B:22

“Dýnamis, the Babylonians, and Theaetetus 147c7 – 148d7”. Historia Mathematica 17 (1990), 201–222. Manuscript

B:24

“On Parts of Parts and Ascending Continued Fractions”. Centaurus 33 (1990), 293–324. Manuscript of preprint.

G:11

“Sub‑scientific Mathematics: Undercurrents and Missing Links in the Mathematical Technology of the Hellenistic and Roman World”. Filosofi og videnskabsteori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 1990 nr. 3. Forthcoming in Aufstieg und Niedergang der römischen Welt, II vol. 37,3 (if that volume should ever happen to appear!). Manuscript.

 

B:45

“Existence, Substantiality, and Counterfactuality. Observations on the Status of Mathematics According to Aristotle, Euclid, and Others”. Centaurus 44 (2002), 1–31. Preprint.

 

B:52

“Conceptual Divergence – Canons and Taboos – and Critique: Reflections on Explanatory Categories”. Historia Mathematica 31 (2004), 129–147. Preprint. The published version is available at http://www.sciencedirect.com/science/journal/03150860.

 

C:16

“Hero, Ps.-Hero, and Near Eastern Practical Geometry. An Investigation of Metrica, Geometrica, and other Treatises, pp. 6793 in Klaus Döring, Bernhard Herzhoff & Georg Wöhrle (eds), Antike Naturwissenschaft und ihre Rezeption, Band 7. Trier: Wissenschaftlicher Verlag Trier, 1997. For obscure reasons, the publisher has changed into ~ and ⊏⊐ into ¤§ on p. 83 after having supplied correct proof sheets. Preprint

 

C:23

“Alchemy and Mathematics. Technical Knowledge Subservient to Ancient γvωσις”, pp. 38–54 in Vincent F. Hendricks & Jesper Ryberg (eds), Readings in Philosophy and Science Studies, vol. I. Roskilde: Department of Philosophy and Science Studies, 2001. Marred by numerous computer conversion errors. Preprint.

 

 B:64

 Which kind of mathematics was known and referred to by those who wanted to integrate mathematics in «Wisdom» –Neopythagoreans and others?. AIMS Mathematics 1 (2016), 77–95.

 

 B:66

 

 What Is `Geometric Algebra', and What Has It Been in Historiography?. AIMS Mathematics 2 (2017), 128-160.

 

 B:67

 

 Archimedes Knowledge and Lore from Latin Antiquity to the Outgoing European Renaissance. Ganita Bharati  39 (2017), 122.

 

D:18 Archimedes: Reception in the Renaissance, in Marco Sgarbi (ed.), Encyclopedia of Renaissance Philosophy. Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-02848-4_892-1.

 

C:26

“The Status of Theory and Practice in Ancient, Islamic and Medieval Latin Contexts”, pp. 1–17 in Raffaella Franci, Paolo Pagli & Annalisa Simi (eds), Il sogno di Galois. Scritti di storia della matematica dedicati a Laura Toti Rigatelli per il suo 60o compleanno. Siena: Centro Studi della Matematica Medioevale, Università di Siena, 2003. Manuscript.

 

C:61

 

From the Practice of Explanation to the Ideology of Demonstration: An Informal Essay, pp. 2746 in G. Schubring (ed.), Interfaces between Mathematical Practices and Mathematical Education. Cham: Springer, 2018.

 

 B:71

Hippocrates of Chios – His Elements and His Lunes: A critique of circular reasoning. AIMS Mathematics 5 (2019), 158–184

 

D:8

Mathematik. I. Mesopotamien. II. Ägypten. III. Mesopotamische und ägyptische Einflüsse auf die griechische Mathematik”, pp. 1010b–1016b in Der Neue Pauly. Enzyklopädie der Antike, Bd. 7. Stuttgart & Weimar: Metzler, 1999. Seriously maltreated by the editors without my knowing so, a correct version should be under way in the online edition. Manuscript.

 

E:70

[Review of Reviel Netz, The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. (Ideas in Context, 51). Cambridge: Cambridge University Press, 1999]. Studia Logica 80 (2005), 143–147. Manuscript.

