Introduction to Predicate Logic

Torben Braüner
Roskilde University
Plan

• Symbolization of sentences
• Syntax
• Semantics
Propositional logic

The sentence is the smallest syntactic unit

Predicate logic

Sentences are broken further down into

-- constants

-- variables

-- predicates

-- quantifiers
Singular sentences

A *singular* sentence is built from a constant and a predicate

-- the constant refers to a thing

-- the predicate indicates a property

Such a sentence says that the thing referred to has the indicated property

Note: There are no restrictions on what things can be!
An example of a singular sentence

The sentence

"Mars is round"

Is build from the constant

"Mars"

and the predicate

"_ is round"
Symbolization of singular sentences

a, b, c, ... stands for constants

P, Q, R, ... stands for predicates

Singular sentences are symbolized

\[P(a), Q(b), R(c), ... \]

which respectively stand for

"a has the property P",
"b has the property Q",
"c has the property R",

etc.
Example of symbolization

If \(a \) is the constant

"Mars"

and \(P \) is the predicate

"_ is round"

then \(P(a) \) symbilizes

"Mars is round"
General sentences

A general sentence is built from a quantifier and a predicate.

Such a sentence either says that

all things have the indicated property

(universal quantification)

or says that

there exists a thing that has the indicated property

(existential quantification)
An example of a general sentence

The sentence

"every thing is round"

is built from the quantifier

"every thing"

And the predicate

"_ is round"
Symbolization of general sentences

\(x, y, z, \ldots \) stands for variables

\(\forall x \) and \(\exists y \) stand for respectively

"for all \(x \) it is the case that" and "there exists a \(y \) such that"

General sentences are symbolized

\[\forall x \ P(x), \exists y \ Q(y), \ldots \]

which respectively stand for

"for all \(x \) it is the case that \(x \) has the property \(P \)”,

"there exists a \(y \) such that \(y \) has the property \(Q \)”,

etc.
Example of symbolization

If P is the predicate

"_ is round"

then $\forall x \; P(x)$ symbolizes the sentence

"for all x it is the case that x is round"

that is

"every thing is round"
There are many more sorts of sentences that singular and general sentences!
A predicate can have an arbitrary number of places, this number is called the **arity** of the predicate.

Examples

The sentence "John is taller than Poul" is built from the constants

"John" og "Poul"

and the predicate

"_ is taller than _"

which has the arity 2

Note: A predicate with arity 0 is a complete sentence.
Predicate logic allows

-- predicates of all arities

-- arbitrary composition of formulas using.

 * the connectives of propositional logic

 * quantifiers
Syntax of predicate logic

constants $a, b, c, ...$
variables $x, y, z, ...$
predicates $P, Q, R, ...$

If a predicate P has arity n, then P followed by an n-tuple of constants and variables is an atomic formula.

Examples of atomic formulas

$P(a), P(x), Q(b, z), Q(y, z)$

where P has arity 1 and Q has arity 2
Compound formulas are built using the connectives

\[\neg, \land, \lor, \Rightarrow \]

and the quantifiers

\[\forall x, \exists y \]

together with parantheses

Examples of compound formulas

\[P(x) \land Q(b, z), \forall x \ P(x), \exists z \ Q(b, z) \]

Sentences can now be symbolized (like in propositional logic)
An occurrence of a variable in a formula is either free or bound

-- all occurrences in atomic formulas are free

-- all free occurrences φ are free in $\neg \varphi$

-- all free occurrences in φ and ψ are free in $\varphi \land \psi$
 (analogously for the connectives \lor and \Rightarrow)

-- all free occurrences in φ, save occurrences of x, are free in $\forall x \varphi$
 (analogously for $\exists x$)

A formula where no variables occur free is closed
Examples

The occurrence of x in the formula $Q(b,x)$ is free whereas the occurrence of x in $\forall x \ Q(b,x)$ is bound.

Thus, $Q(b,x)$ is not closed, but $\forall x \ Q(b,x)$ is closed.
\(\varphi[a/x] \) is the formula \(\varphi \) where all free occurrences of the variable \(x \) are replaced by the constant \(a \)

Examples

\(Q(b,x)[a/x] \) is the formula \(Q(b,a) \)

\(Q(x,x)[a/x] \) is the formula \(Q(a,a) \)

\(Q(b,x)[a/y] \) is the formula \(Q(b,x) \)

\((\forall x \ Q(b,x))[a/x] \) is the formula \(\forall x \ Q(b,x) \)
The semantics of predicate logic

A model is a non-empty set D together with

-- ekstensions $|a|$, $|b|$, $|c|$, ... for the constants a, b, c, ...
 (the extension $|a|$ of a constant is an element in D)

-- ekstensions $|P|$, $|Q|$, $|R|$, ... for the predicates P, Q, R, ...
 (the extension $|P|$ of a predicate P with arity n is a set of n-tuples of elements in D)

Intuition:

The expansion of a constant is the thing referred to

The extension of a predicate is the set of things having the indicated property
Given a model

\((D, |a|, |b|, |c|, \ldots, |P|, |Q|, |R|, \ldots)\)

a closed formula can be assigned a truth-value

Atomic formulas:

\(P(a_1, \ldots, a_n) \) is true if and only if \((|a_1|, \ldots, |a_n|) \in |P|\)

Compound formulas:

The truth-conditions for \(\neg, \land, \lor, \Rightarrow\) are as in propositional logic

\(\forall x \varphi\) is true if and only if \(\varphi[a/x]\) is true for any \(a\)

\(\exists x \varphi\) is true if and only if there exists an \(a\) such that \(\varphi[a/x]\) is true

(Assumption: Any element of \(D\) is referred to by a constant)
Two important definitions

Let φ and ψ_1, \ldots, ψ_m be closed formulas

φ is **valid** if and only if φ is true in any model

φ is a **logical consequence** of ψ_1, \ldots, ψ_m if and only if φ is true for all models where ψ_1, \ldots, ψ_m are all true

(That is, if and only if the formula $(\psi_1 \land \ldots \land \psi_m) \Rightarrow \varphi$ is valid)