

We can also develop a multidimensional divide-and- 
conquer algorithm to solve the planar problem. As be- 
fore, we divide by L into A and B and solve those 
subproblems recursively (finding the maxima of each 
set). This is illustrated in Figure 8, in which the maxima 
of A are circled and the maxima of B are in boxes. 
Because no point in B is dominated by any point in A, 
the maxima of B are also maxima of the entire set S. 
Thus the third step (the "marriage" step) of our algo- 
rithm must discard points which are maxima of A but 
not of the whole set, i.e., those maxima of A which are 
dominated by some point in B. Since all points in B x- 
dominate all points in A, we need check only for y- 
domination. We therefore project the maxima of A and 
B onto L, then discard A-points dominated by B-points 
on the line. This third step can be easily implemented by 
just comparing the y-value of all A-maxima with the 
maximum y-value of the B-maxima and discarding all 
A's with lesser y-value (we described it otherwise to ease 
the transition to higher spaces). The running time of this 
algorithm is described by the recurrence 

T(N) = 2T(N/2) + O(N) 

which has solution O(N lg N). 
We can generalize the planar algorithm to yield a 

maxima algorithm for 3-space. The first step divides into 
A and B, and the second step recursively finds the 
maxima of each of those sets. Since every maxima of B 
is a maxima of the whole set, the third step must discard 
every maxima of A which is dominated by a maxima of 
B. This is accomplished by projecting the respective 
maxima sets onto the plane and then solving the planar 
problem. We could modify the two-dimensional maxima 
algorithm to solve this task, but it will be slightly more 
efficient to use the "scanning" algorithm. Suppose we 

Communications April 1980 
of Volume 23 
the ACM Number 4 



cut into A and B by the z-coordinate; we must discard 
all A s dominated by any Bs in the x-y  plane. If  we have 
presorted by x, then we just scan right to left down the 
sorted list, discarding As with y-values less than the 
maximum By-value observed to date. This marriage step 
will have linear time (with presorting), so this algorithm 
has the same recurrence as the two-dimensional, and its 
running time is therefore also O(N lg N). 

The obvious generalization of this algorithm carries 
through to k-space without difficulty. We solve a prob- 
lem of N points in k-space by solving two problems of 
N/2 points in k-space and then solving one problem of  
(up to) N points in (k-1)-space. This reduced problem 
calls for finding all As in the space dominated by any 
Bs, and we can solve this by modifying the maxima 
algorithm (similar to our modifications of  the ECDF 
algorithm). The resulting algorithm has a recurrence 

T(N, k) = 2T(N/2, k) + T(N, k - l )  + O(N) 

and we can use the fact that T(N, 3) = O(N lg N) to 
establish that 

T(N, k) = O(N lg k-2 N) for k _ 3. 

The analysis we just performed, though accurate for 
the worst case, is terribly pessimistic. It assumes that all 
N points of the original set will be maxima of their 
subsets, whereas for many sets there will be relatively 
few maxima of A and B. Results obtained by Bentley et 
al. [6] show that only a very small number of points 
usually remain as maxima (for many probability distri- 
butions). If  only m points remain, then the term T(N, 
k - l )  in the above recurrence is replaced by T(m, 
k - l ) ,  which for small enough m (i.e., m = O(N p) for 
some p < 1) has running time O(N). I f  this is true, then 
the recurrence describing the maxima algorithm is 

T(N, k) = 2T(N/2, k) + O(N), 

which has solution T(N) = O(N lg N). One can formalize 
the arguments we have just sketched to show the average 
running time of the above algorithm is O(N lg N) for a 
wide class of distributions. The interested reader is re- 
ferred to [6] in which a linear expected-time maxima 
algorithm is presented (with poorer worst-case perform- 
ance than this algorithm); the analysis techniques used 
therein can be used to prove this result. 

We turn our attention now to the maxima searching 
problem. We start with the planar case, where we must 
process N points in the plane into a data structure so we 
can quickly determine if a new point is a maxima (and 
if not, we must name a point which dominates it). Our 
structure is a binary tree in which the left son of  a given 
node represents all points with lesser x-values (A), the 
right son represents B, and an x-value represents the line 
L. To answer a query asking if  a new point q is a 
maximum of the set represented by a given node, we 
compare q's x-value to the node's. I f  the point lies in B 
(greater x-value), then we search the subtree and return 
the answer. If  the point lies in A, however, we first search 
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the left subtree; if the point is dominated, we return the 
dominating point. If  it is not dominated by any point in 
A, then we must check to see if it is dominated by any 
point in B. This can be accomplished by storing in each 
node the maximum y-value of any point in B. This 
structure can be built in O(N lg N) time and requires 
linear space. Since the worst-case cost of  a query satisfies 
the recurrence 

T(N) = T(N/2) + O(1), 

the worst-case search time is O(lg N). 
This search structure can be generalized to k-space. 