 

E:56

[Review of Imre Toth, Aristotele e i fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel «Corpus Aristotelicum» nel loro contesto matematico e filosofico. (Temi metafisici e problemi del pensiero antico. Studi e testi, 56). Milano: Vita e Pensiero, 21998]. Zentralblatt für Mathematik und ihre Grenzgebiete 954 (2000) #01002.

 

E:46

[Review of Francesca Incardona (ed., trans.), Euclide, Ottica. Immagini di una teoria della visione. Roma: Di Renzo Editore, Roma, 1996]. Rivista di Storia della Scienza (serie II) 4 (1996), 171-176.

 

E:27

[Review of H.-J. Waschkies, Anfänge der Arithmetik im Alten Orient und bei den Griechen. Amsterdam: B. R. Grüner, 1989]. Zentralblatt für Mathematik und ihre Grenzgebiete 0760.01001.

 

E:34

[Review of I. Mueller (ed.), Peri Tōn Mathēmatōn. (Apeiron 24:4 (1991)). Edmonton, Alberta: Academic Printing and Publishing, 1992]. Historia Mathematica 22 (1995), 84–87.The publication is available at http://www.sciencedirect.com/science/journal/03150860. Manuscript.

 

E:66

[Review of C. J. Tuplin & T. E. Rihll (eds), Science and Mathematics in Ancient Culture. Oxford: Oxford University Press, 2002]. Zentralblatt für Mathematik und ihre Grenzgebiete.

 

E:56

[Review of Imre Toth, Aristotele e i fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel «Corpus Aristotelicum» nel loro contesto matematico e filosofico. (Temi metafisici e problemi del pensiero antico. Studi e testi, 56). Milano: Vita e Pensiero, 21998]. Zentralblatt für Mathematik und ihre Grenzgebiete 954 (2000) #01002.

 

E:58

[Review of Serafina Cuomo, Pappus of Alexandria and the Mathematics of Late Antiquity. (Cambridge Classical Studies). Cambridge: Cambridge University Press, 2000]. British Journal for the History of Science 34 (2001), 240-242. Manuscript.

 

E:71

[Review of Jürgen Schönbeck, Euklid. Um 300 v. Chr. (Vita Matematica, 12). Basel etc.: Birkhäuser, 2003]. British Journal for the History of Science 38 (2005), 223–225. Manuscript.

 

E:75

[Review of Lucio Russo, Die vergessene Revolution oder die Widergeburt des antiken Wissens. Berlin etc.: Springer, 2005]. Zentralblatt für Mathematik und ihre Grenzgebiete 1080.01001.

 

E:11

[Review of W. Neumaier. Was ist ein Tonsystem? Eine historisch-systematische Theorie der abendländischen Tonsysteme, gegründet auf die antiken Theoretiker Aristoxenos, Eukleides und Ptolemaios, dargestellt mit Mitteln der modernen Algebra. (Quellen und Studien zur Musikgeschichte von der Antike bis in die Gegenwart, band 9). Frankfurt a.M. etc.: Peter Lang, 1986]. Mathematical Reviews 89d:01007 (1989).

 

E:17

[Review of W. Neumaier. Was ist ein Tonsystem? Eine historisch-systematische Theorie der abendländischen Tonsysteme, gegründet auf die antiken Theoretiker Aristoxenos, Eukleides und Ptolemaios, dargestellt mit Mitteln der modernen Algebra. (Quellen und Studien zur Musikgeschichte von der Antike bis in die Gegenwart, band 9). Frankfurt a.M. etc.: Peter Lang, 1986]. Historia Mathematica 17 (1990), 172–174. Manuscript. The published version is available at http://www.sciencedirect.com/science/journal/03150860.

 

 

 [Review of Gerhard Michael Ambrosi, Pre-Euclidean Geometry and Aeginetan coin design: some further remarks. Archive for History of Exact Sciences 66 (2012), 557–583 (and actually also of David Aboav, Euclid’s book on divisions of figures: a conjecture as to its origin. Archive for History of Exact Sciences 62 (23008), 603612]. Written for Mathematical Reviews. Manuscript.