Open encryption technology - a contribution to a meso-level analysis of 'technical' factors

1st Nordic STS Conference
24.-26. april 2013
Trondheim, Norway

Niels Jørgensen
Roskilde University, Denmark
Research questions

How did present day, open encryption evolve?
• 2000+: encryption is a fully open technology
• 1970-80s: semi-open
• (before ~1970: secret, used by military and diplomacy)

Specific questions:

how did US government
• .. succeed in preventing strong encryption in the 1970s
• .. but fail to do the same in the 1990s?
• What was the role of technical factors?
Previous studies

Accounts by participants in the 1990s' debates:

Economics
• Businesses required strong encryption
• Diffie & Landau: “Privacy on the line” (2007)

Politics, activism
• “Privacy advocates convinced the government..”
• NSA Director McConnell (The New Yorker, 2008)

Technical
• The government's compromise (the Key Escrow Standard) was technically flawed, probably technically infeasible
• Matt Blaze: “Encrypting history at the NSA” (2008)
Research approach

Inspiration:

Schmidt & Werle (1998)
• standards in telecommunication
• constructivist, institutional, actor-centered

Misa (2009)
• meso-level analysis

Also
• it is meaningful to speak of technical factors, social factors,..
• a “mildly” constructivist approach? (Bijker 2010)
Plan of talk

1. Background
 • overview of development 1970-2000
 • explain encryption
 • and closed vs. open encryption

2. Analysis
 • technical factors
Encryption

- To make a text unreadable
- By “scrambling”
- Yet the legitimate receiver can re-create the text

Credit card number (plaintext) → Encrypt → Scrambled text (ciphertext) → Decrypt → 1234 5678
Today: strong & open encryption

AES is the most widely used encryption algorithm by PC web browsers
• Firefox, Safari, Chrome, Explorer (newer)

AES:
• Advanced Encryption Standard
• Defined in 2001
• strong
• open
• aka. Rijndael (~ Rijmen + Daemen)
AES is “strong” encryption

Strong
• suppose attacker has ciphertext + algorithm
• can decrypt only using brute force (all keys = 2^x or 2^{256})

“Unbreakable in practice”
• no proof that method is unbreakable
• so far nobody knows how to break the AES algorithm
• a pragmatic notion of strength (social, trust-based)
AES is “open” encryption

AES's definition is publicly available (and freely)
• FIPS Standard #197 (in 2001)
• explained on Wikipedia and at universities

AES implementations are publicly available (and freely)
• in web browsers
• open source libraries, eg. www.bouncycastle.org (java, C#)
• implementations can achieve certification

AES's design is discussed publicly
• by experts in academia and industry
• weaknesses ~ what are the best attacks on AES?
• strengths ~ the underlying math structure (a Galois field)

Legal to use in nearly all Western countries
Legal to export (with some restrictions)
1970s, 80s: semi-open, semi-strong encryption

ATMs introduced in Denmark in 1984
• for users with Dankort credit cards

Encryption needed to protect data sent between the ATM and the bank

Only one realistic algorithm: DES
• Digital Encryption Standard
• a compromise
• business interest: data protection
• National Security Agency (NSA): prevent bad guy's access to strong encryption
DES is only semi-strong

Defined in 1977 by Federal Bureau of Standards

The bureau allowed changes by NSA

NSA reduced to key length fra 64 to 56 bits
• brute force attack needs to consider 2^{56} keys
• instead of 2^{64} keys
DES is only semi-open

DES was publicly available (and freely)
• FIPS #46

But the “design rationale” was secret
• NSA changed the “scrambling” function
• that is, the heart of the algorithm, the S-boxes
• NSA refused to say why

Suspicion
• had NSA inserted a “backdoor”?
• so that NSA could decrypt any message?
Plan of talk

1. Background
 • overview of development 1970-2000
 • explain encryption
 • and closed vs. open encryption

2. Analysis
 • technical factors
From semi-open to open encryption - the role of technical factors?
Non-technical factors: Social groups (cf. SCOT)

Law enforcement:
- “encryption threatens public safety”, “used by criminals”

Business:
- “encryption is needed to protect business secrets”

Privacy advocates:
- “privacy of communication is a civil right”
The artifacts of the fight

1970s:
• DES became the dominating standard

1990s:
• KES was never widely used

The end result was not a given

- **WTC terror attack**
 - 11. sept. 2001

- **Encryption ban proposed & withdrawn**
 - sept.-oct. 2001

- **AES standard**
 - 26. nov. 2001

- **Homeland Security Act**
 - 25. nov. 2002

- **1975**
- **2000 2001**
1970s:
- low-cost encryption processor

- DES (1977)
- KES (1994,96)
- AES (2001)
Technical feasibility (DES)

Before DES:

Demand for encryption:
• Banks wanted to use encryption

Technical feasibility:
• new hardware technology: integrated circuits
• possible to mass produce a cheap encryption chip
• hardware implementation necessary (factor ~1000 vs. software)

But there were no encryption products on the market

DES created a market
• mandatory in government
• economics of scale for vendors
• competition between vendors
• no alternatives on the market to DES's semi-strong encryption
Technical feasibility

1990s:
• medium-cost DES-cracking

Technical feasibility: cracking of DES

“DES-cracker” built by EFF (privacy advocates)
• broke DES in 3 days
• cost $ 1/4 mill.

DES-cracker contest
• 10,000$ prize
• by RSA Security Inc.
• ciphertext:
 • 79 45 81 c0 a0 6e 40 a2..
• plaintext:
 • “It's time for those 128-, 192-, and 256 bit keys”.
Technical feasibility

1990s:
• low-cost voice-encryption

Key Escrow Standard (1994)

- by NIST
- strong encryption of phone conversation
- mandatory in government
- with a legal warrant, law enforcement agencies can get access to the encryption key

AT&T marketed model 3600
- KES compliant
- cost ~$1000
- never sold outside government
Technical feasibility: alternatives to KES

Privacy activists developed free software for voice-encryption on a PC

1990s:
- low-cost powerful PCs

DES (1977)

KES (1994,96)

AES (2001)
Technical infeasibility of KES

- one party in a phone conversation could pretend to be KES-compliant
- KES too complex

1990s:
- Key Escrow Standard technically flawed

- DES (1977)
- KES (1994, 96)

- AES (2001)
Conclusion

Influence of technical developments:

1970s: chip-technology
• DES became dominant market standard

1990s: chip-technology
• DES became obsolete (broken)
• voice encryption and other new applications
• also software alternatives to government standards

1990s: complexity of network technology
• failure of Key Escrow Standard