In that case a structure representing N points in k-space 
contains two substructures representing N/2  points in k- 
space and one substructure representing N/2 points in 
(k-D-space. To test if a new point is a maximum we 
first determine if it lies in A or B. If  it is in B, then we 
visit only the right son. If  it lies in A, we first see if it is 
dominated by any point in A (visit the left son), and if 
not then we check to see if it is dominated by any point 
in B (by searching the (k-1)-dimensional structure). The 
recurrences describing the worst-case performance of 
this structure are 

P(N, k) = 2P(N/2, k) + P(N, k - l )  + O(N), 
S(N, k) = 2S(N/2, k) + S(N/2, k - l )  + O(1), 
Q(N, k) = Q(N/2, k) 4. Q(N/2, k - l )  4- O(1), 

which have solutions 

P(N, k) = O(N lg k-2 N), 
S(N, k) = O(N lg k-z N), 
Q(N, k) = O(lg k-1 N). 

As in the case of  the all-points problem, these times are 
highly pessimistic, and for many point distributions they 
can be shown to be much less on the average. 

Yao [29] has shown that ~(N lg N) is a lower bound 
on the decision tree complexity of  computing the maxima 
of  N points in 2-space. This result shows that the maxima 
algorithms we have seen here are optimal for two and 
three dimensions (by embedding). Lower bounds for the 
rest of the problems of this section are still open prob- 
lems, and a model other than the decision tree will have 
to be used to prove optimal the algorithms that we have 
seen. 

This concludes our study of  maxima problems. 
Clever application of the multidimensional divide-and, 
conquer strategy allowed us to squeeze a factor of 
O(lg N) from the running times of the ECDF algorithms. 
We also glimpsed how an expected-time analysis might 
be performed on the computation-cost functions. 

2.3 Range Searching 
In this section we examine the problem of  range 

searching, a searching problem defined by point domi- 
nation for which there is no corresponding all-points 
problem. The problem is to build a structure holding N 
points in k-space to facilitate answering queries of  the 
form "report all points which are dominated by point U 
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Fig. 9. Number of points in R = r(A) - (r(B) + r(D)) + r(C). 
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Fig. 10. A node in a planar range tree. 
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and dominate point L." This kind of  query is usually 
called an orthogonal range query because we are in fact 
giving for each dimension i a range Ri = [li, ui] and then 
asking the search to report all points x such that xi is in 
range Ri for all i. A geometric interpretation of  the query 
is that we are asking for all points that lie in a given 
hyper-rectangle. Such a search might be used in querying 
a geographic database to list all cities with latitude 
between 37 ° and 41° N and longitude between 102 ° and 
109 ° W (this asks for all cities in Colorado). In addition 
to database problems, range queries are also used in 
certain statistical applications. These applications and a 
survey of  the different approaches to the problem are 
discussed in Bentley and Friedman's [5] survey of  range 
searching. The multidimensional divide-and-conquer 
technique that we will see has also been applied to this 
problem by Lee and Wong [ 18], Lueker [20], and Willard 
[28] who independently achieved structures very similar 
to the ones we describe. 

In certain applications of  the range searching prob- 
lem we are not interested in actually processing each 
point found in the query rectangle--it  suffices rather to 
know only how many such points there are. (One such 
example is multivariate density estimation.) Such a prob- 
lem can be solved by using the ECDF searching algo- 
rithm of Section 2.1 and the principle of  inclusion and 
exclusion. Figure 9 illustrates how four planar rank 
queries can be combined to tell the number of  points in 
rectangle R (we use "r" as an abbreviation for "rank"); 
in k-space 2 k range searches are sufficient. 

The sorted array is one suitable structure for range 
searching in one-dimensional point sets. The points are 
organized into increasing order exactly as they were for 
the ECDF searching problem of  Section 2.1. To answer 
a query we do two binary searches in the array to locate 
the positions of  the low and high ends of  the range; this 
identifies a sequence of  points in the array which are the 
answer to the query, and they can then be reported by a 
simple procedure. The analysis of  this structure for range 
searching is very similar to our previous analysis: The 
storage cost is linear and the preprocessing cost is O(N 
lg N). The query cost is then O(lg N) for the binary 
searches plus O(F), if  a total of  F points are found to be 
in the region. Note that any algorithm for range search- 
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ing must include a term of  O(F) in the analysis of  
query time. 

We will now describe range trees, a structure intro- 
duced by Bentley [4]; as usual, we first examine the 
planar case. There are six elements in a range tree's node 
describing set S. These values are illustrated in Figure 
10. The reals LO and HI give the minimum and maxi- 
mum x-values in the set S (these are accumulated 
"down" the tree as it is built). The real MID holds the x- 
value defining the line L, which divides S into A and B, 
as usual; we then store two pointers to range trees 
representing the sets A and B. The final element stored 
in the node is a pointer to a sorted array, containing the 
points of  S sorted by y-value. A range tree can be built 
recursively in a manner similar to constructing an ECDF 
tree. We answer a range query asking for all points with 
x-value in range X and y-value in range Y by visiting 
the root of  the tree with the following recursive proce- 
dure. When visiting node N we compare the range X to 
the range [LO, HI]. If  [LO, HI] is contained in X, then 
we can do a range search in the sorted array for all 
points in the range Y (all these points satisfy both the X 
and Y ranges). If  the X range lies wholly to one side of  
MID, then we search only the appropriate subtree (re- 
cursively); otherwise we search both subtrees. If  one 
views this recursive process as happening all at once, we 
see that we are performing a set of  range searches in a 
set of  arrays sorted by y. The preprocessing costs of  this 
structure and the storage costs are both O(N lg N). To 
analyze the query cost we note that at most two sorted 
lists are searched at each of  the lg N levels of  the tree, 
and each of  those searches cost at most O(lg N), plus the 
number of points found during that search. The query 
cost of  this structure is therefore O(lg2N + F), where F 
(as before) is the number of  points found in the desired 
range. 

The range tree structure can of  course be generalized 
to k-space. Each node in such a range tree contains 
pointers to two subtrees representing N/2 points in k- 
space and one N point subtree in (k- l ) -space.  Analysis 
of range trees shows that 

P(N, k) = O(N lg k-1 N), S(N, k) = O(N lg k-1 N), 
Q(N, k) = O(lg k N + F)  

where F is the number of points found. 
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Saxe [24] has used the decision tree model of com- 
putation to show a lower bound on the range searching 
problem of approximately 2k lg N. Bentley and Maurer 
[7] have given a range searching data structure that 
realizes this query time, at the cost of extremely high 
storage and preprocessing requirements. An interesting 
open problem is to give bounds on the complexity of this 
problem in the presence of only limited space (or pre- 
processing time); Fredman's [12] work is a first step in 
this direction. 

3. Closest-Point Problems 

Fig, 11. Fixed-radius near neighbor algorithm. 
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In Section 2 we investigated problems defmed by 
point domination; in this section we discuss a class of 
problems defined by point closeness. We saw that mul- 
tidimensional divide-and-conquer "works" for domina- 
tion problems because projection onto a plane preserves 
point domination. In this section we discuss a number of 
projections that preserve point closeness. 

We investigate three problems dealing with closeness. 
We use as our "closeness" measure the standard Euclid- 
ean distance measure (although the algorithms can be 
modified tO use other measures). The problem we study 
in Section 3.1 is the easiest of the three problems we 
discuss because it is defined in terms of "absolute" 
closeness. The problems of Sections 3.2 and 3.3 are 
defined in terms of relative distances and are therefore 
a bit trickier. Throughout this section we describe the 
algorithms only at a very high level; the interested reader 
can fmd the details of these algorithms (as well as a 
sketch of how they were discovered) in Bentley [3]. 

3.1 Fixed-Radius Near Neighbors 
In this section we discuss problems on point sets 

which deal with absolute closeness of points, that is, pairs 
of points within some fixed distance d of one another. 
We concentrate on the all-points problem which asks for 
all pairs within d to be listed, and then we briefly examine 
the problem of "fixed-radius near neighbor" searching. 
Fixed-radius problems arise whenever "multidimen- 
sional agents" have the capability of affecting all objects 
within some fixed radius. Such problems arise in air 
traffic control, molecular graphics, pattern recognition, 
and certain military applications. One difficulty in ap- 
proaching the fixed-radius near neighbors problem, how- 
ever, is that if points are clustered closely together, then 
there can be O(N 2) close pairs, and we are therefore 
precluded from finding a fast algorithm to solve the 
problem. 

We can avoid this difficulty by considering only 
sparse point sets, that is, sets which are not "clustered." 
We det'me sparsity as the condition that no d-ball in the 
space (that is, a sphere of radius d) contains more than 
some constant c points. This condition ensures that there 
will be no more than cN pairs of close points found. This 
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condition is guaranteed in certain applications from the 
natural sciences--if an object can affect all objects within 
a certain radius, then there cannot be too many "affect- 
hag" objects. We see that this condition also arises nat- 
urally in the solution of other closest-point problems. In 
this section we investigate the sparse all-points near 
neighbors problem by examining successively higher 
dimensions, and then we turn our attention to the search- 
ing problem. 

In the one-dimensional all-points near neighbor 
problem we are given N points on a line and constants 
c and d such that no segment on the line of length 2d 
contains more than c points, our problem is to list all 
pairs within d of one another. We can accomplish this 
by sorting the points into a list in ascending order and 
then scanning down that list. When visiting point x 
during the scan we check backward and forward on the 
list a distance ofd. By the sparsity condition, this involves 
checking at most c points for "closeness" to x. The cost 
of this procedure is O(N lg N) for the sorting and then 
O(N) for the scan, for a total cost of O(N lg N). Note the 
very important role sparsity plays in analyzing this al- 
gorithm: It guarantees that the cost of the scan is linear 
inN. 

Figure 11 shows how we can use multidimensional 
divide-and-conquer to solve the planar near neighbor 
problem. The first and second steps of our algorithm are, 
as usual, to divide the point set by L into A and B and 
then fmd all near neighbor pairs in each recursively. At 
this point we have almost solved our problem--all that 
remains to be done is to fred all pairs within d which 
have one element in A and one in B. Note that the "A 
point" of such a pair must lie in the slab of A which is 
within d of L, and likewise for B. Our third step thus 
calls for finding all pairs with one element in A and the 
other in B, and to do this we can confine our attention 
to the slab of width 2d centered about line L. But this 
can be transformed into a one-dimensional problem by 
projecting all points in the slab onto L. It is not difficult 
to show that projection preserves sparsity (details of the 
proof can be found in Bentley [3]), and it is obvious that 
projection preserves closeness, for projection only de- 
creases the distance between pairs of points. Our reduced 
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Fig. 12. Two cut lines. 
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problem is therefore just the one-dimensional sparse near 
neighbors problem (though it requires checking both to 
ensure pairs have one element from A and one from B 
and to ensure that the pairs were close before projection), 
and this can be accomplished in O(N lg N) time, or 
linear time if presorting is used. The runtime of  our 
algorithm thus obeys the recurrence 

T(N) = 2T(N/2) + O(N) 

which has solution T(N) = O(N lg N). Sparsity played 
two important roles in this algorithm. Since the original 
point set was sparse, we could guarantee that both A and 
B would be sparse after the division step (which in no 
way alters A or B). The sparsity condition was also 
preserved in the projection of  the third step, which 
allowed us to use the one-dimensional algorithm to solve 
the resulting subproblem. 

The algorithm we just saw can be generalized to three 
and higher dimensions. In three dimensions we divide 
the set by a cut plane P into A and B and find all near 
pairs in those sets recursively. We now need to find all 
close pairs with one member in A and the other in B, 
and to do this we confine our attention to the "slab" of  
all points within distance d of  P. If  we project all those 
points onto the slab (remembering if each was an A or 
a B), then we have a planar near neighbor problem of  
(up to) N points. Using our previous planar algorithm 
gives an algorithm for 3-space with O(N lg 2 N) running 
time. Extending this to k-space gives us an O(N lg k-~ N) 
algorithm. 

Having seen so many O(N lg k-1 N) algorithms in this 
paper may have lulled the reader into a bleary-eyed state 
of  universal acceptance, but the practicing algorithm 
designer never sleeps well until he has an algorithm with 
a matching lower bound. For this problem the best 
known lower bound is f~(N lg N); so we are encouraged 
to try to find an O(N lg N) algorithm. First we consider 
our planar algorithm in its O(N lg 2 N) form, temporarily 
ignoring the speedup available with presorting. If  we ask 
where the extra logarithmic factor comes from, we see 
that it is due to the fact that in the worst case all N points 
can lie in the slab of  width 2d; this is illustrated in Figure 
12. If  the points are configured this way, then we should 
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choose as cut line L a horizontal line dividing the set 
into halves. It turns out not to be hard to generalize this 
notion to show that in any sparse point set there is a 
"good" cut line. By "good" we mean that L possesses 
the following three properties: 

(1) It is possible to locate L in linear time. 
(2) The set S is divided approximately in half  by L. 
(3) Only O(N 1/2) points of  S are within d of  L. 

A proof that every sparse point set contains such a 
cut line can be found in Bentley [3]. We can use the 
existence of  such a cut line to create an O(N lg N) 
algorithm. The first step of  our algorithm takes linear 
time (by property 1 of  L), and the second step is altered 
(by property 2). The third step is faster because it sorts 
fewer than N points--only the O(N ~/2) points within d 
of L, by property 3. Since this can be accomplished in 
much less than linear time, our algorithm has the recur- 
rence s 

T(N) = 2T(N/2) + O(N) 

which has solution O(N lg N). The gain in speed was 
realized here by solving only a very small problem on 
the fine, so small that it can be solved in much less than 
linear time. Not unexpectedly, it can be shown that for 
sparse point sets in k-space there will always exist good 
cut planes, which will have not more than O(N a-Ilk) 
points within d of them. These planes imply that the 
(k-1)-dimensional subproblem can be solved in less than 
linear time, and the full problem thus obeys the recur- 
rence 

T(N, k) = 2T(N/2, k) + O(N). 

This establishes that we can solve the general problem in 
O(N lg N) time. 

The techniques which we have used for the all-points 
near neighbors problems can also be applied to the near 
neighbor searching problem. In that problem we are 
given a sparse set of  points to preprocess into a data 
structure such that we can quickly answer queries asking 
for all points within d of  a query point. If  we use the 
general multidimensional divide-and-conquer strategy, 
then we achieve a structure very similar to the range tree, 
with performances 

P(N) = O(N lg k-1 N), 
S(N) = O(N lg k-~ N), 
Q(N) = O(lg k N). 

If  we make use of  the good cut planes, however, then we 
can achieve a structure with performance 

P(N) = O(N lg N), 
S(N) = O(N), 
Q(N) = O(lg N). 

This modified structure follows immediately from the 
properties of  the cut planes we mentioned above; the 

8 The recurrence actually takes on a slightly different form--details 
are in Bentley [3]. 
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details are similar to the other multidimensional divide- 
and-conquer structures we have seen previously. 

To show lower bounds on fixed-radius problems in 
k-space we can consider the corresponding problems in 
1-space. Fredman and Weide [13] have shown that the 
problem of reporting all intersecting pairs among a set 
of segments on the line requires f~(N lg N) time; by 
embedding, this immediately gives the same lower bound 
on the all-points fixed-radius near neighbors problem in 
k-space. This shows that our algorithm is optimal (to 
within a constant factor). Reduction to one dimension 
can also be used to show that the data structure is 
optimal. 

In this section we have seen how multidimensional 
divide-and-conquer can be applied to closest-point prob- 
lems, a totally different kind of problem than the domi- 
nation problems we saw in Section 2. Some of the 
techniques we have seen in this section will be useful in 
all other closest-point problems. One such technique is 
employing the concept of  sparsity; it was given in the 
statement of this problem, and we will see how to intro- 
duce it into other problems in which it is not given. The 
second technique that we will use again is projection of  
all near points onto a cut plane. With these tools in hand, 
we now investigate other closest-point problems. 

3.2 Closest  Pair 
In this section we examine the closest-pair problem, 

an all-points problem with no searching analog. We are 
given N points in k-space and must fred the closest pair 
in the set. Notice that this problem is based on relative, 
not absolute, distances. Although the distance separating 
the closest pair could be used as a rotation-invariant 
"signature" of a point set, its primary interest to us is not 
as an applications problem but rather in its status as an 
"easiest" closest-point problem. We call it easiest because 
there are a number of other geometric problems (such as 
nearest neighbors and minimal spanning trees) that fred 
the closest pair as part of  their solution. For a long time 
researchers felt that there might be a quadratic lower 
bound on the complexity of the closest-pair problem, 
which would have implied a quadratic lower bound on 
all the other problems. In this section we will see an O(N 
lg N) closest-pair algorithm, which gives us hope for the 
existence of fast algorithms for the other problems. 
(The O(N lg N) planar algorithm we will see was first 
described by Shamos [26], who attributes to H.R. Strong 
the idea of using divide-and-conquer to solve this problem.) 

The one-dimensional closest-pair problem can be 
solved in O(N lg N) time by sorting. After performing 
the sort we scan through the list, checking the distance 
between adjacent elements. In two dimensions we can 
use multidimensional divide-and-conquer to solve the 
problem. The first step divides S by line L into sets A 
and B, and the second step finds the closest pairs in A 
and B, the distances between which we denote by da and 
dn, respectively. This is illustrated in Figure 13. Note 
that we have now introduced a sparsity condition into 
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Fig. 13. A planar closest-pair algorithm. 
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both A and B. Because the closest pair in A is da apart, 
no da-ball in A can contain more than seven points. This 
follows from the fact that at most six unit circles can be 
made to touch some fLxed unit circle in the plane without 
overlapping; details of the proof are in Bentley [3]. 
Likewise we can show that B is sparse in the sense that 
no dB-ball in B contains more than seven points. I f  we 
let d be the minimum of d3 and dB, notice that the whole 
space is sparse in the sense that no d-ball contains more 
than 14 points. This observation of  "induced" sparsity 
will make the third step of our algorithm much easier, 
which is to make sure that the closest pair in the space 
is actually that corresponding to dA or to dB. We could 
just run a sparse fixed-radius near neighbor algorithm at 
this point to fred any pairs within d of  one another, but 
there is a more elegant approach. Note that any close 
pair must have one element in A and one element in B, 
so all we have to do is consider the slab of  all points 
within d of L, and the third step of this algorithm 
becomes exactly the third step of  the near neighbor 
algorithm. If  we do not use presorting, this gives an 
O(N lg 2 N) algorithm. 

The generalization to 3-space is obvious: We choose 
a plane P defining A and B and solve the subproblems 
for those sets. After this we have introduced sparsity into 
both A and B (relative to da and dB), and we can ensure 
that our answer is correct by solving a planar fixed- 
radius subproblem. In k-space we solve two closest-pair 
problems of N/2 points each in k-space and one fixed- 
radius problem of (up to) N points in k -1  dimensions. 
If  we use the O(N lg N) algorithm for near neighbors, 
then our recurrence is 

T(N) = 2T(N/2) + O(N lg N) 

which has solution T(N) = O(N lg 2 N). Although we will 
not go into the details of the proof here, Bentley [3] has 
shown how the good cut planes we saw for the fixed- 
radius problem can be applied to this problem. If  they 
are used appropriately, then the running time of  the 
closest-pair algorithm in k-space can be reduced to 
O(N lg N). Shamos [26] has shown an f~(N lg N) lower 
bound on this problem in 1-space by reduction to the 
"element uniqueness" problem; this algorithm is there- 
fore optimal to within a constant factor. 

Communications April 1980 
of Volume 23 
the ACM Number 4 



3.3 Nearest Neighbors 
The fmal closest-point problem we investigate deals 

with nearest neighbors. In the all-points form we ask 
that for each point x the nearest point to x be identified 
(ties may be broken arbitrarily). In the searching form 
we give a new point x and ask which of the points in the 
set is nearest to x. The all-points problem has applica- 
tions in cluster analysis and multivariate hypothesis test- 
ing; the searching problem arises in density estimation 
and classification. As usual, we begin our discussion of 
this problem by examining the planar case of the all- 
points problem. 

It is not hard to see how multidimensional divide- 
and-conquer can be used to solve the planar problem. 
The first step divides S into A and B and the second step 
finds for each point in A its nearest neighbor in A (and 
likewise for each point in B). The third step must "patch 
up" by finding if any point in A actually has its true 
nearest neighbor in B, and similarly for points in B. To 
aid in this step we observe that we have established a 
particular kind of sparsity condition. We define the NN- 
ball (for nearest neighbor ball) of point x to be the circle 
centered at x which has radius equal to the distance from 
x to x's nearest neighbor. It can be shown (see Bentley 
[3]) that with this definition no point in the plane is 
contained in more than seven NN-balls of points in A. We 
will now discuss one-half of the third step, namely, the 
process of ensuring for each point in A that its nearest 
neighbor in A is actually its nearest neighbor in S. In 
this process we need consider only those points in A with 
NN-balls intersecting the line L (for if their NN-ball did 
not intersect L, then their nearest neighbor in A is closer 
than any point in B). The final step of our algorithm 
projects all such points of A onto L and then projects 
every point of B onto L. It is then possible to determine 
during a linear-time scan of the resulting list if any point 
x in A has a point in B nearer to x than x's nearest 
neighbor in A. This results in an O(N lg N) algorithm if 
presorting is used. Shamos [26] has shown that it is 
within a constant factor of optimal. 

The extension of the algorithm to k-space yields 
O(N lg k-1 N) performance. It is not clear that there is a 
search structure corresponding to this algorithm. Shamos 
[26] and Lipton and Tarjan [19] have given nearest 
neighbor search structures for points in the plane that 
are analogous to this algorithm. Whether there exists a 
fast k-dimensional nearest neighbor search structure is 
still an open question; this approach is certainly one 
promising point of attack for that problem. 

algorithms for other multidimensional problems, such as 
the all-points problem of finding the minimal-perimeter 
triangle determined by N points and the searching prob- 
lem of determining if a query point lies in any of a set of 
N rectangles. Another aspect of this paradigm is the 
work of Bentley [3] on heuristics that algorithm designers 
can use when applying this paradigm to their problems. 
These heuristics were enumerated after the paradigm 
had been used to solve the closest-point problems of 
Section 3 and were then used in developing the algo- 
rithms of Section 2, among others. A final aspect of this 
paradigm is the precise mathematical analysis of the 
resulting algorithms; Monier [21] has used beautiful com- 
binatorial techniques to analyze all of the algorithms we 
have seen in this paper. 

We now briefly examine two paradigms of algorithm 
design closely related to multidimensional divide-and- 
conquer. The first such paradigm, planar divide-and-con- 
quer, is really just the specialization of the general par- 
adigm to the planar case. Shamos [25, 26] has used this 
technique to solve many computational problems in 
plane geometry. Among these problems are constructing 
the convex hulls of planar point sets, constructing Vo- 
ronoi diagrams (a planar structure which can be used to 
solve various problems), and two-variable linear pro- 
gramming. It is often easier to apply the paradigm in 
planar problems than in k-dimensional problems, be- 
cause the third (marriage) step of the algorithm is one- 
dimensional, and there are many techniques for solving 
such problems. Lipton and Tarjan [19] have given a very 
powerful "planar separator theorem" that often aids in 
applying the planar divide-and-conquer paradigm. 9 

The second related paradigm is what we might call 
recursive partitioning. This technique is usually applied 
to searching problems, but it can then be used to Solve 
all-points problems by repeated searching. The idea 
underlying this technique can be phrased as follows: To 
store N points in k-space, store two substructures each of 
N/2 points in k-space. Searches in such structures must 
then occasionally visit both subtrees of a given node to 
answer some queries, but with "proper" choice of cut 
planes this can be made to happen very infrequently. 
Bentley [2] described a search structure based on this 
idea which he called the multidimensional binary search 
tree, abbreviated as a k-d tree when used in k-space. 
That structure has been used to facilitate fast nearest 
neighbor searching, range searching, fixed-radius near 
neighbor searching, and for a database problem called 
"partial match" searching. Reddy and Rubin [23] use 
recursive partitioning in algorithms and data structures 

4. Additional Work 

In Sections 2 and 3 we saw many aspects of the 
multidimensional divide-and-conquer paradigm, but 
there are many other aspects that can only be briefly 
mentioned. The paradigm has been used to create fast 
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9 The author cannot resist pointing out that the planar divide-and- 
conquer paradigm is also used by police officers. Murray [22] offers 
the following advice in a hypothetical situation: "A crowd of rioters far 
outnumbers the police assigned to disperse it. If you were in command, 
the best action to take would be to split the crowd into two or m o r e  
parts and disperse the parts separately." An interesting open problem 
is to apply other algorithmic paradigms to problems in police work, 
thus establishing a discipline of "computational criminology." 
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for representing objects in computer graphics systems. 
Friedman [14, 15] has used the idea of recursive parti- 
tioning to solve many problems in multivariate data 
analysis such as classification and regression. In addition 
to their theoretical interest, these structures are quite 
easy and efficient to implement; their use has reduced 
the costs of certain computations by factors of a hundred 
to a thousand (examples of such savings can be found in 
the above references). 

All of the data structures described in this paper have 
been static in the sense that once they are built, additional 
elements cannot be inserted into them. Many applica- 
tions, however, require a dynamic structure into which 
additional elements can be inserted. Techniques de- 
scribed by Bentley [4] can be applied to all of the data 
structures that we have seen in this paper to transform 
them from static to dynamic. The cost of this transfor- 
mation is to add an extra factor of O(lg N) to both query 
and preprocessing times (P(N) now denotes the time 
required to insert N elements into an initially empty 
structure), while leaving the storage requirements un- 
changed. The details of this transformation can be found 
in Bentley [4]. Recent work by Lueker [20] and Willard 
[28] can be applied to all of the data structures in this 
paper to convert them to dynamic at the cost of an 
O(lg N) increase in P(N), leaving both Q(N) and S(N) 
unchanged. Additionally, their method facilitates dele- 
tion of the elements. 

This survey of additional work is not completed by 
having mentioned only what has been done; there is 
much more eagerly waiting to be done. Perhaps the single 
most obvious open problem is that of developing meth- 
ods to reduce the times of our algorithm from O(N lgkN) 
to O(N lg N). We saw how presorting could be used to 
remove one logarithmic factor (in all the algorithms) and 
certain other techniques that actually achieved 
O(N lg N) time, such as the expected analysis of Section 
2.2 and the "good" cut planes of Sections 3.1 and 3.2. 
One might hope for similar techniques of broader appli- 
cability to increase the speed of our algorithms even 
more. Another area which we just barely scratched (in 
Section 2.2) was the expected analysis of these algo- 
rithms-experience indicates that our worst-case analy- 
ses are terribly pessimistic. A more specific open problem 
is to use this method to solve the nearest neighbor 
searching problem in k-space; one might also hope to 
use the method to give a fast algorithm for constructing 
minimal spanning trees. Although it has already been 
used to solve a number of research problems, much work 
remains to be done before we can "write the final 
chapter" on multidimensional divide-and-conquer. 

5. Conclusions 

In this section we summarize the contributions con- 
tained in this paper, but before we do so we will briefly 
review the results of Sections 2 and 3. Those sections 
dealt with two basic classes of problems: all-points prob- 
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lems and searching problems. For five all-points prob- 
lems of N points in k-space we saw algorithms with 
running time of O(N lgk-lN); for certain of these prob- 
lems we saw how to reduce their running time even 
more. For four searching problems we developed data 
structures that could be built on O(N lgk-lN) time, used 
O(N lg~-lN) space, and could be searched in O(lgkN) 
time. Both the all-points algorithms and the searching 
data structures were constructed by using one paradigm: 
multidimensional divide-and-conquer. All of the 
all-points problems that we saw have f~(N lg N) 
lower bounds and all of the searching problems have 
f~(lg N) lower bounds; the algorithms and data struc- 
tures that we have seen are therefore within a constant 
factor of optimal (some for only small k, others for any 
k). 

The contributions of this paper can be described at 
two levels. At the first level we have seen a number of 
particular results of both theoretical and practical inter- 
est. The algorithms of Sections 2 and 3 are currently the 
best algorithms known for their respective problems in 
terms of asymptotic running time. They (or their var- 
iants) can also be implemented efficiently for problems 
of "practical" size, and several are currently in use in 
software packages. At a second level this paper contains 
contributions in the study of a particular algorithmic 
paradigm, multidimensional divide-and-conquer. This 
paradigm is essentially a general algorithmic schema, 
which we instantiated to yield a number of particular 
algorithms and data structures. The study of this para- 
digm as a paradigm has three distinct advantages. First, 
we have been able to present a large number of results 
rather succinctly. Second, advances made in one problem 
can be applied to other problems (indeed, once one 
search structure was discovered, all the rest came about 
quite rapidly). Third, this paradigm has been used to 
discover new algorithms and data structures. The author 
has (on occasion) consciously applied this paradigm in 
the attempt to solve research problems. Although the 
paradigm often did not yield fruit, the ECDF, range 
searching, and nearest neighbor problems were solved in 
exactly this way. 

In this paper the author has tried to communicate 
some of the flavor of the process of algorithm design and 
analysis, in addition to the nicely packaged results. It is 
his hope that the reader takes away from this study not 
only a set of algorithms and data structures, but also a 
feeling for how these objects came into being. 
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1. Introduction 

W h e n e v e r  two  c o m b i n a t o r i a l  s t ruc tu res  are  c o u n t e d  
by  the  s a m e  n u m b e r ,  the re  exis t  b i j ec t ions  ( o n e - o n e  

m a p p i n g s )  b e t w e e n  the  two  s t ructures .  O n e  g o a l  o f  geo-  

me t r i ca l  c o m b i n a t o r i c s  (see, for  e x a m p l e ,  F o a t a  a n d  

S c h u t z e n b e r g e r  [7]) is to expl ic i t ly  cons t ruc t  such  b i jec-  

t ions.  T h i s  is b r i n g i n g  the  f ie ld  v e r y  close to c o m p u t e r  

science:  O n e  can  r e g a r d  c o m b i n a t o r i a l  r ep r e sen t a t i ons  o f  

r e m a r k a b l e  n u m b e r s  as e q u i v a l e n t  d a t a  s t ruc tures ;  ex-  

pl ici t  b i j ec t ions  b e t w e e n  such  r e p r e s e n t a t i o n s  p r o v i d e  

c o d i n g  a n d  d e c o d i n g  a l g o r i t h m s  b e t w e e n  the  s t ructures .  

Ea r l i e r  i nves t iga t ions  a l o n g  these  l ines  are  1;eported in 

F r a n ~ o n  et al. [10] a n d  F l a j o l e t  et al. [6]. 

T h i s  p a p e r  s h o u l d  be  r e g a r d e d  as an  i n t r o d u c t i o n  to 

us ing  m e t h o d s  o f  g e o m e t r i c a l  c o m b i n a t o r i c s  in the  f ie ld  

o f  a l g o r i t h m  des ign  a n d  analysis .  F o r  this  pu rpose ,  we  

c o n s i d e r  r e p r e s e n t a t i o n  o f  n! as a r u n n i n g  e x a m p l e  a n d  

d e m o n s t r a t e  h o w  we are  led to d i s c o v e r i n g  n e w  a n d  

ef f ic ien t  d a t a  s t ruc tures  a n d  a l g o r i t h m s  for  so lv ing  var -  

ious  d a t a  m a n i p u l a t i o n  p r o b l e m s .  
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